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ABSTRACT: This paper presents a numerical approach for solving the magnetic diffusion equation using structure-preserving discretization
methods, like Discrete Exterior Calculus (DEC) and Finite Element Exterior Calculus (FEEC). A detailed derivation of DEC operators is
provided, also their geometric foundation and relevance for discretizing differential forms on meshes. Furthermore, the paper includes an
explicit introduction to the finite element exterior calculus framework, with a concise overview of the underlying functional spaces. The
proposed formulations aim to preserve the topological and metric structure inherent in Maxwell’s equation system. Numerical examples
illustrate the stability and convergence of both methods, while also comparing their treatment of boundary conditions and discrete Hodge
star construction which makes DEC and FEEC solvers spurious free and efficient useful for complex geometries.

1. INTRODUCTION

umerical calculations of electromagnetic fields have be-
Ncome a crucial aspect in both academia and industry. The
magnetic diffusion equation, which is a partial differential
equation (PDE) and derived from the induction equation, is
one of the fundamental concepts in Magnetohydrodynamics
(MHD) and plays an important role in plasma physics. It ex-
plains how magnetic fields evolve over time due to the com-
bined effects of fluid advection and resistive diffusion [1].
Moreover, ongoing research continues to explore stochastic ef-
fects and frequency-dependent behaviors, it provides a deeper
insights into how the system evolves under different conditions
[2]. In [4], using the magnetic diffusion equation for frequency
domain calculation on a coaxial cable an asymptotic analysis of
magnetic fields is presented for defining the skin effect, which
is a consequence of the corresponding PDE solution. For a B-
field analysis in the frequency domain, asymptotic expansions
prove to be an ideal approach [3]. These expansions help to
understand the behavior of magnetic fields, particularly in re-
lation to the skin effect, which describes the tendency of alter-
nating current to concentrate near the surface of a conductor at
increasing frequencies. More important to say with the progres-
sive development of quantum technology, incorporating quan-
tum effects into computational electrodynamics has become in-
creasingly important. One significant advantage of the B-field
formulation is that it can be converted into an A-formalism, as
the vector potential A provides a natural bridge between classi-
cal and quantum mechanical field theory. Thus, solutions of the
diffusion equation with respect to quantum effects can also be
considered without defining new formalisms. Such solutions
are attributed to the quantum skin effect [5].
Exterior calculus is a mathematical framework from differ-
ential geometry that extends concepts from linear algebra in
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a more abstract way. This concept of differential forms was
proposed by Cartan in 1899 [6]. Unlike traditional linear al-
gebra, which primarily deals with scalars, vectors, and tensors,
exterior calculus employs differential forms such as 0-forms,
1-forms, and 2-forms as representative quantities [7]. This ap-
proach allows for differentiation and integration over multi-
dimensional manifolds, making exterior calculus particularly
well-suited for applications of higher order dimensions. The
first attempts to apply differential geometry in electrodynam-
ics were made by Deschamps in 1981. He demonstrated that
the physical dimensions of electromagnetic forms are struc-
tured in such a way that only two fundamental units are needed
[8]. Discrete exterior calculus (DEC) can be described as a
discrete smooth version of exterior calculus. The term DEC
was first mentioned in 2003 by Hirani, who presented a dis-
crete mathematical concept on a geometric and topological ba-
sis that allows integration and differentiation on cell complexes
and its dual [9]. Further works on DEC in the field of compu-
tational electromagnetics (CEM) can be found in [29] and [30].
The mathematical framework of DEC extends exterior calcu-
lus notation by including operators such as the discrete Hodge
star and discrete exterior derivative, while also generalizing the
finite difference method (FDM). Unlike traditional numerical
methods, DEC defines its operators purely through geometric
properties, relying on the orientations of discrete elements such
as rectangular or tetrahedral cells. Furthermore, these opera-
tors must satisfy fundamental mathematical principles, includ-
ing generalized Stokes theorem and Poincaré’s lemma. While
DEC can be adapted to many types of mesh, like rectangular,
tetrahedral or polygonial mesh shown in [10], FDM is only de-
fined for rectangular mesh. Approaches to implement FDM on
non-rectangular or unstructured meshes are defined by the ap-
proaches of conformal FDM [11] and curvilinear FDM [12]. In
contrast, DEC offers much more flexibility in working with un-
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structured or irregular meshes and handling with complex ge-
ometries. Another widely used numerical method in CEM is
finite element method (FEM) [13]. Compared with DEC, FEM
only uses primal mesh dicretization and is based on the weak
formulation of PDEs, where the mass and stiffness matrices are
derived using integral theorems [14]. In contrast, DEC is based
on the exterior calculus formulation, utilizing differential forms
and geometric operators. While FEM relies on basis functions
and function spaces to approximate solutions [15], DEC dis-
cretizes differential forms directly on a mesh, making it well-
suited for preserving the topological and geometric structure of
underlying PDEs. Thus, using polynomials of the same order
can lead to spurious solution, where charge conversation cannot
necessarily be guaranteed in FEM [16]. When considering dif-
ferent polynomial degrees, various function spaces can be used,
which are defined in the De Rham complex. The construc-
tion of these spaces, combined with exterior calculus, leads to
Finite Element Exterior Calculus (FEEC) which was first in-
troduced by Arnold [17]. FEEC utilizes the exterior calculus
formulation in a way analogous to DEC which directly uses
the exterior calculus-formulated PDE. Unlike standard FEM,
FEEC not only is dependent on the orientation of the mesh but
also incorporates the integral definitions of the finite element
method. A key advantage of FEEC over FEM is that the poly-
nomial degree is naturally determined by the De Rham com-
plex [18]. This prevents spurious solutions in CEM, whereas
FEM heavily uses basis function interpolation, which can be
less effective in preserving geometric consistency on nonuni-
form meshes. The incorporation of primal and dual structures,
along with the consideration of topology, geometry, and poly-
nomial spaces, makes DEC and FEEC efficient solvers for nu-
merical methods. The aim of this work is to present a detailed
approach using DEC and FEEC to solve the magnetic diffu-
sion equation in two dimensions. The paper is structured as
follows. Section 2 presents an explicit derivation of the mag-
netic diffusion equation. The exterior calculus formulation of
this equation, along with the relevant operators, is introduced in
Section 3. Section 4 provides a detailed explanation of the DEC
approach, including its geometrically defined operators. The
derivation and implementation of FEEC, along with its corre-
sponding operators, are discussed in Section 5. Section 6 covers
the implementation and numerical simulations of both methods.
Finally, a conclusion of this work is summarized in Section 7.

