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ABSTRACT: To address the challenge of balancing sidelobe suppression and computational efficiency in phased array random phase feed-
ing optimization, this paper proposes a multi-objective collaborative optimization scheme based on the Dynamic Shuffled Frog Leaping
Algorithm (DSFLA). By establishing a hardware-compatible binary encoding model for phase quantization errors and introducing side-
lobe variance constraints, the method achieves joint optimization of peak sidelobe level (PSLL) and beam pattern flatness. Simulation
results demonstrate: For 32-element Taylor-weighted arrays, optimized PSLL reaches —28.6 dB (8.8 dB improvement vs. initial) with
sidelobe variance reduced from 3.5 dB? to 1.2 dB?; For Chebyshev-weighted arrays, PSLL achieves —31.2 dB. The algorithm maintains
robust performance under practical imperfections including element spacing perturbations (0.02\ RMS error) where PSLL stabilizes at
—27.3dB (o0 = 0.9 dB) and phase quantization errors (5° RMS) yielding —27.9 dB PSLL. DSFLA significantly outperforms conven-
tional methods — reducing convergence generations from 276 to 28 and computation time by 29.2% (85 s) versus ant colony optimiza-
tion while demonstrating O(N'-%) scalability to 128-element arrays (PSLL = —32.1 dB in 218 sec). Real-time operation is feasible with
PSLL = —27dB achievable in < 40 ms, meeting 50 ms radar beam-switching deadlines. This approach provides a practical solution for
real-time beam control in high-precision phased array radar systems.
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1. INTRODUCTION

hased array antennas achieve beam scanning by adjusting

the phase distribution of array elements; their performance
is heavily dependent on the quantization accuracy of digital
phase shifters. However, constrained by hardware costs in
practical engineering, low-bit phase shifters (e.g., 3-bit) in-
troduce significant periodic phase errors, leading to elevated
sidelobe levels in radiation patterns [1]. To suppress this phe-
nomenon, studies [2, 3] proposed a randomized phase feeding
method, which converts deterministic phase errors into statisti-
cally uniform noise by applying random perturbations to quan-
tized phase values of phase shifters, thereby reducing the peak
sidelobe level (PSLL).

Existing studies (e.g., genetic algorithms in [3,4] and ant
colony algorithm in [5]) predominantly employ single search
strategies to optimize randomized phase feeding distributions,
yet suffer from critical limitations: (1) Premature convergence
in genetic algorithms due to inadequate diversity preserva-
tion; (2) Computational inefficiency in ant colony optimiza-
tion (ACO) requiring extensive pheromone accumulation (e.g.,
120 seconds for 28-element arrays [5]); and (3) Limited explo-
ration of local solution spaces causing sensitivity to initial con-
ditions. These shortcomings become particularly pronounced
when scaling to large arrays (> 100 elements) or alternative
weighting schemes like Chebyshev distributions.

The shuffled frog leaping algorithm (SFLA), as a swarm
intelligence optimization method, achieves balanced global ex-
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ploration and local exploitation through synergistic subgroup
partitioning and meme-based evolution [6,7]. Its discrete
search characteristics demonstrate high compatibility with
phased array optimization where phase choices are inherently
binary (round-up/round-down). Specifically [8]: (1) Subgroup
parallelism enables simultaneous exploration of diverse phase
configurations; (2) Local meme evolution facilitates targeted
suppression of high sidelobe spikes; (3) Global shuffling
avoids entrapment in local optima. Recent advancements
in dynamic SFLA variants [10] further enhance adaptability
through quantum-inspired operators, showing promise for
MIMO arrays beamforming applications.

This paper proposes a Dynamic Shuffled Frog Leaping Al-
gorithm (DSFLA) framework with three key innovations ad-
dressing existing gaps:

(1) A binary phase-error encoding model mapping discrete
optimization variables directly to SFLA position vectors, elim-
inating quantization artifacts inherent in continuous methods;

(2) A composite fitness function incorporating PSLL min-
imization and sidelobe variance constraints (Equation 3) to
jointly suppress peak sidelobes and random spikes — proven
more effective than PSLL-only optimization through controlled
experiments (Subsection 2.2);

(3) A dynamic subgroup reorganization strategy with adap-
tive mutation probability (Equation (8)) that accelerates con-
vergence by 29.2% versus static SFLA while maintaining ro-
bustness against phase errors and array imperfections.

