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SDF-Net: A Space-Frequency Dynamic Fusion Network for SARATR
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ABSTRACT:With the development of deep learning networks, convolutional neural network (CNN) and other techniques provide effective
detection methods for synthetic aperture radar automatic target recognition (SAR ATR), and have been widely used. However, due to the
objective factors such as complex scene interference inherent in SAR images, the recognition rate of traditional time-domain processing
of SAR images is not high enough, which is still a key problem to be solved urgently. To solve this problem, we propose a space-frequency
dynamic fusion network (SDF-Net). The network consists of four space-frequency joint processing (SJP) modules connected in series,
each comprising convolutional layers and unbiased fast fourier convolution (UFFC) units at different scales to achieve joint feature
extraction in the spatial and frequency domains. Building on a four-level series structure, residual paths from the original image features
are introduced into the inputs of SJP2, SJP3, and SJP4. Additionally, residual paths from the features output by SJP1 are introduced
into the inputs of SJP3 and SJP4, and from SJP2 into the input of SJP4. By incorporating residual paths of features from different
stages, the network facilitates cross-stage information interaction, effectively integrating long-distance contextual information. At each
fusion node, dynamically generated weights are used for feature fusion, followed by sequential progressive processing through spatial-
frequency joint processing, ultimately leading to classification and recognition results. Experimental results on the MSTAR dataset and
the FUSAR-Ship1.0 dataset show that compared to traditional methods, this network algorithm achieves a higher recognition rate.

1. INTRODUCTION

Synthetic Aperture Radar (SAR) is an active microwave sen-
sor that emits electromagnetic pulses and coherently pro-

cesses echoes received at different locations to obtain high-
resolution imaging. Synthetic aperture radar enables all-day,
all-weather earth observation without being limited by light
and climatic conditions, and can even obtain information that
it hides through the surface or vegetation. These character-
istics make it of great practical value in the fields of mili-
tary reconnaissance, disaster monitoring, topographicmapping,
ocean observation, agriculture, and forestry [1–4]. However,
the problems of spot noise, target azimuth sensitivity and com-
plex scene interference inherent in SAR images lead to signifi-
cant deficiencies in generalization and robustness of traditional
methods based on manual features.
In recent years, deep learning has achieved success in the

field of target detection [5, 6] and has been introduced into syn-
thetic aperture radar ground target recognition [7–9] to sig-
nificantly improve the detection performance, so it has been
widely used [10–13]. In the field of image processing and com-
puter vision, CNN [14–16] has played an irreplaceable role.
Gao et al. [17] proposed an incremental learning method based
on strong separability features to solve the problem of forget-
ting the knowledge learned before. Xu et al. [18] applied a new
structural reparameterization method to optimize the learning
focus of the network, so that the network can better focus on
the key parts of the SAR image. Fukuzaki and Ikehara [19] ac-
celerated the training of large kernel convolution by adjusting
the size of the training image and convolution filter to a smaller
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scale. Wang et al. [20] proposed a two-stage coupled CNN ar-
chitecture to solve the problem of noise robustness of CNNs.
Zang et al. [21] proposed a new layer-wise relevance propa-
gation (LRP) algorithm specifically for understanding the per-
formance of CNN in SAR image target recognition. Marzi et
al. [22] proposed amethod to classify ten land cover types using
a 3-D fully convolutional network (FCN) and 3-DResNet-50 as
the backbone, which was trained from scratch, and multi-phase
Sentinel-1 SAR data.
From the above methods, it is evident that CNN and its vari-

ous evolved algorithms have indeed achieved significant suc-
cess in image recognition processing. However, it is unde-
niable that CNN still has many problems, such as sensitivity
to the inherent noise of SAR data, limited azimuth robustness
and rotation invariance, computational complexity and prob-
lems of real-time, insufficient multi-task cooperation and inter-
pretability, and insufficient fusion of local features and global
context information. The above limitations are mainly due to
the design characteristics of CNN architecture, the complex-
ity of SAR data itself and the diversity of practical application
scenarios, which ultimately lead to the low recognition rate of
SAR images by network models. Guo et al. [23] proposed a
model called multi-level attention network, which effectively
combined local structural features and long-distance contextual
information to improve the representation ability and recogni-
tion accuracy of SAR images. Huang et al. [24] proposed a
physically inspired hybrid attention to integrate prior knowl-
edge into the learning process to enhance deep learning models.
Li et al. [25] proposed a light attention module called Additive
Attention module, which achieves similar performance to SE-
ResNet-18 while reducing the computational cost.
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FIGURE 1. The overall structure of the SDF-Net network.

