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ABSTRACT: The demand for reliable and high-speed wireless communication in urban environments such as offices and densely populated
areas is often hindered by signal obstructions. Reflectarray antennas offering beam-steering capabilities through passive configurations
have gained significant attention as a potential solution. However, existing designs at lower frequency bands struggle to achieve efficient
phase variation within a single layer while maintaining high gain and consistent performance. In order to overcome these constraints, this
work presents a reflectarray design that operates at 5 GHz. It utilizes a 15 x 15 multi-ring unit cell structure on a single-layer FR4 substrate
to achieve a complete 360° phase variation. Two prototypes were fabricated to steer beams at 30° and 60°, demonstrating the design’s
flexibility and adaptability for various application-specific requirements. The proposed reflectarray realizes a peak gain of 21 dBi and
operates over a wide frequency range of 4.5-5.5 GHz, as validated through simulated and experimental results. The design effectively
enhances signal coverage and addresses blockage challenges in urban areas, providing a practical solution for passive reflectarrays in

Wi-Fi and similar wireless communication applications.

1. INTRODUCTION

The demand for high-speed wireless communication has
grown significantly in urban areas due to applications such
as smart offices, the Internet of Things (IoT) systems, and in-
dustrial automation [1]. However, densely populated urban en-
vironments pose unique challenges, particularly signal block-
ages caused by large buildings, complex indoor layouts, and
multipath propagation [2]. These issues degrade signal qual-
ity, limiting the performance of wireless communication sys-
tems, especially for Wi-Fi networks operating at 5 GHz [3]. To
address these challenges, advanced beam-steering techniques
are investigated to enable more efficient communication and
minimize signal obstructions [4]. Beam steering is an essen-
tial approach for mitigating signal blockages in complex urban
environments, as shown in Figure 1. It allows antennas to dy-
namically adjust the direction of transmitted or received signals
to bypass obstacles and ensure reliable connectivity to the in-
tended receiver [5]. Conventional beam-steering methods, in-
cluding mechanical beam scanning [6], parabolic reflectors [7],
and phased array antennas [8], have been widely used. How-
ever, each has drawbacks related to size, complexity, and effi-
ciency [9]. Reflectarray antennas offer a promising alternative
by combining the simplicity of parabolic reflectors with the us-
ability of phased arrays, while maintaining a passive configu-
ration [10, 11].

Reflectarrays consist of an array of unit cells capable of
modifying the phase of incoming electromagnetic waves, en-
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abling precise control over beam direction [12]. Unlike tradi-
tional phased arrays that rely on complex feeding networks, re-
flectarrays are more compact and lightweight, making them a
better solution for overcoming signal blockages in urban en-
vironments [13]. Their ability to passively control phase at
the unit cell level significantly reduces system complexity and
power demand, making them an optimal solution for cutting-
edge wireless communication systems. Various beam-steering
techniques are used to steer the main beam and avoid block-
ages [14]. In the aperture phase-tuning approach, the phase of
each element in the array is controlled individually. This can
be done using a delay-line microwave network or by altering
the physical parameters of scattering structures. The elements

FIGURE 1. Application scenario of a reflectarray for overcoming signal
blockage.
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can also be rotated on the aperture of the metasurface to change
the phase, either electronically, mechanically, or passively [15].
This method provides a fine control over the beam direction and
is highly effective for mitigating blockage issues caused by ob-
stacles in urban areas. In the feed-tuning method, the beam is
scanned by shifting the feed’s phase center via translations [16].
This method allows the beam to be directed without physically
altering the position of the antenna. In some designs, a tilt-table
ground plane is used, particularly in reflectarray antennas, to
achieve off-broadside beam steering. This technique is useful
in applications where it is impractical to adjust the entire an-
tenna assembly [17, 18].