2. MAGNETIC DIFFUSION EQUATION

The well-known magnetic diffusion equation is a simplification
of the induction equation from magnetohydrodynamics (MHD)
[19]. From Maxwell’s equation system, we start with Ampere-
Maxwell law using quasistatic approximation and Faraday Law.

VxB = ud (1)
OB
VXE——E 2)

whereby E is the electric field, B the magnetic flux density,
J the current density, and po the permeability. J can also be
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expressed by Ohm’s law

J=0(E+vxB) 3)

here the vector v describes the velocity of a moving reference
frame, and o is the electrical conductivity.

Inserting J in (1) and applying the curl operator to both sides,
the following equation has the form

1
VXE=—Vx(VxB)—Vx(vxB)

4
Hoo
Using the curl identity
V x (VxB)=V(V-B) - V’B %)
combined with the non-monopole law
V-B=0 (6)
the expression (4) gives
0B 1
— - —V’B-Vx(vxB)=0 @)
ot oo

Equation (7) is called induction equation and widely used in
MHD for relating velocity and magnetic fields with electrically
conductive fluids [20]. In engineering, a geometry is usually
considered in a rest frame with v = 0, whereby Equation (7) is
thus simplified to the magnetic diffusion equation [21]

9B _ 1 gy
ot oo

®)
In the frequency domain, the magnetic diffusion equation is re-
formulated by applying the Fourier transform, which simplifies
first time derivatives to 7w and leads to

1
iwB— —V’B=0
Moo

)

3. EXTERIOR CALCULUS FRAMEWORK

Physical quantities can be expressed in the language of differen-
tial forms using the framework of exterior calculus. To describe
(9) in terms of differential forms, B is denoted as a 2-form.

B=d(A") =dA (10)

The flat operator b is a mapping from vector potential fields A
to potential 1-forms A.

The Laplace operator V2 is rewritten using the Laplace De
Rham operator [22]

V2 =6d + dé (11)
This is a composition of the exterior derivative d and the codif-
ferential . The exterior derivative maps a p-formtoa (p + 1)-

form. The codifferential is a combination of d and Hodge Star
operator x

§ = (—1)npHDHIFs o gy (12)

and maps a p-form to a (p — 1)-form. § depends on the form
p used for the exterior formulation, dimension n, and signature
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s of the manifold. For most geometric problems in electrody-
namics, the dimension of the manifold represents the dimension
of the space R™. One assigned an s = 0 to such manifolds [23],
and § can be simplified.

