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ABSTRACT: Spherical harmonics are classical analysis tools in many science and engineering domains. For analyzing the electromagnetic
fields of antennas in the frequency domain, the mostly used formulation is the one proposed by Hansen. This article proposes an alternative
solution, relying on spin spherical harmonics. On a sphere, the tangential components of electric and magnetic fields are represented
by means of harmonics of spin £1. Then, new closed-form relations are established between spin spherical harmonics and the ones
formulated by Hansen. A sampling theorem and fast transforms that are consistent with spin spherical harmonics are used. The radiations
of spin spherical harmonics of order 1 are related to elementary dipoles and Huygens sources in circular polarization. Finally, numerical
experiments are performed with a horn antenna and a GNSS antenna installed on an aircraft. They show that a very large radiating system
with a band-limit of 2048 can be efficiently analyzed by means of fast spin spherical harmonic transforms, with a computation time of 2

minutes, approximately.

1. INTRODUCTION

pherical harmonics are commonly used in electromagnet-

ics to analyze and process radiated or scattered fields ex-
pressed on a sphere. Formulations of vector spherical harmon-
ics suitable with Maxwell time-harmonic equations are detailed
in classical books [1-3]. In the context of antenna measure-
ments, spherical harmonics are widely used to perform near-
field to far-field transforms, possibly accounting for the pres-
ence of the probe. In this domain, the mostly-used formulation
is the one proposed by Hansen [4].

Spherical harmonics are prominent in many other science
and engineering fields. Indeed, data are often represented on
spheres in computer graphics [5], chemistry [6, 7], geophysics
[8-10], planetary science [11,12], solar physics and astro-
physics [13, 14], among many others. For spherical vector data,
vector spherical harmonics can be introduced from scalar har-
monics by means of potentials via Helmholtz decomposition
[1-4]. Alternatively and more generally, the representation of
non-scalar spherical data, e.g. vector fields or tensors, typically
depends on the orientation of a local frame. This justifies the
use of spin spherical harmonics that inherently capture how the
data transforms under local rotations. These harmonics have
been introduced by Newman and Penrose in [15] to describe
gravitational radiation. They are convenient for representing
several types of signals on the sphere. The spin of order O is
suitable for describing scalar signals, while the spins of order
+1 allow the representation of vector fields tangential to the
sphere. In mathematical physics, spherical harmonics of spins
0 and +1 have been considered in [16, 17] for analyzing the so-
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Iution of Maxwell equations in spherical coordinates. Higher-
order spins can be notably used to characterize higher-order ten-
sors. For example, the anisotropy of cosmic microwave back-
ground has been recently studied on a sphere and analyzed in
terms of &2 spin spherical harmonics [14].

To perform discrete spherical transforms, a sampling of the
problem is required. By definition, band-limited signals are sig-
nals that can be represented by harmonics of order n < N,
where N is the band limit. This finiteness in the number of
harmonics can be interpreted as a limit in the speed of the vari-
ations of the signal. Similar to the sampling theory established
by Shannon [18], several sampling grids have been constructed
for the exact representation of a band-limited signal in terms
of scalar spherical harmonics. This has led to the regular 8-¢
grid associated with Gauss-Legendre quadrature that requires
~ 2N? sampling points [19]. The sampling theorem on the
sphere of Driscoll & Healy [20] is also commonly used, which
requires roughly ~ 4N? samples on the sphere. Another sam-
pling theorem, proposed by McEwen and Wiaux [21], involves
a regular grid with a number of samples of ~ 2N2. Besides,
this theorem is consistent with spin spherical harmonics, and
fast transforms exist that are both stable and fast, even for har-
monics of very large orders. Other samplings that are not based
on a regular 6-¢ grid exist. They offer great flexibility [22,23].
In electromagnetics, approaches have been proposed to apply
them on incomplete (phaseless) data [24]. Nevertheless, they
do not provide an exact representation and do not come with
fast transforms.

The objective of this article is to analyze the use of spin
spherical harmonics to describe antenna radiation. Closed-
formed expressions, which are formulated in a matrix form, are
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proposed to relate the representation of a signal by means of
spin and Hansen spherical harmonics. Illustrations and tests are
presented for different types of antennas, which radiated fields
come either from theory or simulation.