In recent years, fast Fourier transform (FFT) technology has
been gradually promoted [26–29]. Inspired by this, we consider
that the proper combination of FFT and CNN can provide help
for SAR target detection and recognition. Based on the above
analysis, to address the low recognition rate of SAR images
processed in the time domain within traditional network mod-
els, this paper introduces a Space-Frequency Dynamic Fusion
Network (SDF-Net) for spatial-frequency dynamic fusion. The
network primarily consists of four cascaded spatial-frequency
joint processing (SJP)modules and residual paths with dynamic
attention mechanisms. Each SJP module includes a traditional
time-domain convolutional layer, a frequency domain process-
ing unit called Unbiased Fast Fourier Convolution (UFFC), and
two residual paths from the input of the convolutional layer and
UFFC, respectively. In the SJP, the residual paths are used
to integrate initial information content and retain the original
input features; the convolutional layer is used to extract local
spatial features, progressively expanding the receptive field;
the UFFC, directly connected to the convolutional layer, trans-
forms traditional convolution operations into the frequency do-
main, capturing global features, thereby improving the single-
time-domain processing of traditional networks and enhancing
recognition performance. Furthermore, on the basis of a four-
level serial structure, each fusion node features distinct resid-
ual paths. The residual paths that introduce original image fea-
tures are fed into the inputs of SJP2, SJP3, and SJP4. Addition-
ally, the residual paths that incorporate the output features from
SJP1 are fed into the inputs of SJP3 and SJP4, while the resid-
ual paths that incorporate the output features from SJP2 are fed
into the input of SJP4. These residual paths primarily use spa-
tial alignment and network expansion techniques to adapt to the
main structure. By introducing residual paths that incorporate
features from different stages, information can be exchanged
across stages, fully integrating long-distance contextual infor-
mation. Finally, the trained weights are used for fusion, and
after four layers of processing, the classifier module produces
the final recognition result. The main contributions of this pa-
per are as follows:
(1) The SJP module constructs the joint feature space of fre-

quency and frequency.

(2) The dynamic adaptive fusion path is used to enhance the
information interaction capability across stages.
The structure of this paper is summarized as follows. Sec-

tion 2 introduces the network structure of SDF-Net in detail.
Section 3 introduces the data and analyzes the experimental re-
sults to verify the feasibility and superiority of the network. Fi-
nally, Section 4 summarizes this paper.

2. METHODOLOGY
The overall structure of the SDF-Net network proposed in this
paper is shown in Fig. 1. A four-level progressive feature ex-
traction structure is adopted, and each stage includes three par-
allel paths: main convolution path, residual path, and frequency
domain convolution path. After preprocessing, the input image
passes through four feature extraction stages in sequence, ulti-
mately completing classification via adaptive pooling and fully
connected layers. The network’s depth and width grow expo-
nentially, with the number of channels expanding from 64 to
512, and the spatial dimensions downsampling from 224×224
to 14× 14, forming a hierarchical feature pyramid.

2.1. Dynamic CBAM Module
The overall architecture of the module is shown in Fig. 2, which
has a dual attentional synergy mechanism: channel attention
and spatial attention. For the input feature map: channel at-
tention uses global average pooling and a fully connected layer
to learn channel weights to enhance the response of important
feature channels and solve the “what” problem:

zc =
1

H ×W

H∑
i=1

W∑
j=1

X(:, :, i, j) (1)

wc = σ (W2 · ReLU(W1 · zc)) (2)
xc = x⊙ wc (3)

where x ∈ RB×C×H×W denotes the input features; zc denotes
the average pooling result; H and W denote weight; W1 and
W2 denote learnable parameters; σ denotes the Sigmoid func-
tion; ⊙ denotes the channel-by-channel multiplication; x de-
notes the output features; and xc denotes channel-by-channel
multiplication output.
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FIGURE 2. Schematic diagram of dynamic CBAM module.