Simulation results validate DSFLA’s superiority over con-
ventional methods: For 32-element Taylor-weighted arrays, it
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achieves —28.6 dB PSLL (8.8 dB improvement vs. ACO [5])
with 60% faster convergence. Crucially, the approach demon-
strates: (1) Scalability to 128-element arrays (Subsection 5.3);
(2) Compatibility with Chebyshev weighting (Subsection 5.2);
(3) Steering stability (< 0.3° pointing error at 20°—60° scans);
(4) Hardware feasibility via field programmable gate array
(FPGA)-implementable control outputs.

These advances establish DSFLA as a practical solution for
real-time beam control in next-generation radar systems, with
ongoing extensions to broadband arrays and federated meta-
learning implementations [11].

2. MATHEMATICAL MODELING AND PROBLEM
ANALYSIS OF RANDOMIZED PHASE FEEDING

To adapt to the discrete optimization characteristics of SFLA
while ensuring compatibility with practical phased array con-
straints, this section establishes the mathematical model of ran-
domized phase feeding. The formulation addresses two criti-
cal requirements emerging from phased array design practice:
(1) The binary encoding scheme must preserve the discrete na-
ture of phase shifter quantization without approximation arti-
facts; and (2) The fitness function must jointly suppress peak
sidelobes and random spikes — a limitation of PSLL-only op-
timization demonstrated through comparative analysis in Sub-
section 5.2. Considering a Taylor amplitude-weighted linear
array as the baseline configuration, we define the following pa-
rameters:

1. Array element configuration: A linear array of NV omni-
directional elements with inter-element spacing d = \/2,
extendable to alternative weighting distributions including
Chebyshev as validated in Subsection 5.2.

2. Phase quantization error: For the n-th element, A¢,, €
{—an, b, } represents the discrete phase choices (round-
up or round-down per [9]), directly mappable to binary
variables without continuous relaxation.

3. Radiation pattern formulation: The far-field radiation
pattern at steering angle 65 is expressed as:

N
E (9) _ Z Inej[%'(n—l)d(sina—sin93)+¢n] (1)

n=1

where [, is the Taylor weighting coefficient, and A¢,, serves as
the optimization variable. This steering angle 6 5 will be varied
from 20° to 60° in Subsection 5.5 to validate beam-pointing
stability under scanning conditions.

2.1. Discretized Encoding of Phase Quantization Errors

The optimization objective of SFLA is to minimize the peak
sidelobe level (PSLL) of the radiation pattern by selecting A¢,,
values (round-up or round-down) for each array element. To
achieve this:

(1) Binary encoding: Map the phase selection of each ele-
ment to a 0—1 variable (z,, = 0 denotes round-down; z,, = 1
denotes round-up). The solution vector X = [z1,22,...,ZN]
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thereby corresponds to a randomized phase feeding scheme.
This exact binary representation preserves the discrete nature
of phase shifter states, avoiding quantization errors inherent in
continuous optimization methods and ensuring direct hardware
compatibility.

(2) Error mapping: The relationship between phase error
A¢,, and encoding variable x,, is given by:

—ap, = 1 (round-up method)

This creates a bijective mapping between SFLA position vec-
tors and implementable phase states, enabling efficient muta-
tion through bit-flip operations in Equation (4).

2

%, = 0 (round-down method)

2.2. Fitness Function Design
The fitness function f(X) is defined as the reciprocal of the

optimization target PSLL, incorporating a variance constraint
to suppress peak sidelobes and random spikes:

1

FX) = epppsiog) @V X)

3)

where

1. PSLL (X) = n;%x |E (0)| (dB) is the peak sidelobe level;

2. var(X) denotes the variance of electric field intensity in the
sidelobe region (suppressing random spikes), calculated
as:

var (X) = % Z (|E(‘9)|2 - ‘E|)2

0es

4)

where S denotes the sidelobe region, M represents the
number of sampling points.

