
Progress In Electromagnetics Research C, Vol. 162, 34–43, 2025

(Received 8 July 2025, Accepted 22 October 2025, Scheduled 19 November 2025)

Hyperspectral Image Denoising Using Spatial Spectral
Attention Network Based on Transformer

Xiaozhen Ren1, Jing Cui2, Yi Hu1, Zhipeng Guo1, and Yingying Niu2, *

1School of Artificial Intelligence and Big Data, Henan University of Technology, Zhengzhou 450001, China
2School of Information Science and Engineering, Henan University of Technology, Zhengzhou 450001, China

ABSTRACT: Although Transformer models have made significant progress in the field of hyperspectral image denoising, their original
architecture still has limitations in processing the spatial and spectral correlations of images. It often results in the loss of details in spatial
features and insufficient exploration of the uniqueness of different spectral bands. To overcome these challenges, this paper proposes a
Transformer based spatial spectral attention network aimed at enhancing the utilization efficiency of spatial spectral correlations. In re-
sponse to the common problem of over smoothing in spatial feature processing, a dual channel spatial feature fusion module is introduced,
which effectively enhances the capture of spatial details and ensures clear reproduction of image textures and edges. Meanwhile, in the
spectral dimension, a multi-scale spectral feature extraction with self-attention mechanism is applied, which can sensitively identify and
utilize the differences between spectral bands, thereby achieving more accurate feature extraction at the spectral level. By integrating
residual connections in the spatial spectral feature extraction layer, the model can efficiently fuse spatial and spectral information, ulti-
mately achieving high-quality denoising. The experimental results have verified the excellent performance of this method on both the
ICVL dataset and Urban real dataset, achieving good denoising results and demonstrating significant advantages in maintaining image
details and spectral fidelity.

1. INTRODUCTION

Hyperspectral images are three-dimensional datasets ob-
tained by spectroscopic instruments, surpassing traditional

color images with their rich spectral resolution. They can finely
capture the spectral characteristics of every pixel in the scene
and can almost fully present the reflection spectral curve of ob-
jects. This characteristic of hyperspectral images has shown
great potential in various applications, including remote sens-
ing detection [1], material identification [2], agricultural pro-
duction monitoring [3], medical image analysis [4], and classi-
fication [5]. However, the hyperspectral imaging process is of-
ten compromised by multiple factors, such as insufficient illu-
mination, low reflected energy, atmospheric condition changes,
and sensor electronic noise, which often lead to image qual-
ity degradation and various noise doping. It poses obstacles
for subsequent image analysis and application. Consequently,
denoising of hyperspectral images has become a crucial pre-
processing step, which directly affects the ability to accurately
extract useful information from hyperspectral images, thereby
ensuring the accuracy and reliability of subsequent analysis.
Therefore, efficient and accurate denoising techniques are the
key to promoting the application and expansion of hyperspec-
tral images in various fields.
The denoising process of hyperspectral images is a reverse

process aimed at restoring cleaner images from contaminated
hyperspectral images. To address this challenge, researchers
have delved into the inherent properties of hyperspectral im-
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ages themselves. The core of such methods lies in utilizing
the intrinsic physical properties of hyperspectral images, such
as low-rank prior structure [6–8], non-local similarity [9, 10],
spatial spectral correlation [11, 12], and global spectral auto-
correlation [13], to construct effective constraint conditions for
denoising. For example, the K-singular value decomposition
(KSVD) [14] uses dictionary learning for denoising, but ig-
nores the inherent spectral information of hyperspectral im-
ages. block-matching and three-dimensional (3D) filtering
(BM3D) [15] focuses on non-local self-similarity in the spatial
dimension, but fails to fully explore information in the spec-
tral dimension. Hyper-Laplacian regularized unidirectional
low-rank tensor recovery (LLRT) [16] approximates the struc-
ture of the original hyperspectral image through a non-local
low rank tensor model. Non-local tensor dictionary learn-
ing (LTDL) [17] is a framework based on dictionary learn-
ing. Minimum spanning tree singular value decomposition
(MStSVD) [18] combines sparse representation and low rank
decomposition methods for denoising. Block-matching and
four-dimensional filtering (BM4D) [19] adopts threshold filter-
ing technology. Although these methods have utilized the po-
tential features of space and spectrum to varying degrees, they
have achieved ideal denoising effects. However, their effec-
tiveness is ultimately limited by the correlation between man-
ually set prior information and essential characteristics of hy-
perspectral images. On the other hand, BM4D method often
involves complex iterative optimization processes for denois-
ing methods of hyperspectral images based on prior constraints.
This not only increases the time complexity of the methods but
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also limits their application in real-time processing of large-
scale datasets. Therefore, it has become a hot and difficult topic
in current research for seeking more efficient denoising strate-
gies to adapt to the complex structure and fast processing re-
quirements of hyperspectral images.
In recent years, with the rapid development of deep learning,