Spatial attention utilizes the features of max pooling and av-
erage pooling, adopts 7 × 7 reflection padding convolution to
learn spatial weight map, focuses on key areas, and solves the
“where” problem:

zmaxs = max
c

xc (4)

zavgs =
1

C

C∑
c=1

xc (5)

ws = σ (K7×7 ∗ [zmaxs ; zavgs ]) (6)
xout = xc ⊙ ws (7)

where zmaxs denotes the maximum pooling result, zavgs the aver-
age pooling result,K7×7 the 7× 7 reflection padding convolu-
tion kernel, and [;] the channel concatenation operation.
Channel attention: compresses global spatial information to

the channel dimension, learns the importance of the channel
through the bottleneck structure (compression, activation, re-
covery), and then outputs the channel weight matrix.
Spatial attention: the channel dimension information is

fused, and the large receptive field convolution (7 × 7) is
used to capture the spatial relationship, then the spatial weight
matrix is output.
The dynamic characteristics are as follows: the weight can be

generated in real time according to the input content, and differ-
ent samples or different positions have adaptive weights. Dual
attention coordination conforms to the human visual mecha-
nism. The channel attention first selects the important feature
channels, and the spatial attention then focuses on the key spa-
tial areas, forming a “channel-space” cascade attention mech-
anism. At the same time, it pays attention to “which features
are important” (channel dimension) and “where is important”
(space dimension).
Key advantages include:

(1) Using 1× 1 convolution instead of full connection layer,
1 × 1 convolution is equivalent to the implementation of full
connection layer but more suitable for convolution architecture.
(2) Reflective filling reduces the loss of boundary informa-

tion and realizes the memory reuse of shared feature maps.

2.2. Space-Frequency Joint Processing (SJP) Module

2.2.1. Main Convolution Path

This path uses multi-scale convolution to extract local features
in space, with the overall architecture shown in Fig. 3. The
idea behind designing multi-scale convolutions lies in three as-
pects: First, it can achieve progressive receptive fields, aligning
with the cognitive rule of moving from local to global. Second,
through multi-scale convolutional kernels at deeper layers, it
balances details and context while ensuring the complexity and
readability of the network. Third, it employs channel doubling
technology, gradually increasing from 64 to 512, maintaining
an exponential increase in feature representation capability. In
this way, the balance between the depth and width of the net-
work keeps the utilization of graphics processing unit (GPU) at
a high level, while ensuring that multi-scale convolution does

FIGURE 3. Schematic diagram of the SJP module.
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TABLE 1. Key data flow changes.

Phase
Input

Dimensions
Output

Dimensions
Number of
Channels

Core
Operations

Purpose

1 224× 224 112× 112 64
5× 5 convolution

+ three-way integration
Capture the underlying

texture features

2 112× 112 32× 32 128
5× 5 convolution + dynamic fusion

+ mixed downsampling
Establish intermediate
semantic associations

3 32× 32 16× 16 256
5× 5 + 3× 3 multi-scale
convolution combination

Combine global patterns
with local details

4 16× 16 8× 8 512
3× 3 + 5× 5 convolution
inverse order kernel mixing

Deep feature processing with
refinement and integration

Classification 8× 8 1× 1 1024 → N global pooling + fully connected Classification

not have too much impact on the complexity of parameters,
clinching the efficiency of training. The key data flow changes
are shown in Table 1.
Specific application:

Stage 1 : x = W5×5 ∗ xin

Stage 2 : x = W5×5 ∗ xin

Stage 3 : x1 = W5×5 ∗ xin, x2 = W3×3 ∗ x1

Stage 4 : x1 = W3×3 ∗ xin, x2 = W5×5 ∗ x1

(8)

where xin denotes the input feature, x, x1, x2 the convolution
output result, ∗ the convolution operation,W3×3 the 3×3 con-
volution kernel, andW5×5 the 5× 5 convolution kernel.