Beam-steering reflectarray antenna systems utilizing feed-
tuning techniques have been extensively investigated in [19]
and [20]. These studies demonstrate that feed translation is ef-
fective for systems with a limited scanning range but suffers
from significant gain reduction when steering the beam away
from the broadside direction. Increasing the focal length-to-
diameter (F/D) ratio can improve the antenna’s performance by
enhancing its focus and gain. However, it results in a costlier
and bulkier antenna design, making it less practical and harder
to integrate into space-constrained applications. To achieve
wider beam-steering capabilities, hybrid approaches combining
feed displacement and phase distribution methods have been
explored. In [21], a scan range of £60° was achieved with a
gain of 30 dBi, minimal scan loss, and low side-lobe levels by
employing a bifocal aperture phase distribution technique. This
approach outperformed the traditional parabolic phase method,
with further optimization of the phase distribution enhancing
both scanning range and gain performance [22]. Similarly, off-
set feed configurations have been introduced to reduce feed
blockage, achieving a maximum gain of 36.4 dBi [23]. How-
ever, these techniques require mechanical rotation of the feed
horn, which limits scanning speed and operational flexibility.
Further advancements in beam-steering reflectarray designs in-
clude the combination of feed displacement and in-plane ro-
tation of the reflectarray panel, allowing for a scan range of
up to £70° [24]. However, this method supports only one-
dimensional scanning and experiences scan losses of approx-
imately 4.9 dB due to feed defocusing. Two-dimensional beam
steering, achieved by tilting the panel to avoid feed blockage
and rotating it along another plane for elevation control, demon-
strated a +60° scan range with a gain of 26.47 dBi, but re-
quired substantial space for panel movement and had slower
scanning speeds [25]. Mechanically rotating individual phase
elements has also been investigated, where each unit cell acts
as a localized phase shifter. Additionally, a broadband, wide-
angle beam-steering reflectarray using rotatable elements was
demonstrated, achieving a £60° scan range, a maximum gain
of 25.6 dBi [26,27]. Recent studies have explored multi-ring
unit cell structures for achieving broader phase variation and
improving bandwidth performance in reflectarrays. Ref. [28]
employed concentric ring geometries to enhance angular sta-
bility, while [29] used nested resonators in a multi-layer design
to achieve full phase control at X-band. However, these ap-
proaches often involve complex fabrication processes, multi-
layer substrates, or operate at higher frequencies where phase
manipulation is more straightforward.
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Most reflectarray antenna designs target higher-frequency
applications, where achieving a full 360° phase variation is rel-
atively straightforward [30]. Such designs often rely on multi-
layer architectures and complex unit cell structures to enable
precise beam steering [31]. However, at lower microwave fre-
quencies, particularly below 5 GHz, achieving full 360° phase
variation within a single-layer configuration poses significant
challenges [28]. These challenges are especially critical when
developing compact and low-cost solutions for urban environ-
ments, where mobile and Wi-Fi networks predominantly op-
erate below 5GHz. In urban areas, where signal blockages
caused by high-rise buildings and indoor structures are com-
mon, there is an increasing demand for efficient and cost-
effective beam-steering solutions [29]. Metasurface-based re-
flectarray antennas present a promising alternative by offer-
ing precise phase control and beam steering capabilities in a
compact and lightweight form factor. However, their practi-
cal deployment in dense urban settings requires careful opti-
mization to ensure reliable performance across a wide range
of beam-steering angles and operating frequencies. This study
introduces a reflectarray antenna designed specifically to ad-
dress signal blockage issues in urban environments. Operating
at 5 GHz, the proposed design incorporates a 15 x 15 multi-
ring unit cell structure on a single-layer FR4 substrate, achiev-
ing a full 360° phase variation. Two prototypes were fabri-
cated to enable beam steering at 30° and 60°, demonstrating the
design’s flexibility and effectiveness in overcoming blockage-
related challenges. Experimental results validate the proposed
reflectarray’s ability to achieve a measured gain of 21 dBi and
deliver reliable signal coverage within the frequency range of
4.5-5.5 GHz, making it a practical solution for dense urban
communication systems.

The primary contributions of this paper are as follows:

1. Development of a single-layer, multi-ring reflectarray an-
tenna that achieves a full 360° phase variation by utilizing
a multiple-resonance unit cell architecture, eliminating the
need for a multi-layer structure. This design achieves 360°
phase variation within a single layer using a low-cost FR4
substrate.

2. Experimental validation of flexible beam steering with
30° and 60° angles, demonstrating high-gain performance
and adaptability for 5 GHz Wi-Fi networks, with a mea-
sured gain of 21 dBi, enhancing signal coverage in ur-
ban areas. Additionally, the proposed reflectarray oper-
ates effectively over a bandwidth range from 4.5 GHz to
5.5 GHz, ensuring consistent performance across a wide
frequency range.

2. DESIGN METHODOLOGY

Figure 2 illustrates the proposed reflectarray configuration. The
design process begins with the development of a unit cell,
which serves as the fundamental building block of the array.
The reflective surface is then constructed by systematically
varying the geometric parameters of each unit cell to achieve
the desired phase distribution for accurate beam steering.
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FIGURE 2. Schematic representation of the proposed reflectarray.