especially the rise of convolutional neural networks (CNNs),
new vitality has been injected into various fields [20–22]. For
example, a hyperspectral image denoising method, denoising
method with deep image prior and sparse low-rank prior (DIP-
SLR) [23], which combines the deep sparse and low-rank prior,
is proposed to improve performance. Yuan et al. [24] innova-
tively proposed mapping method between the noisy and clean
hyperspectral images (HSI) with deep convolutional neural net-
work (HSID-CNN), cleverly incorporating a residual connec-
tion mechanism to achieve end-to-end learning from noisy in-
puts to clear images without noise, significantly improving de-
noising accuracy and efficiency. Dusmanu et al. [25] proposed
a trainable convolutional neural network for joint description
and detection of local features (D2Net) to achieve better denois-
ing effects. Three-dimensional quasi-recurrent neural network
(QRNN3D) [26] effectively captures the intrinsic relationship
between spatial and spectral features of hyperspectral images
through the combination of three-dimensional (3D) convolu-
tion and quasi-recurrent techniques, further enhancing the de-
noising effect. Maffei et al. [27] proposed HSI single denoising
CNN (HSI-SDeCNN), which directly takes 3D image blocks as
inputs to the network and uses downsampling to reduce com-
putation time.
At the same time, the Transformer architecture, which origi-

nally shone in the field of natural language processing, has also
begun to cross over into the field of computer vision [28]. Li et
al. [29] constructed spectral enhanced rectangle transformer
(SERT) model, which utilizes the spatial similarity of hyper-
spectral images and the low rank of spectra to design the Trans-
former structure for denoising purposes. Zhang et al. [30] pro-
posed three-dimension spatial-spectral attention transformer
(TDSAT), which combines three-dimensional convolution and
spectral-spatial attention Transformer blocks to denoise HSI
with an arbitrary number of bands. The U-former designed
by Wang et al. [31], with powerful capabilities of the Trans-
former, successfully captured the global dependency in the im-
age spatial domain, greatly improving the denoising effect.
Three-dimensional quasi recurrent and transformer based net-
work (TRQ3D) [32] further integrates structures of U-former
and QRNN3D, using a dual-branch approach to deeply extract
image features from both spatial and spectral levels, and then
fuse them to achieve better denoising results. Although Trans-
former architecture has shown great potential in denoising hy-
perspectral images, its utilization of spatial and spectral corre-
lations still needs to be improved. The existing methods tend
to be overly smooth when processing spatial features, which
may fail to extract small-scale information features. In the spec-
tral dimension, there is also a drawback of overly focusing on
channel characteristics and neglecting the unique differences
between different spectral bands.