2.2.2. Unbiased Fast Fourier Convolution (UFFC)

UFFC module is the core of the network. The overall idea is to
transform the traditional convolution operation to the frequency
domain to capture the global feature dependence. As shown in
Fig. 4, the specific steps are: First, the input image is filled to

FIGURE 4. Schematic diagram of UFFC module.

prevent edge effects (boundary artifacts) after FFT and ensure
the integrity of frequency domain convolution. Then, the input
image and convolution kernel are respectively FFT:

F (x) = RFFT2D(xpadded) (9)
F (W ) = RFFT2D(Wconv) (10)

where xpadded denotes the result of the fill, Wconv the convolu-
tion kernel, and F (x)F (W ) the results of the Fourier transform
for the filling results and the convolution kernel, respectively.
Then, element-by-element multiplication is performed in the

frequency domain, and the result is inverted FFT. Finally, after
cropping and filling, unbiased correction and weighted fusion
operation are performed to ensure that the output size is consis-
tent with the input:

y =

C∑
c=1

F(x) · F(W ) (11)

yfreq = IRFFT2D(y) (12)

where · denotes the element-by-element multiplication of com-
plex numbers, y the result of multiplication of complex num-
bers, and yfreq the real result obtained by inverse Fourier trans-
form.
The advantage of the module is that theO(n logn) complex-

ity of FFT is more efficient than the O(n2) complexity of spa-
tial convolution, which breaks through the local receptive field
limit and efficiently deals with large receptive fields. In specific
applications, when processing 512×512 images, it is faster than
the 3× 3 convolution and has stronger robustness.

2.2.3. Residual Path Containing Dynamic Convolutional Block Attention
Module (CBAM)

In each SJP module, there is a residual path that includes the
residual from the original input of this stage after Dynamic-
CBAM processing. This path primarily uses fixed 3 × 3 ker-
nels to maintain compatibility with mainstream ResNet archi-
tectures. The parameter setting is fixed at stride = 2, ensuring
that spatial downsampling is synchronized with the main path.
In this way, the residual path contributes a significant portion
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of the gradient flow, reflecting the rationality of the module de-
sign. Additionally, through the Dynamic-CBAM mechanism,
selective learning of certain features is emphasized.

2.3. Dynamic Weight Adaptive Feature Fusion

2.3.1. Dynamic Adaptation

In each adjustment path, the followingmethods are mainly used
for network adaptation:
1. Space alignment: Keep feature map integrity through

AdaptiveAvgPool to avoid interpolation distortion:

xadj = AdaptiveAvgPool2d(xin, Starget) (13)

2. Channel expansion: 1 × 1 convolution is used to real-
ize cross-stage feature dimensioning. The parameter amount
is only 1/9 of the standard convolution, reducing the training
occupancy of video memory, reducing the training time and im-
proving the efficiency:

xadj = W1×1 · xadj
(
W1×1 ∈ RCout×Cin

)
(14)

where Starget denotes the input target size, and xadj denotes the
adaptive output result.
3. Batch normalization-rectified linear unit (BN-ReLU): Pre-

vent feature degradation, improve fusion effect, and effectively
balance stability and nonlinear expression ability.

2.3.2. Dynamic Weight Fusion

At each different fusion node, the input paths from different
stages are fused with emphasis through dynamic weight alloca-
tion obtained by continuous training:

w = softmax ([w1, w2, ..., wN ])

(Stage 2 : N = 2, Stage 3 : N = 3, Stage 4 : N = 4)(15)

xfused =

N∑
i=1

wi · xadj,i (16)

where wN denotes the weight, xadj,i each adaptive residual
path, and xfused the output result after weighted summation.
Experimental results show that during training, the higher-

level stage automatically learns to pay more attention to recent
features (such as the feature weight of SJP3 in SJP4 reaching
0.43), while the system automatically increases the weight of
early features (from 0.15 to 0.31). The fusion weights, as learn-
able parameters, participate in backpropagation, with the gra-
dient contribution of the main path far exceeding that of the
fusion path, indirectly demonstrating the rationality of the dy-
namic weight design.

2.4. Classifier Module
The global average pooling is used to replace the full connec-
tion layer, reducing the number of parameters by 95%. At the
same time, Dropout is placed before the last Linear to prevent
overfitting. In addition, Dropout can also improve the robust-
ness and accuracy of the model and finally get accurate classi-

fication results:

h = ReLU (Wfc1 · z + bfc1)

y = Wfc2 · Dropout(h) + bfc2
(17)

where Wfc1 and Wfc2 denote the full connection weight, and
bfc1 and bfc2 denote the bias.