The plan of this article is as follows. In Section 2, the theory
of spin spherical harmonics is presented. The sampling theo-
rem and fast algorithms that allow the computation of the spin
spherical harmonic transform are also described. In Section 3,
spin harmonics are applied to electromagnetic radiation, and the
relation between the Hansen and the spin spherical representa-
tion is derived. Then, in Section 4, spin harmonics of order
n = 1 are related to elementary dipoles and Huygens sources
in circular polarization. Finally, in Section 5, numerical exper-
iments are presented and discussed.

2. THEORY OF SPIN SPHERICAL HARMONICS

2.1. Spin Functions

Spin functions are particular elements of the space of square in-
tegrable functions on the sphere, denoted as L2(S5?), where S?
is the unit sphere, i.e., the sphere of radius 1. They are param-
eterized by a spin order s € Z. A spin function u is character-
ized by its behavior under a local rotation [21], i.e., a rotation
by x¢ € [0, 27[ in the tangent plane centered on any spherical
coordinates (6, ¢), with 6 € [0,7] and ¢ € [0,2x[. Indeed,
local rotations yield a spin dependent phase shift given by

uy(0,9) = e Xuy(0,¢), (M

where the prime designates the local rotation of us by x, €
[0, 27[. This is a local rotation as every point on the sphere is
associated with a different rotation, whereas a global rotation
consists in shifting the entire signal on the sphere and could be
represented by an element of the group of rotations SO(3).

2.2. Spin Spherical Harmonics

Several conventions exist for scalar spherical harmonics, which
differ from the normalization and the presence of Condon-
Shortley phase. Differences notably exist between the conven-
tion used for spin spherical harmonics [21] and the one used in
the antenna domain by Hansen [4]. In this article, scalar spher-
ical harmonics are written as

Ym7n(0, d)) = \/jpén(cos 0) Zmd),
where indices n and m are integers so that n > 0 and |m| <
n. Furthermore, the normalized associated Legendre functions
P are defined by

2

_ 2n+1 (n —m)!
2 (n+m)!

P (). €)

Consistent with [21], the Condon-Shortley phase convention,
which amounts to a multiplication by (—1)™, is here included
in the definition of the associated Legendre functions, i.c.,

dner

(1 _ x2)m/2 y = (332 _ 1)n.
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Spin spherical harmonics are noted as Y; ., , € L?(S?) with
s € Z, n > |s], and |m| < n. They can be expressed from
scalar spherical harmonics using the spin raising and lowering
operators, O (pronounced “eth”) and 0, defined by

= —sin’ 0 3_~_LE sin" %@
=8 96 " sind 9¢ ’

= . _g 0 i 0\ . 4
0 = —sin 9<895ir198q§)sm 0,

with s the spin order of the signal to which O or  is applied.
Spin spherical harmonics are related to scalar (spin-zero) har-
monics by

(n— S)'
(n+s)!

(=1)°

}/;,m,n =
YS,T}'L,’VL =

0" Yo n,

n+s
( 6 S)/m mny

(n—s)!

for s > 0,
(6)

for s <0,

where ° and 0~* mean that the operators are applied |s| times.
In this article, functions of spin s = {—1,0, 1} are considered.
From (6) and (2), the 1 spin harmonics are expressed as
imeo d _
e m
Y imn=—m—7r—= |+ =5 ) P (cosb),
b V2my/n(n+1) (d9 s1n9) ( )
(M

Y. —em (d ) " (cosb).
thmn e i 1) V2mA/n n—|—1 do sin 6

Spin spherical harmonics form an orthogonal basis for
L?(S?) spin-s functions. Thus, any square integrable spin s
function u4 (6, ¢) can be written as

-y Yo

n=|s| m=—n

Ysmn (6, 9), ®)

with C7, ,, the spin spherical harmonic coefficients given by
Cron = (s, Ys,mon)s )
and where (, ) is the L2(S?) inner product. Thus, we have
s
(10)

T 2m
= / / us(0, )Y, (0, ¢) sin0didg.
0 0
2.3. Spin Components of a Vector Field

Any vector field V' defined on the unit sphere S? can be ex-
panded on radial and tangential components as