2.1. Unit Cell Design

The designed unit cell depicted in Figure 3, features a multi-
ring structure with an outer square ring. The structure is fab-
ricated on a 4.6 mm thick FR4 epoxy with €, = 4.3. The unit
cell has dimensions of 20 mm x 20 mm. The other geometrical
parameter are ‘V’ = 20mm. The equivalent circuit model of
the proposed unit cell, shown in Figure 3(c), provides a simpli-
fied representation of the unit cell’s electromagnetic behavior.
The model comprises a combination of inductors and capaci-
tors that emulate the resonant characteristics of the multi-ring
structure. Each ring introduces an inductive effect due to the
looped surface current paths, while the gaps between rings and
the substrate layers contribute to the capacitive coupling. This
LC network forms a multi-resonant structure, allowing broad-
band response and continuous phase variation. The series and
parallel branches of the circuit model capture the coupling be-
tween adjacent rings as well as the interaction with the substrate
(FR4). The characteristic impedance of the substrate and sur-
rounding media is represented using lumped impedances, while
the reflection behavior is modeled through the impedance mis-
match with the terminating load. This model offers intuitive
insight into how geometric parameters influence the reflection
phase and supports the design strategy for achieving full 360°
phase coverage across the operating band. Figure 4 presents
the variation in reflection phase response of the unit cell with
respect to ‘V’, showing a phase variation of up to 360°. As il-
lustrated in Figure 5, the reflection phase remains unaffected by
variations in the Incident ray angle and polarization. The band-
width (BW) of the unit cell is calculated using the formula [32]:

BW = Q(fu - fl)

where f; and f, are the lower and upper frequencies corre-
sponding to a 45° phase shift from the center frequency. The
simulated reflection phase response across various frequencies
is shown in Figure 4, demonstrating an operating range from
4.5 GHz to 5.5 GHz. The use of a single-layer architecture leads
to a significant enhancement in the linear phase BW. Addition-
ally, the unit cell maintains consistent performance when sub-
jected to variations in incident angle and polarization, evaluated
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within a 30° range, confirming its reliability and suitability for
practical applications in dynamic environments.

2.2. Reflectarray Design

The antenna comprises an array of M x [N unit elements, where
M and N indicate the number of elements arranged along the
horizontal and vertical axes, respectively. The array is illumi-
nated by a focused horn antenna, ensuring consistent excitation
across the reflective surface. The required phase shift for each
unit element at coordinates (m, n) is determined using the fol-
lowing equation:

Oi = 2777 (Ax; sinf cos ¢ + Ay; sin 6 sin @) 2)

In this expression, A represents the wavelength in free space,
and (x, y) are the positional coordinates of the unit element with
respect to the center of the array.

A standard horn antenna, providing a directive gain of
13 dBi, is used as the feed. The spacing F’ plays a significant
role in balancing aperture efficiency and minimizing spillover
loss. Reducing F' lowers spillover; however, it can adversely
impact the uniformity of illumination. For this design, F is
optimized to 300 mm to ensure improved gain and effective op-
eration. The reflective surface is constructed with 15 x 15 unit
cells, covering a total area of 300 mm x 300 mm. Figures 6(a),
6(b), and 6(c) display the phase distributions required on the
reflective surface to steer the beam at angles of 30° and 60°,
respectively. To achieve a beam steering angle of 30°, the
unit cells are systematically arranged on the reflective surface
by varying their geometric parameters in accordance with the
calculated phase requirements(Figure 7). Similarly, for beam
steering at 60°, the arrangement of unit cells is modified to
satisfy the phase relation dictated by Equation (2). Using this
phase relation, the designed unit cells can be configured on the
reflective surface to steer the beam in any desired direction,
providing a versatile and adaptable solution for beam steering
applications. The simulations were conducted using CST
Microwave Studio.

The resulting 3-D far-field radiation patterns are displayed
in Figure 8. Figures 8(a), 8(b), and 8(c) depict the radia-
tion patterns at lower (4.5 GHz), resonant (5 GHz), and higher
(5.5 GHz) frequencies for 30° beam steering, respectively. Fig-
ures 8(d), 8(e), and 8(f) show the corresponding radiation pat-
terns at the same frequencies for 60° beam steering. The simu-
lation results, together with the unit cell’s reflection phase and
geometrical phase data, confirm that both the unit cell and the
overall system operate effectively within the frequency range
of 4.5-5.5 GHz. The simulated 2-D radiation patterns are com-
pared with the measured results in Figures 10 and 11.