3. EXPERIMENT

3.1. Dataset

3.1.1. Introduction to the MSTAR Dataset

The MSTAR (Moving and Stationary Target Acquisition and
Recognition) dataset was jointly developed by the U.S. DARPA
(Defense Advanced Research Projects Agency) and AFRL (Air
Force Research Laboratory). It is one of the most influential
benchmark datasets in the field of SAR (Synthetic Aperture
Radar) image target recognition. The dataset is collected using
high-resolution panchromatic SAR sensors operating at the X-
band (HH polarization), with a resolution of 0.3m×0.3m and
target slice sizes of 128× 128 pixels. The target categories and
data are divided accordingly. The target types include 10 mili-
tary targets, such as 2S1 self-propelled howitzer, BRDM-2 ar-
mored reconnaissance vehicle, BTR-60 armored personnel car-
rier, and T-72 tank. Additionally, it provides large SAR images
containing natural scenes (such as forests and buildings), sup-
porting target detection and recognition tasks. The data is di-
vided into standard operating conditions (SOCs) and extended
operating conditions (EOCs). Under SOC, the training and test
sets have the same target models and configurations, differing
only in elevation and azimuth angles; under EOC, the test set
has significant differences in imaging angles, target configura-
tions, or models, increasing the difficulty of recognition. Fig. 5
shows a comparison of SAR images and optical images for the
10 targets in the MSTAR dataset.

3.1.2. Introduction to the FUSAR-Ship1.0 Dataset

FUSAR-Ship1.0 is a SAR ship detection dataset constructed
by Chinese research teams and released in 2019, aiming to
advance the study of SAR image ship target detection algo-
rithms. The data primarily comes from SAR images acquired
by the domestic Gaofen-3 satellite and TerraSAR-X satellite,
covering various imaging modes and polarization techniques.
The images include high-resolution SAR images (resolution
1m–3m), with scenes spanning complex environments such as
ports, open seas, and near-shore areas. Targets include over
ten types of ships, including cargo ships, oil tankers, and fish-
ing boats. Rectangular bounding boxes are used to label ship
positions, and metadata such as target categories and sizes are
provided. Some versions support rotated bounding box labeling
(e.g., SSDD+), to reduce background interference and estimate
ship orientation. A comparison of the SAR images and optical
images of targets in the FUSAR-Ship1.0 dataset is shown in
Fig. 6.
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FIGURE 5. Comparison of SAR and optical images of targets in the MSTAR dataset.

FIGURE 6. Comparison of SAR and optical images of targets in the FUSAR-Ship1.0 dataset.

3.2. Experimental Setup

PyTorch open source library was used to implement the pro-
posed solution in Python 3.10.16. Training was supported by
anNVIDIAGeForce RTX4060 LaptopGPU andAMDRyzen9
7940HXwith Radeon Graphics (2.40GHz) with CUDA toolkit
11.8. In the experiments of this paper, data preprocessing was

performed on both the MSTAR dataset and FUSAR-Ship1.0
dataset. The image size was adjusted to 128 × 128 pixels to
ensure that all input images have a consistent size, meeting
the model’s requirements for input dimensions. Training was
conducted for 100 epochs, with each channel standardized to a
mean of 0.5 and a standard deviation of 0.5.
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FIGURE 7. Examples of instances in each category of the sub-dataset.

TABLE 2. Detailed distribution of MSTAR data sets at different pitch angles.

Target type 2S1 BMP2 BRDM_2 BTR_60 BTR70 D7 T62 T72 ZIL131 ZSU_23_4

Training(17◦) 220 220 220 220 220 220 220 220 220 220
Testing(15◦) 40 40 40 40 40 40 40 40 40 40