3. = 0.05 is the proportionality factor;

4. a« = 0.1 is the weighting factor (experimentally cali-
brated).

The inclusion of var(X) is empirically justified: Subsection
5.2 demonstrates that PSLL-only optimization yields solutions
with localized spikes (variance > 2.8 dB2), while the combined
approach reduces variance to 1.2 dB? and suppresses random
spikes below —27dB. The a parameter balances these objec-
tives, with sensitivity analysis provided in Figure 4 of the sup-
plemental materials.

2.3. Compatibility Analysis with SFLA

The subgroup partitioning mechanism of SFLA can effectively
explore the diversity of discrete phase configurations, as illus-
trated in Figure 1:

(1) Subgroup mapping: Each subgroup corresponds to can-
didate solutions sets {Xj, Xo, ..., X,,}, enabling parallel ex-
ploration of distinct phase configurations. The worst solution
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TABLE 1. Algorithm performance comparison (32-element array).

Metric ACO [5] GA[4] DSFLA (Proposed)
Average PSLL (dB) —26.3 —25.8 —28.6
Convergence Generations 276 190 28
Computation Time (s) 120 95 85
Sidelobe Variance (dB?) 3.5 4.1 1.2

FIGURE 1. SFLA algorithm schematic diagram.

X, in each group undergoes targeted improvement via bit-level
mutations.

(2) Local search: Phase selections in X,, are updated using
discrete position adjustments per Equation (5):

w
ZWnew 1- i
i - 2V

7

ifr < P’rnut (5)

otherwise

where r € [0, 1] is a uniformly distributed random number;
Pt = 0.3 denotes the mutation probability; and search effi-
ciency is balanced through adaptive adjustment of P, [7]. The
bit-flip operation (z,, — 1—x,,) directly corresponds to switch-
ing between round-up/round-down states, ensuring that all op-
erations remain within the feasible solution space. This dis-
crete compatibility contributes significantly to the 29.2% com-
putation time reduction versus continuous methods reported in
Table 1.

3. PRINCIPLES AND ENHANCED DESIGN OF THE
SHUFFLED FROG LEAPING ALGORITHM

The shuffled frog leaping algorithm (SFLA) integrates swarm
intelligence with local search to balance global exploration and
local exploitation, making it particularly suitable for discrete
optimization problems like phased array phase feeding. Con-
ventional approaches such as genetic algorithms and ant colony
optimization face limitations in this domain: Genetic algo-
rithms exhibit premature convergence due to insufficient diver-
sity preservation, while ant colony methods suffer from com-
putational inefficiency from extensive pheromone accumula-
tion. SFLA overcomes these limitations through its subgroup
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partitioning and information sharing mechanisms, avoiding lo-
cal optima while maintaining efficient search capabilities. The
algorithm’s inherent compatibility with discrete optimization
stems from its position vector representation, which aligns nat-
urally with the binary phase selection variables defined in Sub-
section 2.1.

3.1. Principles of the Shuffled Frog Leaping Algorithm

3.1.1. Population Initialization and Encoding

The algorithm begins by mapping each element’s phase error
selection to binary variables, forming solution vectors X =
[x1, 2, ..., 2z, where z,, € {0, 1} corresponds to the phase se-
lection of the n-th element. The initial population size F' is de-
termined by the array complexity (e.g., ' = 50 when N = 32),
which ensures sufficient solution diversity while maintaining
computational efficiency. Each solution’s fitness is evaluated
using Equation (3), which combines PSLL minimization and
sidelobe variance constraints to suppress random spikes — a
critical improvement over PSLL — only approaches as demon-
strated in Subsection 5.2.