V=V+V. (1)
The tangential component Y can be formulated as
‘{(95¢> = V71(€7¢)'&71 + V+1 (€7¢)'&’+15 (12)
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with
a 0+ i
1= =,
V2
R K (13)
. 0—ig¢p
U1 = \/E )

where é, (]3 are the local spherical unit vectors. The unit vectors
w1 and w4 are invariant up to a phase term under a local rota-
tion. This can be demonstrated by noticing that a local rotation
of angle ; modifies 6 and ¢ as follows

0" = cos (0 + sin y¢p,
(14)
@' = —sin x40 + cos x¢P.

From (13), we then have

~/ —1 ~
o =e Xu_q,

(15)

~/ X
u+1—€ Uy

Consequently, under a local rotation, the components in (12)
become

V=V 1;'*—1 =V eixe
(16)
+1 V u +1 V+1€ txe .

This means that V_1 (6, ¢) and V1 (0, ¢) are of spin —1 and
spin +1, respectively. Thus, from (12), the tangential field
components can be written as a sum of +1 spin spherical har-
monics, which explicitly corresponds to

0o n
= § E V—l,m,nY—l,m,nu—l

n=1m=-n

an

+V+1,m,nY+1,m,n'&+l-

As for the radial component of V/, it is unchanged under local
rotation. Thus, the radial component of a vector field can be
described by means of spherical harmonics of spin 0. Never-
theless, in this article, the radial component is not considered,
as the entire field can be characterized from the tangential com-
ponents, according to the unicity theorem [1].

The unit vectors in (13) show a strong resemblance to the unit
vectors associated with left-hand and right-hand circular polar-
izations. This means that in the far-field zone, a representation
on s = £1 unit vectors is only about expanding the field on the
right-hand and left-hand circular components.

Spin signals also present a global rotation property, or ro-
tation over the sphere, which induces a particular phase shift
[25].
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2.4. Fast Spin Spherical Harmonics Transform

Any physical signal on a sphere, in particular the electromag-
netic fields radiated by an antenna, has limited variations and
can thus be exactly represented by means of a finite number
of harmonics. Such signals are said to be band-limited. The
summations over n are then truncated to N — 1, where N is
called the band limit. McEwen and Wiaux [21] have proposed
a sampling theorem and fast spin spherical harmonic transforms
for band-limited spin signals. They allow to represent exactly
band-limited signals by means of fast Fourier transforms. In
this section, the key-elements of these transforms are presented.

For a signal of band-limit IV, using the relation between spin
spherical harmonics and Wigner d-functions, the spin spherical
transform can be written as

) mts a1 N _—
Cm,n = (_1)5 T Z Aq mAq —s rrL Q) (18)
—(N—1)

where A”,

" m are the Wigner d-functions evaluated in 7 /2, and

T 2m
Grng = /O /0 us(0, ¢)e ™" sin gdddp.  (19)

Similarly, the inverse transform can be expressed as

N—-1
us(0,0) = Y Z Uiq emetial - (20)
g=—(N—-1) m=—(N~
where
- (m+s) N-1 2
S ? n+1 n n S
Umﬂzwzw 1 R Chg QD
n=0

To perform discrete transforms, a sampling of the sphere is re-
quired. For a signal of band-limit IV, the sampling theorem of
McEwen & Wiaux is based on an equiangular 6-¢ grid given
by

N TF(2P6 + 1)
epgzw, for pp € {0,1,..., N — 1}, .
27p
(‘51?;:21\]}1’ for py € {0,1,...,2N — 2},

After this sampling of the sphere, the computations of (19) and
(20) amount to discrete Fourier series provided that a periodic
extension in 6 from [0, 7] to [0, 27| is provided [21]. This ex-
tension is defined from the symmetries that the signal has to
respect. Finally, the forward transform consists in computing:

* two 2-dimensional fast Fourier transforms along pg and py
of complexity O(N?log, N);

» the sum in (18) of complexity O(N?).
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The overall complexity of the forward transform is dominated
by the second part and is thus in O(N3). To perform the inverse
transform, i.e., to obtain u(6,, ¢,) from the coefficients C, ,,
using (20) and (21), similar steps are followed with a similar
complexity. McEwen and Wiaux have demonstrated that using
the method of Risbo to compute by recursion of the Wigner
d-functions, and the transforms remain stable with an accuracy
that goes approximately to the machine precision for band-limit
up to N = 2'2 = 4096. Other recursion schemes have been
recently investigated to propose fast spin spherical transforms
in the framework of differentiable programming [23].