3.3. Detection Results

3.3.1. Results on the MSTAR Dataset

In the experiment, we used SAR images with an elevation angle
of 17◦ as the training set and 15◦ as the test set, as shown in Ta-
ble 2. In the comparative tests, the SDF-Net recognition model
proposed in this paper was compared with three traditional
CNN networks and four advanced methods. As shown in Ta-
ble 4, the overall recognition rates of traditional networks such
as VGG19 [30], ResNet18 [30], and A-ConvNet [31] reached
89.6%, 90.5%, and 92.19%, respectively. With other advanced
algorithms, for example, LM-BN-CNN [32] reached 96.44%;
CA-MCNN [31] reached 97.81%; proposed CNN-LSTM and
proposed CNN [33] reached 98.35% and 98.52%, respectively;
and CCAE [34] reached 98.59%.
The results of the recognition rates for ten specific classifica-

tion targets show that the SDF-Net model proposed in this pa-
per achieved excellent data with a recognition rate of 100% for
seven categories: BMP2, BRDM_2, BTR_60, D7, T62, T72,
and ZSU_23_4, and good data with a recognition rate of 97.5%

and a confusion rate of only 2.5% for the other three categories,
which is better than the confusion rate of other methods.

3.3.2. Results on the FUSAR-Ship1.0 Dataset

In this study, we selected a subset of the original dataset and
made appropriate modifications, which includes four common
categories: Bridge, Bulk Carrier, Ship, and Wave. To effec-
tively evaluate deep learning algorithms, we divided the data
into two parts: training set and test set. The number of im-
ages for each category is shown in Table 3. Examples of each
category are illustrated in Fig. 7. In the comparative experi-
ment, we used the obtained dataset to train different CNNmod-

TABLE 3. Number of images in each category of the sub-dataset.

Category Training Test
Bridge 132 61

Bulk Carrier 130 30
Ship 378 66
Wave 312 54
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TABLE 4. Recognition performance of each algorithm in MSTAR dataset.

Algorithms 2S1 BMP2 BRDM_2 BTR_60 BTR70 D7 T62 T72 ZIL131 ZSU_23_4 Average
VGG19 [30] 98.9% 64.1% 100.0% 63.1% 81.1% 95.3% 85.7% 92.3% 98.9% 99.6% 89.6%
ResNet18 [30] 98.5% 70.3% 100.0% 75.9% 70.9% 98.2% 98.5% 73.5% 99.6% 99.3% 90.5%
A-ConvNet [31] 91.97% 89.61% 98.18% 96.41% 97.45% 95.26% 95.97% 78.87% 98.91% 100.00% 92.19%
LM-BN-CNN [32] 93.43% 98.30% 94.89% 95.90% 98.47% 99.27% 88.64% 97.77% 97.45% 97.08% 96.44%
CA-MCNN [31] 99.64% 97.27% 99.27% 99.64% 98.98% 99.63% 99.64% 93.85% 100.00% 94.26% 97.81%

Proposed CNN-LSTM [33] 96.00% 92.00% 100.00% 99.00% 96.00% 99.00% 99.00% 100.00% 100.00% 100.00% 98.35%
Proposed CNN [33] 98.00% 92.00% 100.00% 99.00% 97.00% 99.00% 99.00% 100.00% 100.00% 100.00% 98.52%

CCAE [34] 97.44% 97.43% 98.54% 96.92% 99.48% 99.27% 98.53% 100.00% 99.27% 98.90% 98.59%
SDF-Net 97.50% 100.00% 100.00% 100.00% 97.50% 100.00% 100.00% 100.00% 97.50% 100.00% 99.25%

TABLE 5. Recognition performance of each algorithm in FUSAR-Ship1.0 dataset.

Algorithms VGG16 AlexNet ResNet18 DenseNet121
Proposed
CNN [33]

Proposed
CNN-LSTM [33]

ACRM
[35]

ACRM-Coreset
[35]

CA
[36]

SDF-Net

Accuracy 64.45% 66.11% 68.54% 69.44% 69.82% 70.41% 63.2% 71.3% 72.58% 72.99%

FIGURE 8. The confusion matrix of SDF-Net in sub-dataset test.

els with 100 epochs, and the recognition performance of each
algorithm under the FUSAR-Ship1.0 dataset is shown in Ta-
ble 5. The confusion matrix in Fig. 8 indicates that the pro-
posed method has relatively good classification performance
for Bridge and Wave classes, achieving recognition rates of
82% and 98.1%, respectively, with a zero chance of Bulk Car-
rier misclassifying wave. Objectively speaking, the features of
these two classes are more distinct and easier to learn, while
Bulk Carrier is prone to confusion and has a lower recogni-
tion rate. In terms of overall recognition rate, SDF-Net out-
performs traditional CNN architectures, with a smaller training
loss. The table provides the accuracy rates of VGG16, AlexNet,
ResNet18, and DenseNet121 traditional CNN models, which
are 64.45%, 66.11%, 68.54%, and 69.44%, respectively. Com-
pared to SDF-Net’s 72.99%, there is a certain gap in the results,
which also intuitively reflects the excellent performance, high
classification accuracy, and training efficiency of SDF-Net.