3.1.2. Local Deep Search Mechanism

Within each memetic subgroup, the worst solution P, un-
dergoes targeted improvement through meme-based evolution.
The position update employs discrete bit-flip operations per
Equation (4), where flipping + — 1—, directly corresponds
to switching an element’s phase selection between quantiza-
tion states. The mutation probability Py, = 0.3 is dynam-
ically adjusted using Equation (8) to balance exploration and
exploitation: Initially, higher values (P, > 0.25) promote
wide exploration of phase configurations, while later reduction
(Pmut < 0.1) focuses on refining promising solutions. Should
local improvement stall, the global best solution Py, provides di-
rectional guidance through Equation (7), effectively preventing
premature convergence that plagues conventional methods.

3.1.3. Global Information Exchange

After L = 10 local iterations, all subgroups undergo shuffling
and repartitioning. This global information exchange enables
cross-pollination of phase optimization strategies between dis-
tinct solution clusters, simulating foraging experience sharing
across distributed frog populations. The reshuffling mechanism
proves particularly effective for large arrays (> 100 elements),
where solution space dimensionality challenges traditional al-
gorithms, as scalability analysis in Subsection 5.3 confirms.
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3.2. Algorithm Workflow

The SFLA workflow for phased array optimization implements
several key enhancements to support real-time radar applica-
tions:

3.2.1. Initialization

Parameters are configured for rapid convergence: m = 5 sub-
groups, L = 10 local iterations, and G = 50 maximum global
iterations. The initial population of /' = 50 random phase
configurations is generated with fitness evaluation completed
in < 0.5 seconds for 32-element arrays, establishing a baseline
for computational efficiency comparisons.

3.2.2. Dynamic Subgroup Partitioning & Local Search

Subgroups are partitioned by fitness rank. A novel dynamic
adjustment strategy modifies subgroup count during optimiza-
tion:

a. Early stage (iterations 1-10): m = 5 subgroups for broad
exploration.

b. Mid-stage (iterations 11-30): m is adaptively adjusted be-
tween 3 and 8§ based on population diversity.

c. Late stage (iterations > 30): m = 3 subgroups for inten-
sive local refinement.

This dynamic reorganization accelerates convergence by
29.2% compared to static SFLA while maintaining solution
quality.

3.2.3. Adaptive Termination

The convergence criterion (PSLL variation < 0.1 dB over 5 it-
erations) is designed for real-time systems, allowing early ter-
mination when further improvements become negligible. This
enables computation time reduction to < 40 ms when PSLL re-
quirements are relaxed to —27 dB, meeting typical radar beam-
switching deadlines.

3.3. Mathematical Modeling of Enhanced Operations
3.3.1. Elite-Guided Position Update

For solutions unimproved by local mutation, directional up-
dates incorporate the global best solution:

AXy =11 (Py — Py) + 12 (Py — Py) 6)

where r1, ro € [0, 1] are random weights balancing exploration
and convergence. The discrete rounding operation ensures that
solutions remain within binary space.

3.3.2. Dynamic Mutation Probability

Time-varying mutation probability enhances adaptability:

- exp (—)\' é)

with A = 2 controlling the decay rate. This strategy maintains
genetic diversity during initial exploration while intensifying
local search near convergence.

Prut (t) = Pﬁﬁﬁ @)
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3.3.3. Hardware-Compatible Output

Optimized binary vectors directly generate phase shifter control
words, requiring only 32 bits for a 32-element array. The entire
process — from algorithm execution to control register writ-
ing — completes within 85 ms on standard FPGA platforms,
demonstrating practical implementability for fielded systems.

4. IMPLEMENTATION OF DSFLA-BASED RANDOM-
IZED PHASE FEEDING OPTIMIZATION SCHEME

This section presents a comprehensive randomized phase feed-
ing optimization framework based on Dynamic Shuffled Frog
Leaping Algorithm (DSFLA). The implementation addresses
three critical requirements for practical phased array systems:
(1) Strict adherence to discrete phase shifter constraints through
exact binary mapping; (2) Joint optimization of peak sidelobe
suppression and radiation pattern uniformity; and (3) Computa-
tional efficiency for real-time radar operation. The scheme in-
tegrates binary encoding, adaptive mutation strategies, and dy-
namic subgroup reorganization to achieve global optimization
of phase quantization errors, effectively overcoming hardware
limitations in low-bit phase shifter systems.

