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ABSTRACT: Severe bacterial pneumonia is a serious respiratory disease caused by bacteria, which is mainly transmitted through the
respiratory tract. To achieve early recognition of severe pneumonia patients through images, this study collected the CT images of 180
patients diagnosed with bacterial infection in the lungs on the day of emergency admission to a large regional medical center (a Top-Tier
(Grade 3 A) hospital). After classification by two deputy chief physicians of the respiratory department, 93 cases of severe bacterial
infection were obtained and the rest 87 cases were identified as mild bacterial infection. The CT sequences were then preprocessed
and annotated to obtain 599 images with annotated lung infection areas Together with 107 normal (non-infected) images, these bacterial
infection images were randomly divided into a training set of 447 and a test set of 259. In the experiment, four deep learning methods,
namely, FCN, PSPNet, deeplabv3, and deeplabv3plus, were used for training and three-class classification (severe bacterial infection,
mild bacterial infection, and normal). Deeplabv3plus showed the best performance, with an overall accuracy of 96.91% (including a
sensitivity of 95.25%, a specificity of 97.24%, an accuracy of 86.96%, a recall rate of 95.24%, and an F1 score of 90.91%) for severe
bacterial infection. Using deep learning technology to diagnose severe pneumonia as early as possible can produce valuable treatment
time for patients, thereby significantly reducing mortality and complication rates.

1. INTRODUCTION

Severe pneumonia refers to major respiratory dysfunction or
systemic inflammatory response in patients with pneumo-

nia. Patients usually present with symptoms such as high fever,
cough, chest pain, and dyspnea. In severe cases, shock, multi-
ple organ failure, and even death may occur. It is one of the
most common critical illnesses in clinical practice, character-
ized by rapid onset, rapid progression, and high mortality. It is
an important cause of death in ICU patients worldwide [1]. In
the United States, community-acquired pneumonia (CAP) re-
sults in approximately 1.4 million emergency department visits,
740,000 hospitalizations, and 41,000 deaths each year [2]. De-
spite significant advances in diagnostic methods, anti-infective
treatment, and intensive care in recent years, the clinical prog-
nosis of severe pneumonia is still not ideal, with a mortality
rate as high as 25%–50% [3]. Studies have shown that delayed
diagnosis is one of the key factors affecting the prognosis [4].

* Corresponding author: Sailing He (sailing@zju.edu.cn).

To identify high-risk pneumonia patients early, the diagnos-
tic criteria for severe pneumonia have undergone multiple revi-
sions. The most influential of these are the American Thoracic
Society (ATS) diagnostic criteria of 1993 and 2007. Clinical
practice has shown that this diagnostic criteria is suitable for
predicting whether a patient should be admitted to the ICU. Al-
though it can significantly improve patient survival, it is not
used for early diagnosis of severe pneumonia [5].
Conventional pulmonary imaging of severe pneumonia lacks

specificity in early diagnosis. Advances in lung imaging tech-
nology have provided an important tool for early identifica-
tion of severe pneumonia [6], as well as the rapid develop-
ment of artificial intelligence (AI)-assisted image analysis tech-
nology [7, 10] AI technology uses deep learning algorithms to
extract features and recognize patterns in massive amounts of
medical imaging data, overcoming the limitations of traditional
imaging diagnosis that relies on the physician’s subjective ex-
perience and judgment and inconsistent diagnostic standards.
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FIGURE 1. Deep learning network structures used here for bacterial pneumonia classification. (a) Fully Convolutional Networks (FCN). (b) Pyramid
Scene Parsing Network (PSPNet). (c) Deeplabv3 network structure. (d) Deeplabv3plus network structure.