The proposed CNN and LSTM-based CNN methods
achieved accuracy rates of 69.82% and 70.41% in [33],
while the aspect continual recognition model (ACRM) and
Coreset-based ACRM methods demonstrated 63.2% and
71.3% accuracy rates in [35], respectively. The cosine affinity
(CA) method developed in [36] attained 72.58% accuracy.
Compared with prior approaches, SDF-Net outperformed
these methods with significantly higher recognition rates.
These comparative results further validate the effectiveness of
SDF-Net.

3.4. Ablation Study
This part conducts ablation experiments on the three key parts
of the network model to verify the contribution of these mod-
ules to improve the performance of the model.

3.4.1. Results of the MSTAR Dataset

Necessity of Dynamic CBAM. This section primarily analyzes
the impact of Dynamic CBAM on experimental results. Ac-
cording to the data in Table 6, combining the use of Dynamic
CBAM mechanism can improve performance by 1.12%. Data

TABLE 6. Results of ablation experiments on MSTAR dataset.

Number Dynamic CBAM UFFC Residual Path Accuracy
1 ✓ × × 96.93%
2 × ✓ × 97.87%
3 × × ✓ 97.47%
4 × ✓ ✓ 98.13%
5 ✓ × ✓ 97.87%
6 ✓ ✓ × 98.40%
7 ✓ ✓ ✓ 99.25%

32 www.jpier.org



Progress In Electromagnetics Research B, Vol. 115, 25–37, 2025

FIGURE 9. Confusion matrix of the ablation experiment on the MSTAR dataset.

in the table, rows 3 and 5, show that performance can be im-
proved by 0.40%. These performance comparisons indicate
that using Dynamic CBAM can more effectively adjust fea-
ture information into the network model, and dynamic dual at-

tention mechanisms facilitate channel-space collaborative opti-
mization.
Necessity of UFFC. This section mainly analyzes and com-

pares the impact of UFFC on experimental results. Accord-
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FIGURE 10. Confusion matrix of the ablation experiment on the FUSAR-Ship1.0 dataset.

ing to data in Table 6, the performance of UFFC can be im-
proved by 1.38%. Data in the table, rows 3 and 4, show that
the performance can be enhanced by 0.66%. The above per-
formance comparisons indicate that using UFFC for frequency
domain information processing and constructing a joint space
of spatial-frequency features can more effectively integrate fea-
ture information, thereby improving recognition accuracy and
efficiency.

Necessity of Residual Path. This section mainly analyzes
and compares the impact of Residual Path on experimental re-
sults. According to the data in Table 6, combining the use
of Residual Path mechanism can improve recognition perfor-
mance by 0.85%. Data in the table, rows 1 and 5, show that
recognition performance can be improved by 0.94%. These
performance comparisons indicate that using multiple paths
of Residual Path to integrate feature information helps en-

34 www.jpier.org



Progress In Electromagnetics Research B, Vol. 115, 25–37, 2025

hance recognition performance. Fig. 9 presents the distributed
stochastic neighbor embedding (TSNE) visualization and con-
fusion matrix under six conditions. The above experiments
demonstrate that eachmodule can improve the accuracy of SAR
target detection.

3.4.2. Results of the FUSAR-Ship1.0 Dataset

Necessity of Dynamic CBAM. This section primarily analyzes
the impact of Dynamic CBAM on experimental results. Ac-
cording to the data in Table 7, combining the use of Dynamic
CBAM mechanism can improve performance by 0.48%. Data
in the table, rows 3 and 5, show that performance can be im-
proved by 0.95%. These performance comparisons indicate
that using Dynamic CBAM can more effectively adjust fea-
ture information into the network model, and dynamic dual at-
tention mechanisms facilitate channel-space collaborative opti-
mization.