3. APPLICATION TO ELECTROMAGNETIC RADIA-
TION

In this section, spin spherical harmonics are applied to the tan-
gential components of an electromagnetic field on a sphere of
radius r in a linear, homogeneous, isotropic medium. Then,
closed-form expressions are obtained to formulate the corre-
spondence with Hansen spherical harmonics. The calculations
are performed in the frequency domain, the time dependency in

e, with w, the angular frequency, being omitted.

3.1. Spin Spherical Harmonics

In this section, the spherical harmonic transforms are applied to
the following tangential vectors

r

7 —ir\/CHy(r, 0, ¢),

and

E(r,0,9) (23)

where ( is the medium wave impedance. The constants are cho-
sen so that spin coefficients associated with E; and H; are of
unit [Watt]'/? and are of the same order of magnitude. As ex-
plained in Section 2.3, any field transverse to the sphere can
be expanded into two components of spin £1, which, in turns,
can be represented as a sum of spherical harmonics of spin £1.
Doing so, the tangential fields in (23) are expressed as

E\(r,0,¢) = \fz Cr

s,m,n

\[Z mn

smn

Yomn(0,0) 0s(6, 0),
24

(T 9 (,b sm n(a ¢) ﬁs(9,¢),

with C%, and C7%, the spin coefficients associated with the
transverse fields E; and H, respectively. They are given by

Critulr) = 2 (By Yomants)
// Et s ,m, nu ) dSV
s (25)
Crioa(r) = =iry/C(Hy, Yo m )

= —ir/C / /S H (Vo) dS.
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3.2. Relation with Hansen Harmonic Coefficients

In antenna domain, the mostly used formulation of spherical
harmonics is the one proposed by Hansen. In this article, this
formulation is used with slight modifications that are deemed
necessary to include the Condon-Shortley phase in the Legen-
dre associated functions as it is classically done for spin spher-
ical harmonics, to be consistent with a time dependency in e***
and to remain as concise as possible. The transverse electric
and magnetic fields are written as

Z ZZ Z anetmn’rgaqs)v

P=TE,M c=1 n=1m=—n

S Y YR Y e

P=TE;M c=1 n=1m=—n

(26)
h b,c

tm,n

(r,0,9),

where ;¢ are the harmonic coefficients, and ¢ = 1 or 2 cor-
respond to 1ng01ng and outgoing fields, respectively. Besides,
el m.n and htp,;l », are the spherical harmonics transverse elec-
tric and magnetic fields, respectively. They correspond to

e =k\/CALR (kr)e ”"4’{ 6 — cb]Pm(cos@)

in@

d- A o
TM c zm(z) Bl m
e =k/CALw( [d99 s1n9¢] P™(cos0),
(27)
and
kA d- - m A =
TE,C n (C) k imeo — 0 m
tm,n \/Z ( T) |:d9 + sin6‘¢] n (COS9)7
. ikA, mm »  doa] =
™,C __ (¢) imaeo _ m
h’t m,m \/Z h (k ) |:Sll’100 d0¢:| n (COSH),
(28)
where
1
P —
2mn(n+ 1) (29)

Furthermore, ' are the spherical Hankel functions, and w®

are related to their derivatives according to

1 d
kr d(kr)

w' (kr) =

n

(kr hﬁﬁ(kr)) . (30)

The relations between the spin and Hansen spherical harmonic
coefficients are now derived. For the sake of simplicity, only
the calculation of +1 spin coefficients of the electric field are
detailed. Inserting the Hansen expansion (26) in (25) and using
linearity, these coefficients are written as