§ = (—1)"PFOH gy (13)

The Hodge Star operator acts also on arbitrary p-forms and
maps them to (n — p)-forms. A fundamental treatment of dif-
ferential forms and their operators is provided in [24]. For more
information on manifolds and their signatures, see [25, 26].
By using the definition given in (11), Equation (9) can be
reformulated in the language of differential forms.

iwB — ——(5d+ d8)B =0

(14)
oo
For the two dimensional case n = 2, (14) is reduced to
. 1
iwB+ —(dxdx)B=0 (15)

Koo

since the exterior derivative of a 2-form in two dimensions al-
ways vanishes, the first term in (11) does not contribute. The
magnetic diffusion equation in a formulation of the potential
1-form results from the substitution of B by (10).

iwdA+ ——(dxdxd)A=0

oo

(16)

A formulation of the magnetic diffusion equation in terms of
the vector potential A introduces additional complexity and re-
quires specific assumptions about the field, such as the choice
of a gauge condition (e.g., the Coulomb gauge V - A =
0) [27]. In contrast, the exterior calculus formulation natu-
rally expresses B as d.A, eliminating the need for gauge condi-
tions and reducing computational overhead. Therefore, Equa-
tion (15) will be used in the following sections.

4. MAGNETIC DIFFUSION IN DISCRETE EXTERIOR
CALCULUS NOTATION

The idea of a discrete version of the formalism presented in
Section 3 was firstly introduced by Whitney who developed
a systematic way to discretize differential forms on simplicial
complexes [28] and established an isomorphism between dif-
ferential forms and simplicial cochains [29].

A simplicial complex K is a oriented collection of all sim-
plices o™ that approximates a given geometry in R™ [30]. Math-
ematically, a simplicial complex can be defined as

K= [01,02,...,0"} (17)

where each n-simplex o™ is expressed by an oriented set of
(n + 1) vertices v; [31] as seen in Figure 1.

(18)

The simplices are typically arranged to form a triangulated
or meshed representation such as tetrahedral or rectangular
meshes of the underlying geometry.

In the context of simplicial complexes, the discrete formula-
tion of a differential form is represented by a simplicial cochain.

o™ ={v1,va,..., 041}

24

FIGURE 1. Three simplices in a two dimensional space with defined
vertices and orientation.

BPNYAN

0-cochain

1-cochain 2-cochain

FIGURE 2. Tllustration of three different cochains each assigned a scalar
value as an example.

A simplicial cochain assigns a scalar value to each n-simplex in
the complex K [32]. For instance, a O-cochain assigns a scalar
value to each vertex (see Figure 2), similar to how functions
correspond to O-forms, while a 1-cochain assigns scalar values
to edges, analogous to assigning values to 1-forms.

The discrete exterior derivative defined on primal p-cochains
are represented by matrices that acts on the respective cochain
in DEC, namely d®, d™ for the two-dimensional case. The
superscript indicates that the operator acting on the given
cochain—such as (0)—operates on primal 0-cochains. The el-
ements of d®) can assume three different values depending on
the orientation.

1 if v; is on [; with normal orientation,
{d(o)} =4 —1 ifw;isonl; with flipped orientation,
3
! 0 else

(19)

and has the dimension Ng x Ny, where Ny is the number
of vertices v; and Ng the number of edges /; of a discretized
geometry. The number of primal faces S; is denoted as Np.
Similar to (19), aw operates on primal 1-cochains and has the
dimension Np x Ng. Generally d® acts on p-cochains and
returns a (p + 1)-cochain.

1 if [; is on \S; with normal orientation,
-1
0 else

[d(l)} = if I; is on S; with flipped orientation,
%

b

(20)
The discrete exterior derivative can also be constructed in
the dual space by considering the relationships between dual

vertices, dual edges, and dual faces as shown in Figure 3.
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o
Vi Vi dual

FIGURE 3. Illustration of a 2D simplex with primal and dual meshes,
highlighting the respective assignment of primal and dual faces S,
edges [ and vertices v.

Due to the geometric duality between the primal and dual
meshes, the following relation holds [33]:

T
din.? = (=17 (a0 @1

n is the dimension and p the cochain information. In 2D case
n = 2, the dual operators are

a, = (av)" (22)
and
ai, = (a) 23)

A key property of the discrete exterior derivative is its purely
topological nature, meaning that it does not depend on the ge-
ometry of the given manifold, i.e., the metric. Furthermore, it
satisfies the Poincaré Lemma, implying that applying the dis-
crete exterior derivative twice yields zero.

d® .qg-1 — (24)

In DEC, the Hodge star operator x defines a mapping be-
tween the cochains of the primal and dual complexes. To con-
struct the Hodge Star, the circumcentric dual mesh is commonly
used, which is orthogonal to the primal mesh [34]. This dual
mesh enables the Hodge star operator to be represented as a di-
agonal sparse matrix, encoding the relationships between pri-
mal and dual simplices.