TABLE 7. Results of ablation experiments on FUSAR-Ship1.0 dataset.

Number Dynamic CBAM UFFC Residual Path Accuracy
1 ✓ × × 70.62%
2 × ✓ × 71.76%
3 × × ✓ 71.09%
4 × ✓ ✓ 72.51%
5 ✓ × ✓ 72.04%
6 ✓ ✓ × 72.04%
7 ✓ ✓ ✓ 72.99%

Necessity of UFFC. This section mainly analyzes and com-
pares the impact of UFFC on experimental results. Accord-
ing to the data in Table 7, the performance of UFFC can be
improved by 0.95%. Data in the table, rows 3 and 4, show
that the performance can be improved by 1.42%. These per-
formance comparisons indicate that using UFFC for frequency
domain information processing and constructing a joint space
of spatial-frequency features can more effectively integrate fea-
ture information, thereby enhancing recognition accuracy and
efficiency.
Necessity of Residual Path. This section mainly analyzes

and compares the impact of Residual Path on experimental re-
sults. According to the data in Table 7, combining the use
of Residual Path mechanism can improve recognition perfor-
mance by 0.95%. Data in the table, rows 1 and 5, show that
recognition performance can be improved by 1.42%. These
performance comparisons indicate that using multiple paths of
Residual Path to integrate feature information helps enhance
recognition performance. Fig. 10 presents TSNE visualization
and confusion matrices under six conditions. The above exper-
iments demonstrate that each module can improve the accuracy
of SAR target detection.

3.4.3. Comparative Analysis of Data Sets FUSAR-Ship1.0 and MSTAR

Experimental results demonstrate that the FUSAR-Ship1.0
dataset exhibits lower recognition accuracy than the MSTAR
dataset. To address this disparity, we analyze three key factors:
(1) Target Feature Variability: While MSTAR primarily fo-

cuses on ground vehicles (e.g., tanks and armored vehicles)
with distinct structural patterns, the FUSAR-Ship1.0 dataset
contains ship targets sharing high structural similarity. This
similarity reduces feature differentiation between categories,
complicates feature extraction and classification processes, and
ultimately limits performance improvement.
(2) Background Complexity: Unlike MSTAR datasets uni-

formly textured backgrounds with clear object boundaries,
FUSAR-Ship1.0 datasets feature dynamic sea clutter back-
grounds with low radiometric contrast. The complex and sig-
nificant background interference further hinders effective target
identification.
(3)Model AttentionMechanism: Conventional spatial atten-

tion mechanisms tend to focus on compact central features in
MSTAR datasets. However, for FUSAR-Ship1.0’s scattered
ship components (e.g., superstructures and deck equipment),
these mechanisms struggle to effectively target dispersed crit-
ical areas. This limitation may explain the suboptimal perfor-
mance of the model in ship recognition tasks.

4. CONCLUSION

This paper primarily addresses the issues of low recognition
rates and poor stability in traditional convolutional neural net-
works when dealing with synthetic aperture radar images. We
propose the SDF-Net architecture, which constructs a spa-
tiotemporal feature space through frequency domain convo-
lution units (UFFC). By leveraging dynamic adaptive feature
fusion mechanisms to achieve cross-stage information inter-
action, adding dynamic dual attention mechanisms to realize
channel-space collaborative optimization, and adopting multi-
scale mixed convolution kernel design to balance receptive
fields and computational efficiency, we enhance classifica-
tion accuracy and training efficiency. In experiments, we an-
alyze and compare the performance of VGG19, ResNet18,
A-ConvNet, and other CNN models on the MSTAR dataset,
as well as primarily compare them with VGG16, AlexNet,
ResNet18, and DenseNet121 network models on the FUSAR-
Ship1.0 dataset. From the experimental results, the SDF-Net
architecture model proposed in this paper shows a significant
advantage over traditional CNN models and other similar cur-
rent methods in terms of recognition performance. This paper
plays a positive role in generalizing CNN models for SAR tar-
get recognition [37].
In addition, it is not easy to obtain large-scale SAR image

data sets. How to improve the recognition performance under
small sample conditions and the exploration of semi-supervised
learning methods will be the future work.
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