ZQ

pcmn

CE,I

7C 5
'rn’,n et m,n Yl,m’,n’u1>a

(31)
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with

<etmn7}/1m n’ul // etmn Ylm n’ul) dS

(32)
From (27), (13), and (7), we have

el U zk\/zsmh(C)(kr)Yl mon

€l U = k:\/zsmw( (kr)Y1.mn-

Then, using the orthogonality of the spin spherical harmonics,
we end up with

(33)

\V]

) =ik | 2B (kr)Smm O
(34)
)=

—kr/ 2w (k)61 s Ot

TE,C
<etmna}/a.m n’ul

DO [

Iy

™,C
<etmna}/im n’ul

[\

where ¢ stands for the Kronecker symbol. From this result, (31)
reduces to

k

Crta(r) =7% [0 k)@t + b2 (k) Q)

(35)
™,1 r(Ll)(kT) Q ™, (

s wD(kr)]

This equation provides the +1 spin coefficients of the electric
field from the Hansen coefficients. Similar derivations can be
performed in order to obtain the other spin coefficients. The
final relations can be gathered in a matrix form given by

Crl il ol an? w7 rm
Cott | _hr | inD —ul i —w® | QR
Cri | V2| wi? bl wf® in? | | Qi
Cnt —w® i —w® inP mn
(36)

The inverse matrix is calculated by means of a Gaussian
elimination and properties of the Wronskian associated with
spherical Hankel functions

w® (kr)h Y (kr) — wP (kr)hD (kr) =

(;r)Q . (37

Hence, the matrix to obtain the Hansen coefficients from the
spin coefficients is

Ifz% w7(L2) wg) —z’hf) ihﬁf) O7ET,)+n1
el ke | —in ian? @ w? || enn)
min | 2V2 | i ik =i || i
™, it
. i =il —wl) —wl®P ] L
(38)

Finally, we have obtained a rigorous formulation, in the form
of an invertible matrix, to go from spin to Hansen representa-
tions, and the other way around. In the far-field zone, this ma-
trix can be simplified by replacing the Hansen functions h,, and
w,, by their asymptotic approximation valid for kr > n

D (kr) ~ (—i)"ﬂg» w® (kr) ~ (=i)" eikr,
kr kr (39)
h(2)(k"l“) N in+1ﬂ’ w(2)(kr) o e~ tkr .
" kr " kr

3.3. Comparative Analysis

To conclude this section, a comparative analysis is performed
between Hansen and spin spherical harmonics in Table 1.
Hansen harmonics rely on the potential theory which yields har-
monics that are either TE or TM. They incorporate the propaga-
tion along r. They are normalized in terms of the active power
(each harmonic carries 1/2 W). On the other hand, spin harmon-
ics rely on local rotations. For £1 spin, this yields vector fields
whose structure amounts to both circular polarizations. They
are normalized in L?(S?) and do not include the propagation in
r, but a sampling theorem and associated exact fast transforms
exist for band-limited signals.

TABLE 1. Comparative analysis between Hansen and spin spherical
harmonics.

Theory Polar.  Propag. Norm Sampling th.
Hansen potential TE/TM v active power X
Spin localrot.  circular X L2%(S?) v

4. RADIATION ASSOCIATED WITH SPIN SPHERICAL
HARMONICS OF ORDERn = 1

In this section, the radiation of spin spherical harmonics of or-
der n = 1 isrelated to elementary dipoles and Huygens sources
in circular polarization. For the sake of conciseness, only coef-
ficients associated with the electric field are presented.

4.1. Spin Spherical Harmonics So Thatn = 1and m = 0

For Hansen spherical harmonics, it is well known that an ele-
mentary electric dipole oriented along z and located at the ori-
gin only radiates one TM harmonic so thatn = 1 and m = 0
[4]. The coefficient is given by

™, 2 S
= —ik = Pe, 40
0,1 e 6 (40)

where p, is the dipole moment. Using (36), such a dipole yields
two spin coefficients

OFit = ~OFy = ihrey S pew@ (k). a1)
5 ’ o

Asymptotically in the far-field zone, this expression becomes

- C 77, T
Cig =—Cry ' =—ke\[ —pee ™. (42)
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FIGURE 1. Horn antenna.