4.1. Binary Encoding Mapping of Phase Quantization Errors

4.1.1. Discrete Solution Space Modeling

Each element’s phase selection (round-up or round-down) is
mapped to z,, € {0,1}, creating an N-dimensional discrete
solution space where X = [xy, 23, ...,z ] represents a com-
plete phase configuration. This exact binary encoding ensures
direct hardware compatibility — each solution vector corre-
sponds precisely to a 32-bit control word for 32-element arrays,
executable on FPGA platforms without additional conversion.
The discrete representation enables efficient neighborhood ex-
ploration through single-bit flips (x,, — 1 — z,,), each equiva-
lent to toggling an element’s quantization state while maintain-
ing solution feasibility.

4.1.2. Radiation Pattern Sidelobe Suppression Objective

The fitness function implements multi-objective optimization
as defined in Equation (3) of Subsection 2.2. The variance
term var(X) in Equation (3) is calculated across sidelobe re-
gion S with M sampling points as specified in Equation (4).
This dual-objective approach suppresses random spikes that
persist in PSLL-only optimization, reducing localized sidelobes
by > 3 dB as quantified in Subsection 5.2.

4.2. Structure of the DSFLA Optimization Algorithm

The DSFLA framework implements dynamic adaptation mech-

anisms to accelerate convergence while maintaining solution

quality. The complete workflow executes as follows:
Initialization parameters: m = 5, G = 50, Py = 0.3
Randomly generate F' = 50 candidate solutions X
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Calculate the fitness f(X) and sort the solutions in descend-
ing order while the iteration count has not reached G, and con-
vergence is not achieved:

Phase-dependent configuration judgment:

If1 <t < 10 — Evenly partition the population into m = 5
subgroups.

If 11 <t < 30 — Dynamically adjust the subgroup count
m within the range of 3 to 8.

If ¢ > 30 — Fix the subgroup count to m = 3.

For each subgroup:

Label the best solution P, and the worst solution P,,.

Perform the mutation operation (Equation (5)): Flip K = 6
phase bits according to the mutation probability Pry.

It F(X') > f(Py):

Replace P, with X'.

Else:

Guide the updates by introducing the global best solution P,
according to Equation (6).

If no improvement occurs:

Replace P,, with a randomly generated new solution.

Globally shuffle subgroups and re-rank them.

Update the dynamic mutation probability Py (t) according
to Equation (7).

Check convergence criteria: PSLL variation < 0.1 dB sus-
tained over 5 generations.

Output the optimal solution Xp.

4.3. Adaptive Local Search and Dynamic Mutation Probability
Strategies

4.3.1. Phase-Selective Mutation

For the worst subgroup solution P,,, mutation targets K =
[0.2N | strategically selected bits: (a) High-sensitivity ele-
ments (OPSLL/Ox > threshold) have 2x mutation probabil-
ity; (b) Elements near array edges receive 30% higher mutation
rate than center elements. This sensitivity-aware approach im-
proves PSLL reduction by 1.2 dB versus random selection.

4.3.2. Elite-Guided Directional Update

When mutation fails, solutions incorporate knowledge from
global and local optima as described in Equation (6). The dis-
crete rounding ensures binary outputs while ry, 1, € [0, 1]
provide stochastic directionality. This strategy reduces conver-
gence generations by 42% versus basic SFLA.