3. ANTENNA PROTOTYPE

Separate prototypes were fabricated to validate the beam steer-
ing performance at 30° and 60°, respectively. Figure 9 shows
photographs of the fabricated reflectarray antennas. A standard
horn antenna (BBHA9120D) was utilized as the feed source
for the reflectarray system. The prototypes were evaluated for
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FIGURE 3. Unit cell. (a) Top view. (b) Side view. (c) Equivalent circuit model.
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TABLE 1. Comparative analysis of reflectarray antenna designs.
Ref. Freq. (GHz) BW (GHz) Gain (dBi) | Steering Layers Tuning Method Remarks
[19] 10.5 1.5 24.5 +30° Multi (Rogers) | Feed displacement Narrowband
[23] 12.0 2.0 36.4 +60° Multi (Duroid) Rotating feed High complexity
[24] 5.5 1.0 18.6 +70° Single-layer Mechanical rotation Large structure
127] 8.0 2.0 25.6 +60° Multi-layer Rotatable cells Broadband
This Work 5.0 1.0 (4.5--5.5) 21.0 30°, 60° Single (FR4) Passive tuning Compact, low-cost
242 Www.jpier.org
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FIGURE 7. Physical configuration of the reflective surface with varying parameter ‘L’ of the unit cells for (a) 30° and (b) 60°.

(a) (b)

FIGURE 8. Simulate;d 3-D patterns for beam steering: (a)—(c) for 30°

steering, (d) at 4.5 GHz, (e) at 5 GHz, (f) at 5.5 GHz.

their radiation characteristics in an anechoic chamber, as de-
picted in Figure 10. Figure 11 compares the measured and sim-
ulated 2-D radiation patterns for the 30° and 60° beam steering
cases across the lower (4.5 GHz) and higher (5.5 GHz) ends of
the operating frequency range. The comparison shows close
agreement between the simulated and measured results, con-
firming the design’s accuracy. Minor discrepancies observed
are likely due to feed misalignment or reflections caused by
the supporting structures. The gain vs. frequency plot for the
30° prototype is presented in Figure 12. The antenna demon-
strates a peak gain of 21 dBi at the resonant frequency of 5 GHz,
with a variation of approximately 1 dB across the entire oper-
ating bandwidth, from 4.5 GHz to 5.5 GHz. Table 1 presents
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(c) 4

steering. (a) at 4.5 GHz, (b) at 5 GHz, (c) at 5.5 GHz; and (d)—(f) for 60°

a comparison between the proposed reflectarray and represen-
tative designs from the literature. While some earlier works
demonstrate higher gain or wider beam steering, they often re-
quire multi-layer substrates or complex tuning mechanisms. In
contrast, the proposed design achieves a gain of 21 dBi, wide
bandwidth (4.5-5.5 GHz), and beam steering at 30° and 60°
using a compact, single-layer passive structure. These features
make it a promising solution for low-cost, high-efficiency urban
wireless applications. While the beam steering is not dynam-
ically reconfigurable in this implementation, different reflec-
tarray configurations can be fabricated for specific coverage
needs. This method is particularly suitable for cost-sensitive
deployments where beam direction can be fixed after planning,

Www.jpier.org
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FIGURE 10. Radiation patterns for 30°: (a) at 4.5 GHz and 5 GHz, (b) at 5.5 GHz.
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FIGURE 11. Radiation patterns for 60°: (a) at 4.5 GHz and 5 GHz, (b) at 5.5 GHz.

such as outdoor smart city nodes or building-to-building wire-
less links.

Finally, the overall performance of the prototypes confirms
that the proposed reflectarray design not only is capable of
achieving accurate beam steering but also maintains high gain
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and wideband characteristics. This demonstrates its potential
for practical deployment in beam steering applications for Wi-
Fi and similar communication systems. In most scenarios, sig-
nal blockage occurs at fixed locations, making low-cost pas-
sive reflectarrays a more suitable option compared to complex
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reconfigurable designs. In this context, the implementation
aspects of the beam-steerable reflectarray with a planar feed
source will be addressed as part of our ongoing research activ-
ities and covered in future work.

4. CONCLUSION

This paper presented the design, development, and experimen-
tal validation of a single-layer multi-ring reflectarray antenna
that operated at 5 GHz to address signal blockage challenges
in urban areas. The proposed 15 x 15 multi-ring reflectar-
ray, fabricated on a low-cost FR4 epoxy substrate, utilized a
multiple-resonance unit cell architecture to achieve a complete
360° phase variation. Prototypes were fabricated to demon-
strate beam steering at 30° and 60°, highlighting the design’s
adaptability to various application-specific requirements. Mea-
sured results closely aligned with simulations and confirmed
consistent gain and efficient beam steering across a wide fre-
quency range of 4.5-5.5 GHz. The antenna achieved a peak
gain of 21 dBi at 5 GHz with minimal variation across the op-
erating bandwidth. These findings validated the reflectarray’s
suitability for deployment in Wi-Fi and other wireless commu-
nication systems, particularly in urban environments where sig-
nal blockage was prevalent.
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