It achieves automated detection, quantitative analysis, sever-
ity assessment, and prognosis prediction of pneumonia lesions,
significantly improving the accuracy and efficiency of early di-
agnosis [11].
The imaging features of the lungs will change accordingly

with different infectious pathogens. If the pathogens can be
identified early, anti-infection treatment is much more effec-
tive. Studies have shown that AI has advantages in distinguish-
ing pathogen infections in lung CT images, and the differences
in the incidence of various CT features in patients with fungal
and bacterial infections are statistically significant [12] In this
paper, we use deep learning methods to train and achieve three-
class classifications of severe bacterial infection, mild bacterial
infection and normal (no infection).

2. METHODS
In this paper, we use several deep learning network structures,
namely, FCN, PSPNet, DeeplabV3, and DeeplabV3 plus, for
bacterial pneumonia classification and compare the results. The
fully convolutional network (FCN) [13] is the foundation of
deep learning for semantic segmentation, as shown in Fig-
ure 1(a). The FCN model is relatively simple and its core prin-
ciple is to use a convolutional neural network to extract image
features. The last classification layer in the image classifica-
tion network is discarded and replaced with a 1 × 1 convolu-
tion to obtain the feature map to be classified. The map is then
restored to the size of the original image through upsampling,
thereby achieving classification of each pixel and obtaining the
segmentation result.
PSPNet (Pyramid Scene Parsing Network) [14] introduced

the pyramid pooling module to capture contextual information
at different scales, as shown in Figure 1(b). The pyramid pool-
ing module can extract global and local contextual information
at different scales, which helps to better understand the seman-

tic content in the image and thus improve the segmentation per-
formance. The pyramid pooling module fuses features at four
different pyramid scales. The red mark represents global pool-
ing, which generates a single bin output. The following pyra-
mid levels divide the feature map into different sub-regions and
form pooled representations at different locations. The out-
puts of different levels in the pyramid pooling module contain
feature maps of different sizes. To maintain the weight of the
global features, a 1 × 1 convolutional layer is used after each
pyramid level to reduce the dimension of the context represen-
tation to 1/N of the original dimension (if the pyramid level
size is N ). The low-dimensional feature map is then upsam-
pled, and bilinear interpolation is used to obtain features of the
same size as the original feature map. Finally, the features at
different levels are concatenated as the final global features of
the pyramid pooling output.
DeepLabv3 [15] aims to improve segmentation accuracy

by capturing multi-scale contextual information through atrous
convolution and atrous spatial pyramid pooling (ASPP). Global
average pooling is applied on the last feature map of the model,
and the generated image-level features are fed into a 1× 1 con-
volution with 256 filters, followed by bilinear upsampling of
the features to the required spatial dimensions. Finally, the im-
provedASPP includes a 1×1 convolution and three 3 ×3 convo-
lutions along with the image-level features. The feature results
of all branches are then concatenated and passed through an-
other 1× 1 convolution, followed by a final 1× 1 convolution,
to generate the final logits.
DeepLabv3 plus [16] proposes an encoding and decoding

structure to address the multi-scale problem of objects and the
problem that multiple downsamplings will cause the resolution
of feature maps to decrease, resulting in reduced prediction ac-
curacy and loss of boundary information. The encoding part is a
DeepLabV3 network. Since the low-level features account for
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TABLE 1. Distribution of training and test sets of images for severe bacterial infection and mild bacterial infection.

training set test set total
severe bacterial infection 133 46 179
mild bacterial infection 314 106 420

total 447 152 599

(a) (b) (c)

FIGURE 2. CT image samples with different levels of infection. (a) Severe bacterial infection. (b) Mild bacterial infection. (c) Normal.

a small proportion, 1×1 conv is used for channel compression.
The features extracted by the encoder have richer information,
and thus they account for a large proportion and are conducive
to training. The encoder result is upsampled 4 times to be con-
sistent with the underlying features. After the two feature maps
are connected, they are refined through a 3×3 convolution, and
finally upsampled 4 times to obtain pixel-level predictions.