The relationships between the Ié)rimal and dual simplices are
described by the dual simplex o, "~ ) and the primal simplex
afp ) These simplices are geometrically interconnected, and the
Hodge star operator captures the duality of forms between the
primal and dual complexes [35]. In practice, the Hodge star
is represented by a matrix whose diagonal and off-diagonal el-
ements are based on the area- and length-based relationships
between the primal and dual mesh. Mathematically, it is for-
mulated as

w _ "]
(23 p) |

o (25)
0,

25

For each primal simplex az(p ), the corresponding dual sim-
plex 02("7’) is determined using geometric quantities such as
area or length which are defined as |o| in (25) depending on the
corresponding p-cochain.

In two dimensions, we can calculate three different Hodge
stars: The Hodge star acting on a 0-primal cochain is given by

# = vol (7?) (26)

where vol is the area of the dual cells. The Hodge star acting
on a 1-primal cochain is expressed as

J;(1)|

L _

i

oy (27)

which relates the length of the dual edges to the length of the pri-
mal edge. Finally, the Hodge star acting on 2-primal cochains
is defined as

@__ 1
“ vol (crl@)

Here, vol (052)) represents area of the primal simplices.

The relationship between the primal complex and dual cell
complex can be interpreted through the framework of the De
Rham complex shown in Figure 4.

* (28)

4© aw

c? cl 2

B — e

HO) *) ey

(2 O]
Fdual *dual *((,Ta[
D2 — Dl «— Y
(1) 0
ddual d((fu)(z[

FIGURE 4. De Rham complex in the 2D case where C™ denotes the
space of all primal n-cochains while D" represents dual n-cochains.
The complex highlights the interplay between primal and dual struc-
ture also between the cochains though the discrete exterior derivative
d™ and its dual a"),,.

In the case of a circumcenter-based dual mesh, the Hodge
star operator acting on the primal mesh is related to the dual
Hodge star *fii)al by an inverse relationship of the Hodge star
defined on the primal mesh using the relationship [36]

—1
*z(f).)dual = (*z(’?—p))

This inverse property holds the diagonal structure of the re-
sulting Hodge matrices. As a consequence, the circumcentric
dual approach allows for a straightforward computation of the
Hodge star, ensuring numerical efficiency while preserving the
geometric consistency.

To discretize the magnetic diffusion Equation (9) in DEC no-
tation, the exterior calculus formulation from (15) is employed,

(29)
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TABLE 1. Tllustration of element types from the Finite Element Method in relation to the function space in 2D.

Properties H! H (curl) H (div) L?
Illustration ‘
FE-Element -Lagrange -Nedelec rst | -Raviart- -Discontinous
Types -Crouzeix- kind, Thomas, Lagrange
Raviart -Nedelec sec- | -Brezzi-
onnd kind Douglas
-Madral-Tai-
Winter
Ref. [37] [371, [38] [371, [39] [37], [40]

utilizing the appropriate operators adapted to both the primal
and dual meshes.

1 T
wbB + . (d ()7 @)t % ) 0 (30)

Since B is a 2-form in the cochain representation of differen-
tial forms, its DEC representation is obtained from the surface
integral of B along each surface S;. This integral is expressed
as

B;= | B-ndS 31)

Si

Thus, the vector B which includes the integral of each surface
on the primal mesh is an (Np x 1) vector defined as

B =[B1,Bs,Bs,...,Bn,]" 32)

Therefore, the unknown components of the 2-cochain B are
defined in (32) which includes the magnetic flux on each S;.

5. FINITE ELEMENT EXTERIOR CALCULUS FORMU-
LATION

The exterior calculus can be integrated with the finite element
method through the framework of finite element exterior cal-
culus (FEEC). This approach leverages the De Rham complex
within the context of finite element analysis [41]. FEM pro-
vides different solution strategies depending on the problem at
hand, with the choice of appropriate finite elements playing a
crucial role. A common selection is Lagrange elements, where
nodal values are associated with each element. In electro-
dynamics, partial differential equations (PDEs) often involve
vector-valued solutions. To account for the specific character-
istics of vector fields, such as curl and divergence-free proper-
ties, edge elements are typically employed for getting accurate
representation of these field characteristics [42].