To address the above issues, a spatial spectral attention net-
work based on Transformer is proposed for hyperspectral image
denoising (SSAT-HSI), which effectively integrates spatial and
spectral features through a hierarchical architecture. It mainly
consists of two modules: dual channel spatial feature fusion
module (DC-SFM) and multi-scale spectral feature extraction
(MSFE) with self-attention module. In the spatial dimension,
the dual channel spatial feature fusion module DC-SFM is used
to extract features, consisting of two branches. This module in-
tegrates a local processing branch, which utilizes convolution
and channel shuffling, with a global processing branch based
on self-attention. This hybrid design enables the simultaneous
capture of fine-grained textures and long-range dependencies,
more effectively preserving image edges and structural details.
In the spectral dimension, convolutions of different scales are
first used to obtain features at multiple scales, and then self-
attention is used to select spectral bands for denoising. Finally,
extensive experiments are conducted on both simulated and
real-world hyperspectral datasets, including ICVL and Urban.
The results demonstrate that the proposed SSAT-HSI outper-
forms state-of-the-art traditional and deep learning-basedmeth-
ods in terms of peak signal-to-noise ratio (PSNR), structural
similarity (SSIM), and spectral angular mapping (SAM) met-
rics, particularly under complex noise conditions, validating its
robustness and effectiveness in maintaining both spatial fidelity
and spectral consistency.

2. PROPOSED DENOISING METHOD
Figure 1 shows the architecture of the spatial spectral atten-
tion network based on the Transformer designed for hyperspec-
tral image denoising SSAT-HSI in this paper. It consists of six
concatenated spatial spectral denoising blocks (SSDBs). Each
SSDB is embedded with four Transformer sub-modules, each
of which integrates a spatial spectral feature extraction layer
(SSFEL) internally. With this hierarchical network design, the
proposed model is able to efficiently capture and process the
complex relationships between spatial and spectral features in
hyperspectral images. The brilliance of this architecture lies in
its ability to significantly improve the quality of denoised im-
ages while ensuring fine preservation of detailed information.
Specifically, the noisy hyperspectral image can be seen as a

clean hyperspectral image corrupted by various types of noise.
This image degradation process can be modeled as

Y = X +N (1)

where N represents the noise, X ∈ RH×W×B the clean hy-
perspectral image, Y ∈ RH×W×B the actual observed hyper-
spectral image after being contaminated by noise N , where H
andW represent the height and width of the spatial dimension,
respectively. And B represents the spectral dimension of the
hyperspectral image, that is, the number of bands.
Before entering SSDB for deep processing, a 3× 3 convolu-

tional layer is first used to extract preliminary features F0 from
the noisy image Y . Then, the initially extracted features are in-
put into the SSDB module with a fixed size for deeper analysis
and denoising of spatial spectral features.

Fl = SSDBl(Fl−1), l = 1, 2, · · · , 6 (2)
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FIGURE 1. The architecture of SSAT-HSI.

where SSDBl represents the spatial spectral denoising block of
the lth layer.
To enhance the expressive power of the network, a 3 × 3

convolutional layer is embedded in each spatial spectral de-
noising unit, and these units are concatenated through a skip
connection. In addition, to prevent overfitting of the model
during training, the residual connection is added before each
unit. Moreover, in order to recover a cleaner hyperspectral im-
age from the final feature F6, the shallow feature is connected
through two 3×3 convolutional layers and the skip connection.
Finally, the original noisy image is reintroduced to ensure the
integrity and accuracy of the restored image.

2.1. Spatial Spectral Feature Extraction Layer SSFEL
In the absence of the residual connection and the multi-layer
perceptron (MLP) architecture, self-attention networks exhibit
a nonlinear, sharp decline as the network depth increases. This
will ultimately result in the model being unable to effectively
capture most of the detailed features of the input image. To
solve this problem, the spatial spectral feature extraction layer
(SSFEL) is proposed in this section. This design principle
closely follows the basic architecture of visual ViT [33]. After
completing feature processing through the self-attention mod-
ule, normalization, residual connection, and MLP processing
layers are constructed.
Specifically, assume that Zl represents the input feature of

the lth concatenated spatial spectral feature extraction layer SS-
FEL, the output of the lth SSFEL can be written as

Z
′

l = SSLSA (LN(Zl−1)) + Zl−1 (3)