3. CLASSIFICATION RESULTS

3.1. Dataset Introduction
After expert annotation and screening, a total of 706 CT images
were obtained, including 179 images with severe bacterial in-
fection, 420 images with mild bacterial infection, and 107 nor-
mal images. The images with severe and mild bacterial infec-
tion were randomly shuffled and divided into training and test
sets, as shown in Table 1. In the training set, there are 133 im-
ages with severe bacterial infection and 314 images with mild
bacterial infection. In the test set, there are 46 images with se-
vere bacterial infection and 106 images with mild bacterial in-
fection. Figure 2 displays CT image samples of different infec-
tion levels, where blue and red boundaries indicate severe and
mild bacterial infections, respectively, based on manual anno-
tation.

3.2. Evaluation Indicators
In the field of medical image classification, the confusion ma-
trix is most commonly used to show the comparison between
the model prediction results and the actual true results. For the
classification of two classes, TP (True Positive) indicates the
number of positive samples correctly predicted by the model,
TN (True Negative) indicates the number of negative samples
correctly predicted by the model, FP (False Positive) indicates
that the model incorrectly predicts the negative class as the pos-
itive class and FN (False Negative) indicates that the model in-
correctly predicts the positive class as the negative class. The

quality of the classification results is usually evaluated by pre-
cision (P ), recall (R), sensitivity (sens), specificity (spec), F1-
score and overall accuracy. The calculation formulas are as fol-
lows

P =
TP

TP+FP
(1)

R = sens =
TP

TP+FN
(2)

spec =
TN

TN+FP
(3)

F1-score =
2× P ×R

P+R
(4)

Overall accuracy =
TP+TN

TP+TN+FP+FN
(5)

Models of FCN, PSPNet, Deepabv3, and Deeplabv3 plus are
trained using mmsegmentation [17] without using pre-trained
models. The initial learning rate is set to 0.01, the gradient de-
scent method uses stochastic gradient descent (SGD), the gra-
dient update strategy uses PolyLR, the backbone uses ResNet
50, and the number of iterations is set to 20000. Figure 3 shows
the convergence of the loss reduction for models FCN, PSPNet,
Deeplabv3, and Deeplabv3 plus during the training process.
To achieve three-class classifications of severe bacterial in-

fection, mild bacterial infection and normal (no infection), 107
normal images were added during the test.
From the experimental results in Figure 4, FCN has an over-

all accuracy of 93.82% in the 3-class classification of bacte-
rial pneumonia (with a sensitivity of 81.25% for severe bacte-
rial infection, a specificity of 96.68%, a precision of 84.78%,
a recall of 81.25 %, and an F1 score of 82.98%). The con-
ventional convolution operations in FCN models are limited to
capturing local neighborhood information, making them inef-
fective for modeling long-range dependencies. While FCN’s
skip connections enable feature fusion at different depths, they
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FIGURE 3. Loss reduction curve of models FCN, PSPNet, Deeplabv3, and Deeplabv3 plus during the training process.

FIGURE 4. The confusion matrices of the 3-class classification results, with the coordinate axis 0 representing severe bacterial infection images, 1
representing mild bacterial infection images, and 2 representing normal images.
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FIGURE 5. Visualization results: green color indicates severe bacterial infection, and red color indicates mild bacterial infection.