The classical FEM employs Lagrange elements, using in-
terpolation polynomials ¢; that come from a certain function
space, the Sobolev space [44]. The condition imposed by this

26

function space is that the integral of the absolute value square
of the interpolation polynomial used (linear or quadratic) is fi-
nite. If this is true, the polynomial ¢; is L?-integrable over the
given meshed geometry 2.

L*(Q) = (@- ;,// 5|2 d2 < oo> (33)
Q

Interpolation functions that fulfill property (33) are elements of
the so called function space H' [43]. It is important to note that
the derivative of ¢ is also in L2.

H'={¢ecL? | Voel[Ll?} (34)

The bracket term [L?]? describes the components of V¢ in 3D.
For 2D case, the notation [L?]? is used.

In the case of edge elements, a distinction is made between
elements, which are intended to take account of curl and di-
vergence properties in the calculations. Vector functions v are
used, which are located in H (curl) with the property

H(curl) ={ve L? | Vxve[l?}} (35)
and H (div)
H(div) ={veL®? | V-veL?} (36)

respectively. Using these properties, the De Rham Complex of
the finite element method for a given §2 in 2D is represented as
follows

HY(Q) &% H(curl,Q)/H(div, Q) <™ 12(0)  37)

A graphical overview of individual elements with their char-
acteristics and examples of elements that are typically used for
the respective functional space are shown in Table 1.

The concept of FEEC like DEC is based on the discrete De
Rham complex as shown in Figure 4. The difference lies in the
construction of the operators. While DEC constructs the Hodge
stars and discrete exterior derivatives using geometric interpre-
tation, FEEC uses the basis function approach using integral
representation for the operators. The mapping from a primal
cochain to a dual one in FEEC is constructed using the defini-
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tion of mass matrix MET}) over the element T’

M = / Gi- 0y dS (38)
T

whereby ¢ are the elements of the given primal n-cochains.
Mi; ; serves as the discrete analogue of the Hodge star operator
from DEC. However, although the Hodge star is defined us-
ing circumcentric dual meshes, the computations in FEEC are
based on barycentric dual as seen in Figure 5, ensuring compat-
ibility with finite element function spaces.

U3

U1 U2
FIGURE 5. Tllustration of a dual O-form on a cell which is barycentric
on the triangle.

A suitable assignment of the given functional spaces in the
discrete De Rham complex can be constructed using (48). The
functions in H! are the primal O-cochain, and functions from
H (curl)/H (div) in 2D represent the mass matrix for the primal
1-cochain and L?-elements in (38) for ¢ represent the mass ma-
trix for the primal 2-cochain.

The discrete exterior derivative D in FEEC has the same ge-
ometric interpretation as in DEC, a mapping from a p-cochain
to a (p + 1)-cochain. So D) acts on primal 0-cochains and
D™ on primal 1-cochains. For D(%), the matrix representation
follows from the integral

D) = / 0 - grad(e;) dS (39)
T

whereby 7; are H (curl)-elements representing the primal 1-
cochain in (39). The same procedure applies to H (div) ele-
ments.

Accordingly, D() is also calculated by the use of [34]

]D)E)lj) = /wi . curl(nf(curl)) s (40)
T

whereby w; are L2-elements. For H(div), the divergence op-
erator must be used for the element

D) = / w; - div(n] ) ds 1
T

The D-operators must also satisfy the condition (24)
D@ .pe-1 = (42)

The dual discrete exterior derivative can also be calculated by
using (21)

DY P = (—~1)P (DP—D)T (43)

whereby the relation of the dual and primal mesh as in DEC is
maintained.

5.1. FEEC Approach for the Magnetic Diffusion Equation
In the 2D case of the magnetic diffusion equation, it is crucial
to determine the appropriate mass matrix M(!), since there are
two possibilities as seen in (48).

To determine the 1-cochain mass matrix, a weak formulation
of (9) is defined by using the identity V2 = —V x V x and the
corresponding test function w

/mB.wdS+i Vx(VxB)-wdS=0 (44)

Moo
s s

With the application of the Stoke theorem and vector identity

(VXVxXxB)-w=(VxB)-(Vxw)—V-(wx (VxB))
(45)

the second integral can be reformulated as

/Vx(VxB)~wdS
5

= /(VxB)~(V><w)dS—/V-[W><(VXB)] ds
5 s

:/(VXB).(wa)dsffwx(VxB)dl (46)
s as

The second term in (46) describes the implementation for Neu-
mann boundary conditions [45]. In the first term, it is straight-
forward to see that w needs to be defined in the H (curl)-space
compared to the defined property in (35).