In a similar way, an elementary magnetic dipole of moment p,,,
oriented along z and located at the origin yields two spin coef-
ficients

1
E.1 B,-1 ‘ /
Cip =Ciy = —ik3rc —HWCpth?)(kr).

Asymptotically in the far-field zone, this expression becomes

-1 [ 1 —i
Cf(’)l :Cf() ' =ik —HWCpme ikt

From the previous results, there exists a combination of ele-
mentary electric and magnetic dipoles which only radiates the
spin harmonic n = 1,m = 0 and s = —1 or +1 in the far-field
zone. This combination corresponds to p,, = sip.(. Indeed,
from (42) and (44), in the far-field zone, the only non-vanishing
spin coefficient in that case is

CFs = —sk?cy/ < etk
1,0 37Tpe

The far-field zone radiation is then simply given by

(43)

(44)

(45)

B Sk'QCCpe e~ ikr

Wi Y;,0,1(97¢)Tﬁs(9>¢)

k2clp. .
= Cgp‘smﬁ

B 272 T
In conclusion, balanced in-quadrature elementary electric and
magnetic dipoles oriented along 2z produce a far-field radiation
that corresponds to the harmonicn =1, m = 0and s = +1.

E(r,0,¢) =

(46)

efzk'r‘

Uy (0, ).

4.2. Spin Spherical Harmonics So Thatn = 1 and m = +1

As detailed in [26], a Huygens source in circular polarization
can be obtained from the radiation of four co-localized elemen-
tary dipoles, whose moments are such that

p =p.&,  p =sip.la,
(47)

pY = imp.y, p¥ = —smp.Cy.

39

0 ~ =
/\

—20 4

-30

Amplitude (dB)

—50 4

—60 T T T T T
—50 0 50 100 150
o)

T T
—150 —100

FIGURE 2. Normalized radiation pattern of the horn antenna (dB).

with s = 1 and m = =£1. In the far-field zone, this yields a
circularly polarized and half-space radiation, i.e., the radiation
is quasi-omnidirectional in an half-space and weak in the other
half-space. The electric field is given by

—ikr

E = —k?*cCp.v/2ms (1 — mscos 6) eim¢67ﬁs.

47y (48)

This can be written as

k%c pemsﬁ e~ tkr
C\/%Ys,m,l(ea ®)

This means that Huygens sources in circular polarization cor-
respond to the spin harmonics so that n = 1,m = =41 and
s ==+£1.

E(r.0,¢) = Uy (0, 9). (49)

5. NUMERICAL ANALYSES OF ANTENNA RADIA-
TIONS BY MEANS OF SPIN SPHERICAL HARMONICS

In this section, numerical experiments with spin spherical har-
monics are performed for different types of antennas.

5.1. Rectangular Horn Antenna

The objective of the first simulation is to illustrate the use
of spin spherical harmonics and to test the performances of
the algorithm based on the fast spin spherical harmonic trans-
forms. The antenna is a rectangular horn of aperture size
18 cm x 14 cm, fed by a waveguide with the TE10 mode. The
far-field radiation is computed at 5 GHz with the method of mo-
ments with Altair Feko. The horn and its radiation patterns are
represented in Figures 1 and 2, respectively.

The parameter N is chosen as a power of 2 to optimize fft
computations, so that the criterion N > krg + 10 is respected,
with 79 = 0.27 m the minimal radius of a sphere that includes
the antenna. This criterion, which is classically used for an-
tenna radiation, ensures that the active power is fully accounted
[4]. Since here krg + 10 ~ 38.27, we choose N = 64, which
yields a grid with an angular step of approximately 2.83°. In

WWwWw.jpier.org



rPIERM

Quennelle, Chabory, and Contreres

E spin+1
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m
E spin-1
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H spin+1
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m
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-30
—40
—50
20
-30
—40
-50
-20
-30
—40
-50
-20
-30
—40
—50

—20

-10 0 10 20
m

FIGURE 3. Spin spherical harmonic coefficients of a linearly polarized
horn antenna (dB).

this article, fast spin spherical harmonic transforms are com-
puted by means of the SSHT package that is publicly available
[21].