4.3.3. Exponential Mutation Decay

Time-varying mutation probability as shown in Equation (7) en-
hances search efficiency. The decay profile (A = 2) maintains
Py > 0.25 during initial exploration (¢ < 15), then focuses
on exploitation with P < 0.1 when ¢ > 30. For 32-element
arrays, this reduces average computation time to 85s —29.2%
faster than constant P, implementations while maintaining
equivalent PSLL performance.
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5. SIMULATION EXPERIMENTS AND COMPARATIVE
PERFORMANCE ANALYSIS

This section validates the DSFLA-based optimization scheme
through extensive numerical simulations on a 32-element
Taylor-weighted linear array.  The evaluation addresses
three critical aspects: (1) Fundamental sidelobe suppression
capability under ideal conditions; (2) Robustness against
practical imperfections including element spacing errors; and
(3) Comparative performance against established methods.
To ensure fair comparison, all algorithms are executed on
identical hardware (Intel i7-11800H @ 2.3 GHz, 32 GB RAM,
MATLAB 2023a) with computation time measured from
initialization to convergence.

5.1. Simulation Parameter Configuration

The baseline array configuration employs Taylor amplitude
weighting with 30 dB sidelobe specification, while Subsection
5.2 extends validation to Chebyshev weighting for broader ap-
plicability. Key parameters include:

1. Array Configuration:
a. 32 isotropic elements (N = 32) with d = 0.5\ spacing.

b. Beam steering angle p = 20° (varied to 60° in beam
scanning tests).

2. Phase shifter:

a. 4-bit digital phase shifter (quantization step A = 22.5°).
b. Randomized phase feeding threshold ¢ = 0.3.

3. Algorithm parameters:

a. DSFLA: m =
Pt = 0.3.

5 subgroups, G = 50 max iterations,

b. ACO: a = 1.0, 8 = 2.0, p = 0.1, colony size = 50 [5].

c. GA: p. = 0.8, p,, = 0.1, tournament selection [4].

5.2. Analysis of Optimization Results

5.2.1. Radiation Pattern Performance

Figures 2(a) and 2(b) compare normalized radiation patterns
before and after DSFLA optimization. Key improvements in-
clude:

1. PSLL reduction from —19.72dB to —28.58 dB (8.86 dB
improvement).

2. Sidelobe variance decrease from 3.5 dB? to 1.2 dB2.

3. Suppression of random spikes > —25dB to below

—27dB.
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FIGURE 2. Radiation patterns before and after optimization. (a) Before optimization. (b) After optimization.

5.2.2. Chebyshev Weighting Validation

To demonstrate algorithm generality, Taylor weighting was re-
placed with 30 dB Chebyshev distribution:

1. Optimized PSLL reached —31.2 dB from initial —22.4 dB.
2. Sidelobe variance reduced to 1.5 dB? (initial 4.0 dB?).
3. Computation time increased by only 18% versus Taylor
case.
5.2.3. Convergence Characteristics
Figure 3 illustrates PSLL evolution during optimization:

1. Rapid initial improvement: PSLL < —26dB by itera-
tion 5.

2. Critical refinement: PSLL drops to —28.4dB at itera-
tion 28.

3. Stabilization: Final PSLL = —28.58dB with < 0.1dB
fluctuation.

0 20 40 60 80 100 120 140 160 180 200
Iteration Number

FIGURE 3. PSLL evolution during optimization.

5.2.4. Beam Steering Performance
Scanning from 0 = 20° to 60° in 10° increments revealed:
1. Maximum pointing error: 0.28° at 50° scan.

2. PSLL variation: —27.8dB to —29.0dB (<1.2 dB fluctua-
tion).

3. Sidelobe variance stability: 1.2-1.5dB? across scan

range.

5.3. Comparative Performance Analysis

Table 1 quantifies DSFLA superiority over conventional meth-
ods. Asshown in Table 1, DSFLA outperforms the comparative
algorithms in PSLL suppression, computational efficiency, and
sidelobe uniformity, with a 29.2% reduction in computational
time compared to ACO.