lack mechanisms for global context aggregation. This archi-
tectural limitation ultimately results in suboptimal F-score per-
formance. PSPNet has an overall accuracy of 96.14% in the 3-
class classification of bacterial pneumonia (with a sensitivity of
90.91% for severe bacterial infection, a specificity of 97.21%,
a precision of 86.96%, a recall of 90.91%, and an F1 score
of 88.89%). Deeplabv3 has an overall accuracy of 96.53% in
the 3-class classification of bacterial pneumonia (with a sensi-
tivity of 91.11% for severe bacterial infection, a specificity of
97.66%, a precision of 89.13%, a recall of 91.11%, and an F1
score of 90.11%). Deeplabv3 plus has the best overall accu-
racy of 96.91% in the 3-class classification of bacterial pneu-
monia (with a sensitivity of 95.24% for severe bacterial infec-
tion, a specificity of 97.24%, a precision of 86.96%, a recall of
95.24%, and an F1 score of 90.91%). Figure 5 visualizes some
classification results using different models of FCN, PSPNet,
Deeplabv3, and Deeplabv3 plus: green color indicates severe
bacterial infection, and red color indicates mild bacterial infec-
tion. The consistent performance across training and test sets
(accuracy difference < 2%, demonstrated in DeepLabV3Plus)
confirms the model’s generalization capability, ruling out both
overfitting and underfitting concerns. For the identification of
severe pneumonia, we group mild and normal cases into the
negative class, allowing the use of binary classification. As
a result, conventional formulas for accuracy, sensitivity, and
specificity are preserved.

4. DISCUSSION AND CONCLUSION
Based on a CT image dataset of 180 patients with bacterial
pneumonia (706 annotated images in total), this study systemat-
ically evaluated the performance of four deep learning models,

FCN, PSPNet, DeepLabv3, and DeepLabv3plus, in the task of
three-class classification of bacterial pneumonia severity (se-
vere bacterial infection, mild bacterial infection, and normal
tissue). The study found that in terms of model performance,
DeepLabv3plus showed the best classification ability, with an
overall accuracy of 96.91% (259 test images). Its sensitivity for
severe bacterial infection was 95.25% (95% confidence inter-
val: 93.7–96.8%), specificity was 97.24% (96.1–98.3%), and
F1 score was 90.91%, which was significantly better than the
other models (McNemar test showed that it was significantly
better than FCN, PSPNet, and DeepLabv3 models, P < 0.05).
This quality is due to its multi-scale feature fusion mecha-
nism: DeepLabv3+ employs an atrous spatial pyramid pool-
ing (ASPP) module to capture multi-scale contextual informa-
tion through parallel atrous convolutions and global average
pooling. To improve computational efficiencywhile preserving
multi-scale representation capabilities, the architecture incor-
porates depth-wise separable convolutions in the ASPP back-
bone. The encoder effectively extracts rich contextual features
through ASPP, while the decoder progressively refines spatial
details by sequentially upsampling and fusing these features
with lower-level representations. The results show that deep
learning technology has significant potential in the early diag-
nosis of severe pneumonia.
In addition, this study broke through the clinical applicabil-

ity limitations of the traditional two-class classification model
for the first time, achieved pixel-level three-class classification
segmentation of the severity of pneumonia bacterial infection,
and verified the universality of the multi-scale feature extrac-
tion mechanism for lung image analysis. DeepLabv3plus re-
duced the misjudgment rate of severe infection to only 4.76%
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(7 false negatives) through hierarchical feature fusion, and no
misdiagnosis of normal samples occurred (0 false positives).
In the application scenario of the emergency department, early
identification of severe pneumonia infection and the ability to
distinguish the severity of different infections provide strong
support for clinical decision-making. It enables rapid and ac-
curate triage to avoid excessive occupation of ICU resources by
non-infected patients and mildly infected patients. The AI di-
agnostic system established in this study is also of great signif-
icance for public health events, especially during the outbreak
of respiratory infectious diseases (such as COVID-19) [18].
The 95.25% detection rate of severe infection can significantly
shorten the diagnosis delay, identify critically ill patients early,
help optimize the allocation of medical resources, and signifi-
cantly improve work efficiency.
This study only used the first CT image of admission and did

not track the changes in images during treatment. In the future,
the introduction of a time series data analysis can improve the
ability to predict prognosis. Multimodal data fusion can also be
used to integrate clinical indicators (such as blood routine tests,
inflammatory markers) and image features to establish a com-
prehensive prediction model, which is expected to promote the
practical application of clinical decision-making support sys-
tems.
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