The spin harmonic coefficients are displayed in Figure 3. In
this article, coefficients are displayed with a normalization so
as to have a radiated power of 1 W. They become negligible
from n = 13, which means that the band-limit has been over-
estimated. This notably comes from the dominant contribution
in the radiation of the horn aperture, whose size is smaller than
the complete antenna. Besides, coefficients of spin —1 and +1
are of the same order since the linearly-polarized horn radiation
contains equal right-hand and left-hand circular components.
Note also that only coefficients with m odd are non-zero due to
the antenna symmetry. Outgoing Hansen coefficients, obtained
from (38), are shown in Figure 4. The obtained ingoing coef-

40

TE outgoing

-10 0 10 20

m
TM outgoing

10 4

15 4

201

25 -

FIGURE 4. Hansen spherical harmonic coefficients of a linearly polar-
ized horn antenna (dB).

Ll Fast transform + (38)
10° 1 — Feko
, ——- Asymptotic slope
10° 7 - Asymptotic slope
10* 1
5 10" 4
£
-1
c 10
1072 4
10-3 4
107

23 2% 25 26 27 28

FIGURE 5. Computation times for the spherical harmonic transform.

ficients are not shown since, and they are zero up to machine
precision as expected for this radiation analysis.

To assess the performances of the fast transform algorithm
with the conversion (38), comparisons are performed with the
spherical harmonic transform of Altair Feko on ani7 16 Go lap-
top computer. In terms of accuracy, the root mean square differ-
ence between the two algorithms is very weak, about —85.9 dB.
In terms of duration, the fast transform and Feko computation
times are of 0.02 s and 80 s, respectively. Computation times
for different values of NV are compared in Figure 5. For both
methods, the asymptotic slope corresponds to a complexity of
order O(N3). With the use of fast transforms, the computation
time remains shorter than 1 s up to N = 256. Note also that for
all values of N, the computation time of Feko is outperformed
by a factor of at least 103. Thus, the fast algorithm is efficient
for computing transforms with large NV such as electrically large
antennas.
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FIGURE 6. Dual-band L1-L5 stacked-patch antenna.

5.2. GPS Antenna on an Aircraft

In the previous simulation, the fast algorithm has shown to be
efficient for large values of the band-limit, up to N = 256. The
objective of this section is to apply fast spin spherical harmonic
transforms to a very large radiating system, which requires an
even greater band-limit. The considered configuration is a GPS
antenna installed on a single-aisle airliner. Two types of simu-
lations are performed, with and without the airframe.

The antenna [27], shown in Figure 6, is a dual-band L1-L5
circular stacked-patch antenna, fed by 4 coaxial probes. The
patches are of diameters 7.97 cm and 6.01 cm and of heights
1.4 cm and 0.5 cm, respectively. The substrate is of relative per-
mittivity €, = 4. The size of the ground plane is 23 cm x 17 cm.
For analyzing the impact on the radiation pattern of the aircraft
on which the antenna is installed, a perfectly metallic airframe
is added in the antenna simulation. As shown in Figure 7, only
the main scattering parts of the airliner are considered in the
simulation for computation purpose. The aircraft is of total
length 32.7 m. The section of the fuselage on top of which the
antenna is placed is modeled by a cylinder of radius 2 m and
length 7 m. The front parts of the wings and horizontal stabiliz-
ers are modeled with airfoil-shaped cross sections. Their spans
are 33.9m and 12.4 m, respectively. The vertical stabilizer is
of height 5.7 m.

The radiation computations are performed with Altair Feko
using the method of moments for the antenna and physical op-
tics for the aircraft. The reference frame is placed at the an-
tenna center, at the level of the ground plane. In that frame, at
the L1 center frequency fo = 1.57542 GHz, the spheres that
include the antenna and aircraft are of minimal radius 0.143 m
and 32 m, which corresponds to values of kry + 10 of 15 and
1066, respectively. For capturing all the variations of the ra-
diation in presence of the aircraft, computations are performed
with N = 2048, which yields an angular step of approximately
0.088°.

The computation time of the spherical harmonic transform is
of 128 seconds, which remains acceptable for computing trans-
forms from a grid implying more than 8 millions angular posi-
tions.