By continuing the FEM approach, the mass matrix is deter-
mined using the Galerkin approach for (44) and the approxima-

tion for the magnetic field B; =~ > b; N;.
i=1

Zwal/NledS
i=1 S

n

> bi
=1 _
+eL /(v X N))- (VX Nj)dS=0 (47)

where N;, N; are the basis functions. In Equation (47), the first
term represents the mass matrix, while the second term corre-
sponds to the stiffness matrix. Since the basis functions have
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a rotational property, our basis functions must be in H (curl),
which defines the 2D De Rham complex.

HY(Q) &% Hcurl, Q) 2% 12(Q) (48)
For our FEEC approach, only the mass matrix is required. To
ensure conformity with the function space H (curl), we employ
Nédélec elements of the first kind as the basis V;, denoted as
nNed for the construction of the mass matrix Mi}j .

1) _ Ned
Mi,j */Th'e :

S

netds (49)

A mathematically detailed description of Nédélec elements, in-
cluding their mapping properties, can be found in [46,47]. The
FEEC formulation of the magnetic diffusion equation is equiv-
alent to the DEC approach. Here, only « is replaced by M and
d by D. The FEEC formulation of the magnetic diffusion equa-
tion is equivalent to the DEC approach. In this framework, the
operator *Z(.Z) is replaced by the mass matrix MZ(-Z-), while the ex-
terior derivative dz(‘,T;‘) corresponds to the discrete operator ]D)Z(.Z.).

iwB + —— <D<1> (M)~ (DM)T M<2>) B=0 (50
Moo

Here, M(?) is defined in the same way as «(®) in (28) and rep-
resents a diagonal matrix.

M@ — @

id 51
This approach is only valid by using the lowest order elements
like Nedelec first kind, so the elements w; in L? are piecewise
cell-based constant. However, despite its simplicity, this ansatz
is not generally applicable. When higher-order finite elements
are used like higher order polynomials, the cellwise basis func-
tions w; in L? are no longer constant but instead exhibit poly-
nomial variations within the element. The curl components of
the lowest-order Nédélec elements is constant, which justifies
the approximation of L2-space elements as constant. However,
for higher-order Nédélec elements, the components of the curl
are no longer linear in L?, meaning that L?-space elements can
no longer be accurately approximated using constant elements.
As a result, the mass matrix involves integrals of nontrivial
functions, making a simple area-based scaling insufficient. De-
tailed information on the dependence of the functional space
and polynomial degree are found in [16] and [18].
Finally, the matrix D(!) can be constructed using

1 _ Ned
D; ; f/wiocurl(n-e )dS

) (52)

T

It should be noted that, unlike the Hodge star *1(',11')’ the mass
matrix MEIJ) is no longer a diagonal matrix because the entries
involve integrals of overlapping basis functions 74, leading

K3
to a more general sparse structure.

28

6. IMPLEMENTATION AND NUMERICAL RESULTS

The implementation of the magnetic diffusion equation in DEC
and FEEC was simulated using a copper disk with radius r =
2 mm shown in Figure 6. This problem is defined with Dirichlet
boundary conditions 0B, so that a fixed B-field is given at the
edge of the geometry.

0B

a

FIGURE 6. Tllustration of the disk with assignment of the boundary con-
dition of the geometry as well as the copper conductivity coefficient
.

The implementation of the boundary conditions is crucial,
since we have a 2-cochain B here, so we have to define the
boundary conditions with I = 1A

1

0B =
2T por

(53)

for both implementing methods on the surfaces at the boundary.
Since B represents a primal 2-cochain, its Dirichlet boundary
conditions are surface elements defined by the boundary nodes.
In Figure 8, a simple example is shown. By definition, B is
associated with the faces of the primal mesh and is given by the
integral of the underlying vector field through each face (2. For
boundary conditions, the face areas on the boundary must be
extracted.

medS:Z/BmdS

Q SeN

= Bg, + Bg, + Bs, + Bs, + Bs, (54)

Here, the values Bg, are the integral of B along the defined area
S1. These areas are defined over extracted points p;

Bs, + Bs, + Bs; + Bs, + Bs,
= Bpipaps + Brapaps + Brapaps + Brapers + Brspenr (55)

For our discretized problem, the primal 2-cochain naturally as-
sociates the vector field with surface elements, and Dirichlet
boundary conditions are applied on the corresponding bound-
ary faces. In exterior calculus, boundary conditions are not
universal but depend on the geometry and discretization. It
can be seen that the implementation of the boundary condi-
tion can be carried out independently of any integral theorems,
relying solely on the n-cochain associated with the solution
variable. By applying the Stokes-Cartan theorem, the integral
formulation becomes purely topological, even for divergence-
type problems of B, where Dirichlet boundary conditions cor-
respond to boundary face elements and are independent of the
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FIGURE 7. Delaunay unstructured meshed geometry with boundary
nodes vy, edges e, and faces Fy,.

geometric structure of the domain.