5.3.1. Large-Scale Array Scalability

A 128-element array (d = 0.4\) test confirmed DSFLA’s scal-
ability:

1. PSLL reached —32.1dB versus ACO’s —29.5 dB.

2. Computation time: 218 s (DSFLA) versus 1,205 s (ACO).

3. Time complexity analysis: O(N'®) for DSFLA versus
O(N??) for ACO.

5.3.2. Real-Time Operation Tradeoffs

Relaxing PSLL threshold to —27dB enables faster conver-
gence:

1. Iterations reduced to < 15 generations.
2. Computation time < 40 ms.

3. Suitable for radar beam-switching deadlines (typical
50 ms).

5.4. Robustness Testing

5.4.1. Element Spacing Perturbations

To validate the algorithm’s adaptability to array errors, opti-
mization efficacy was tested under random perturbations in el-
ement spacing (Ad ~ N (0, (0.02))?)):

1. Post-optimization PSLL: —27.3 £ 0.9 dB (mean =+ std).
2. Sidelobe variance: 1.8 dB? (versus 1.2 dB? ideal).

3. Performance degradation: < 1.3dB versus unperturbed
case.
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5.4.2. Phase Quantization Errors

Actual phase errors (A¢ ~ N (0°, 5°)) were modeled:
1. PSLL: —27.9 £ 1.2dB.
2. Degradation: 0.7 dB versus ideal DSFLA performance.
3. Still outperformed ACO (—25.1 £ 2.1 dB) significantly.

5.5. Benchmark Against Recent Methods

Comparison with 2024-2025 advancements confirms compet-
itiveness:

1. Quantum-inspired SFLA [10]: Comparable PSLL
(—28.9 dB) but 40% longer computation.

2. Federated meta-learning [11]: Better scalability but re-
quires pre-training unavailable for phase feeding.

3. DSFLA maintains advantage in hardware simplicity: Di-
rect binary control outputs.

6. CONCLUSIONS

This study has established Dynamic Shuffled Frog Leaping Al-
gorithm (DSFLA) as an effective solution for randomized phase
feeding optimization in phased array antennas, achieving a crit-
ical balance between sidelobe suppression performance and
computational efficiency. Through binary encoding of phase
quantization errors (A¢ € {—an,b,} — x, € {0,1}) and
a composite fitness function combining peak sidelobe level
(PSLL) minimization with variance constraints, the proposed
framework simultaneously suppresses peak sidelobes and ran-
dom spikes that persist in conventional approaches. Extensive
simulations on 32-element Taylor-weighted arrays demonstrate
that DSFLA reduces PSLL to —28.6 dB— an 8.86 dB improve-
ment over initial designs and 2.3 dB lower than conventional
ant colony optimization. Crucially, sidelobe variance decreases
from 3.5 dB? to 1.2 dB?, significantly enhancing pattern unifor-
mity while computation time reduces by 29.2% to 85 s through
dynamic subgroup reorganization and adaptive mutation decay.

Validation under practical non-ideal conditions confirms ro-
bust performance: With random element spacing perturba-
tions (Ad ~ N (0,0.02))?)), the optimized PSLL stabilizes at
—27.3 £ 0.9 dB, exhibiting only 1.3 dB degradation from ideal
conditions while maintaining superior stability versus ACO
(0 = 2.1dB). The scheme demonstrates remarkable adaptabil-
ity across operational scenarios — with scanning beams from
20° to 60°, pointing errors remain below 0.3° with PSLL fluc-
tuations < 1.2 dB, while extension to Chebyshev-weighted ar-
rays achieves —31.2dB PSLL with 18% longer computation.
For large-scale implementations, DSFLA scales favorably to
128-element arrays (PSLL = —32.1dB in 218 seconds) with
O(N') time complexity, outperforming ACO’s O(N?2) effi-
ciency. Real-time feasibility is evidenced by relaxed-accuracy
operation (PSLL = —27dB achievable in < 40 ms), readily
meeting 50 ms radar beam-switching deadlines through adap-
tive convergence thresholds.
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Future work will extend DSFLA to broadband array opti-
mization where frequency-dependent phase errors necessitate
multi-objective adaptation, implement FPGA-accelerated par-
allelization to achieve microsecond-scale computation, and de-
velop online learning strategies that dynamically adjust muta-
tion parameters in response to jamming environments. The al-
gorithm’s hardware compatibility — generating directly exe-
cutable binary control words — positions it as a practical solu-
tion for next-generation radar systems requiring high-precision
beam control under stringent real-time constraints.
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