The radiation pattern of the antenna without the airframe at
the L1 center frequency fy is shown in Figure 8. The co and
cross polarizations of the antenna are right-hand (RHCP) and
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FIGURE 7. Model of the aircraft on which the antenna is simulated
(fuselage, front parts of wings and stabilizers). The antenna is at the
origin of the reference frame, i.e., on top of the fuselage.

left-hand (LHCP) circular polarizations. Besides, the radiations
in the ¢ = 0° and ¢ = 90° planes are very similar because of
the antenna symmetry (circular patches with 4 feeding probes).

Radiations patterns when the aircraft is included in the sim-
ulation are plotted in Figure 9. There are faster variations due
to the presence of the aircraft. Besides, differences appear be-
tween the ¢ = 0° and ¢ = 90° planes due to the contribution
of different parts of the aircraft.

The spin spherical harmonic coefficients associated with the
electric field of the antenna are displayed in Figure 10. Only
coefficients of order n < 15 are displayed as higher-order co-
efficients are very weak. Since the main polarization of the
antenna is RHCP, the strongest coefficients are associated with
+1 spin.

The spin coefficients in presence of the aircraft are displayed
in Figure 11 for orders n < 80. Even though the strongest
coefficients correspond to the antenna radiation, we observe
significantly more coefficients than when only the antenna is
considered. It means that the scattering of elements of the air-
craft introduces variations that requires higher-order spherical
harmonic coefficients. Besides, when n increases, the power
is distributed on a larger number of coefficients in m. Con-
sequently, even if their amplitudes are weak, their sum can be
significant and have an impact on the radiation of the antenna.

This is confirmed by Figures 12 and 13, in which the power
radiated for each value of n (summing in m) is plotted without
and with the aircraft. Without the aircraft, the power is con-
centrated on the lowest n-orders. Indeed, the power becomes
negligible from n &~ 15, which is consistent with the band-limit
criterion krg + 10, with 79 = 0.143 m the minimal radius of a
sphere that includes the antenna. With the aircraft, the power is
unchanged for the first orders. For higher orders, it decreases
slowly up to n = 150, which corresponds to a sphere of radius
4.24 m centered on the antenna. This part of the spectrum thus
includes the scattering on the aircraft fuselage. From n ~ 150
to n ~ 1000 there is a plateau of level approximately —65 dB.
This part is likely due to the scattering from the aircraft com-
ponents that are further from the antenna, i.e., the wings and
stabilizers. The relative power associated with all the coeffi-
cients in this plateau is of order —35 dB, which means that it
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slightly impacts the radiation. For n > 1000, the power de-
creases sharply, which is related to the band-limit of the com-
plete configuration.

6. CONCLUSION

In this article, the use of spin spherical harmonics for electro-
magnetic radiations has been analyzed. To begin with, the the-
ory of spin spherical harmonics have been presented. Then,
vector fields tangential to a sphere have been described by
means of harmonics of spin £1. The sampling theorem of
McEwen and Wiaux and associated fast transforms have been
presented. Closed-form relations between the spin spherical
harmonics and Hansen spherical harmonics have been derived.

Spin spherical harmonic transforms have been applied to var-
ious radiations. The harmonics n = 1, m = 0, and s = +1
have been related to balanced elementary electric and magnetic
dipoles, while the harmonics n = 1, m = £1, and s = +1
have been related to Huygens sources in circular polarization.
The efficiency of the fast spin spherical harmonic transform has
been tested by means of simulations of two types of antennas: a
horn antenna and a patch antenna installed on top of the fuselage
of an aircraft. In all cases, harmonic coefficients for band lim-
its NV up to 2048 have been computed with computation times
shorter than a few minutes.

This article has been focused on the analysis of antenna radi-
ation by means of spin spherical harmonics. This type of har-
monics could also be considered for other scattering and radia-
tion configurations. They could also help improving the post-
processing of spherical near-field antenna measurement that
can be cast as a peculiar spherical deconvolution [28]. Besides,
research works are currently led to quantify uncertainties in an-
tenna radiation patterns by combining spin spherical harmonics
with polynomial chaos [29].
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