V/dB:/B

2%

(56)

The geometric properties for a curl problem of the domain are
no longer contained in the integrand itself but are entirely en-
coded in the Hodge star operator.

/d*B:/*B
S

oS

(57)

To determine the size of each boundary, the corresponding
boundary nodes v, must first be identified. A boundary edge e
is classified as an edge if it is exclusively defined by two edge
nodes. Furthermore, any face that contains at least one edge
node is considered a boundary face F}. An illustrative example
is shown in Figure 7. When extracting the indices of vy, €3, F}
they must be inserted into the respective matrices to solve the
DEC formulation within the FEEC framework. Taking the ex-
terior derivative d) from DEC as an example, the matrix needs
to be modified to incorporate boundary conditions. Specifi-
cally, all boundary edge indices and boundary face indices must
be removed from dV to ensure that only the inner boundaries
of B are considered by the system of equations. Conversely, the
corresponding d*) operator for the boundary retains all indices
of e, and Fy. The same procedure is applied to the matrix D),
as it has the same dimensions and follows the same structural
modifications. In addition to modifying the exterior deriva-
tive matrices, the Hodge star operators must also be adjusted
to properly account for the boundary conditions. For example,
when constructing the +(2), only the indices corresponding to
interior faces are considered to determine the correct size of B.
In contrast, the indices associated with Fy, are included in a sep-
arate Hodge operator that incorporates the boundary conditions.
Similarly, the Hodge (1) must be adapted so that it correctly
reflects the influence of boundary edges. Once these modifi-
cations have been made, the same procedure is applied to the
mass matrices M) and M(?) to ensure consistency throughout
the formulation.

This implementation transforms, in the DEC case, (30) in
two parts due to the separation of B = By, + Bpay. Ma-
trix Byq, represents the boundary conditions, i.e., Byqy = 0B,

29

FIGURE 8. Dirichlet boundary of a primal 2-cochain.

while Bg,; corresponds to the desired solution quantity.

1
oL (g -1 g7 .\ | g
{zwﬂm (d (D)=L (@T )] »

1 T
+ [zw + 0 (d (* ) (d ) * ):| Bbdy =0 (58)

The matrices contained in the first bracket are the revised ma-
trices in which the indices of vy, €y, and F}, have been removed.
These indices have been assigned to the second bracket, which
refers specifically to the Dirichlet boundary condition (53) to
the corresponding Fj,. The FEEC matrix system from (50) can
also be transformed following Equation (58) and adheres to the
same approach regarding the separation of matrices based on
boundary indices and interior indices.

1
iw+ — (DO (M)~ (DINHT M®P)) | By,
[lw+ma( (M)~ (DY) ) !

+ [z’w+1 (]D)(l)(M(l))‘l(D(l))TM(Q))} Bpay =0 (59)
HoOo

This ensures a consistent treatment of boundary conditions
across the formulation. It is important to note that matrix fw
is always adapted to the size of the respective modified matrix
complex in order to keep the calculations consistent.

To determine Bi,,;, it is necessary to compute the inverse
of the first bracket term from Equations (58) in DEC and (59)
for FEEC. Since these matrices are typically sparse, it is ben-
eficial to use sparse approximate inverse techniques (SPAI),
which allow for efficient computation while preserving spar-
sity. These techniques are particularly useful in large-scale
problems, where directly computing the full inverse would
be computationally expensive and memory-intensive [48,49].
Another possible approach is to use the Moore-Penrose pseu-
doinverse, which is well-suited for calculation of the inverse
for non-square matrices. However, this method has limitations
when being applied to sparse matrices, as it requires converting
the matrix into a dense format before computing the inverse
[50].

In Figure 9, the solution of the magnetic diffusion equation
within the DEC formalism is presented, and the FEEC solution
is shown in Figure 10. Both results illustrate how the magnitude
of the magnetic field distribution changes with increasing fre-
quency. Specifically, as the frequency increases, the magnetic
field strength within the conductor decreases which is due to the
skin effect. The four different cases in the figure clearly show
this effect, with the field becoming weaker inside the conductor
as the frequency increases.
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FIGURE 9. The calculation of the magnitude for B in DEC formulation was performed for different frequencies: (a) f = 50Hz, (b) f = 5kHz, (¢)
f =20kHz, and (d) f = 5MHz.
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FIGURE 10. FEEC solution for the magnitude of B for different frequency values: (a) f = 50Hz, (b) f = 5kHz, (¢) f = 20kHz, and (d) f = 5 MHz.
The analytical solution B,,, of Equation (9), based on mod- By incorporates the boundary conditions from (53), while Jy,
ified Bessel functions, was taken from [21]. Under the given being modified Bessel functions of the first kind, are used for
boundary conditions, it yields to describing the behavior at the boundary 7¢ = 2mm and for
all values of r in the range 0 < r < ro. Parameter vy con-
B,, = Bo Jo(v,7) (60) tains a square root term involving a problem-specific constant
J 0 (’77 TU)
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FIGURE 11. Tllustration of the numerical results obtained with FEEC and
DEC methods in comparison with the analytical solution at the radial
position 7 = 1.1 mm in the domain.

%104

Magnetic Diffusion

analytic
1 FEEC
FEM

0.8

Magnitude B
=]
=1

=)
=

0.2

1]

10° 103 104 10° 108

Frequency fin Hz

10’ 107

FIGURE 13. Numerical results illustrating the comparison of FEEC
with FEM solutions at the radial position » = 1.1 mm.

v = viwppo and defines the frequency dependence of the an-
alytical solution.

Figure 11 illustrates a detailed comparison between the ana-
lytical solution and numerical results obtained using DEC and
FEEC methods for the specified problem. Since the numerical
solution is defined on surfaces, specific values corresponding to
the radial position = 1.1 mm were extracted using MATLAB
for direct comparison. In Figures 12 and 13, a comparison of
the two methods is presented using the finite element method,
where the integral equations were described in Section 5. The
results show that, particularly at low frequencies, the topology-
based approaches, DEC and FEEC, yield higher accuracy than
FEM. There are small deviations between the two numerical
methods and the analytical solution. These deviations can be
attributed to the fact that FEEC used first-order elements, and
the use of higher-order elements would likely result in more ac-
curate solutions. In the case of DEC, the observed deviations
can be attributed to the mesh generated by MATLAB. These
meshes are typically centroid-based rather than circumcentric,
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FIGURE 12. Numerical results illustrating the comparison of DEC with
FEM solutions at the radial position » = 1.1 mm.

which affects the construction of the dual mesh and so the def-
inition of the discrete Hodge star operator. Since DEC relies
on circumcentric duality to ensure accurate geometric interpre-
tation, deviations from this assumption may introduce errors in
the numerical solution. Despite these factors, the numerical re-
sults obtained can still be considered valid within the scope of
the study. To our best knowledge, no previous research has re-
ported the use of DEC or FEEC simulations in two-dimensional
problems that employ a 2-form formulation which means that
there are no available comparative results from other studies
that could be used to validate the outcomes of our simulations.

7. CONCLUSION

In this paper, the magnetic diffusion equation was solved in the
frequency domain using both DEC and FEEC solvers. A de-
tailed derivation of the differential equation and definition in
DEC and FEEC were presented. The definitions of the individ-
ual operators were illustrated and explained in detail. The mag-
netic field was treated as a 2-form within the differential equa-
tions and numerical simulations, representing the field on sur-
faces. Subsequently, the numerical results obtained from both
methods were compared with an analytical reference value at
a specific point within the geometry. The comparison demon-
strated that while DEC offers a simple implementation using tri-
angular elements, FEEC, with its more advanced formulations,
yields more accurate results than DEC. Overall, both DEC and
FEEC provide valuable numerical alternatives in the field of
computational electromagnetics. An interesting extension of
this formalism would involve the use of the magnetic field in-
tensity H, where a 3D treatment would be required if H is to
be treated as a 1-form within the framework of exterior calcu-
lus. In this context, particularly within FEEC, the incorpora-
tion of H as a 1-form would necessitate careful consideration
of the mass matrix definition, as well as the development of ex-
tended formulations for the discrete exterior derivative. These
modifications would be crucial for accurately representing the
magnetic field in three-dimensional domains and for enhancing
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the precision of numerical simulations. Future investigations
could include more computational examples with irregular and
nonhomogeneous domains. Such studies would provide further
insight into the robustness of the proposed approach of both pre-
sented methods.
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