Zl = MLP
(
LN(Z

′

l )
)
+ Z

′

l (4)

where Z ′

l denotes the output of spatial spectral multi-head self-
attention (SSLSA), and Zl represents the output of the lth SS-
FEL.
SSLSA includes two parts: dual-channel spatial feature fu-

sion module (DC-SFM) and multi-scale spectral feature ex-
traction with self-attention (MSFE). Assuming that the input

feature of SSLSA is Zin ∈ RH×W×C , after normalization,
the feature is first divided in the DC-SFM. In DC-SFM, the
input feature is divided into several sizes of M × M non-
overlapping blocks, so that the entire input feature is segmented
into HW/M2 blocks. The feature within each block is pro-
cessed independently to capture local spatial information more
finely. This partitioning method not only helps reduce compu-
tational complexity but also enhances the model’s perception
of local image structures. The extraction of local and global
features for each block through the DC-SFM can be expressed
as

Zin
i = WinPartition(Zin), i = 1, · · · , L (5)

Zspa
i = DC−SFM(Zin), i = 1, · · · , L (6)

Zspa = WinReverse(Zspa
i ), i = 1, 2, L (7)

where WinPartition(·) represents the division of the input fea-
ture; DC−SFM(·) represents the dual-channel spatial feature
fusion module; WinReverse(·) is the inverse transformation of
the WinPartition processing, which restores the features pro-
cessed by the dual channel spatial feature fusion module to the
same size as the original input features through upsampling or
interpolation operations. This step ensures that the spatial struc-
ture of features is preserved, while providing rich information
input for the next stage of the network. Then, these processed
output features are passed on to multi-scale spectral feature ex-
traction with self-attention module MSFE for further integra-
tion and analysis, and this process can be expressed as

Zspe = MSFE(Zspa). (8)

2.2. Dual-Channel Spatial Feature Fusion Module (DC-SFM)
Due to the limitations of local characteristics and a limited
receptive field, convolution operation has insufficient perfor-
mance in constructing global features. In contrast, the Trans-
former architecture excels in extracting global features and an-
alyzing long-range dependency in images through its attention
mechanism. Convolution and attention mechanism are not mu-
tually exclusive but complementary. They work together to ex-
tract both local detailed features and capture global features.
Therefore, the dual-channel spatial feature fusion module DC-
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FIGURE 2. Dual-channel spatial feature fusion module DC-SFM.

SFM is designed in this paper, as shown in Figure 2. DC-SFM
includes global processing unit and local processing unit. In
DC-SFM, self-attention mechanism is used to build the global
processing unit, aiming to obtain more abundant global fea-
tures. The local processing unit focuses on mining the details
of local regions. The two units work together to serve the com-
prehensive denoising of hyperspectral images.
In order to enhance information exchange and fusion be-

tween different channels, 1×1×1 convolution is used to adjust
the channel dimension for the local processing unit. This op-
eration can improve the interaction between various channels,
thereby enhancing the ability to integrate information. Next,
channel shuffling is performed to better integrate channel in-
formation. Channel shuffling divides the input feature map into
multiple independent subsets along the channel direction, and
uses depthwise separable convolution within each subset to fa-
cilitate information shuffling between channels. This operation
not only saves computational resources but also maintains the
correlation between channels. Subsequently, the processed out-
puts of each subset are merged again along the channel dimen-
sion to form a newmulti-channel feature map. Finally, 3×3×3
convolution is used to obtain richer and more refined local rep-
resentations. The output of the local processing unit can be ex-
pressed as

Out1 = C3×3×3

(
Cs

(
C1×1×1(Z

in
i )

))
(9)

where Zin
i is the input feature, C1×1×1 the 1× 1× 1 convolu-

tion,Cs the channel shuffling,C3×3×3 the 3×3×3 convolution,
and Out1 the output of the local processing unit.
In the global processing unit, input Zin

i is first linearly pro-
jected to obtain query Qspa, key Kspa, and value Vspa, which
can be expressed as:

Qspa = WqZ
in
i , Kspa = WkZ

in
i , Vspa = WvZ

in
i (10)

whereWq ,Wk, andWv denote the weight of size C × C.
Qspa and Kspa perform point-wise multiplication to obtain

a spatial attention mapMspa ∈ RM2×M2 . Then, the output of
the global processing unit can be expressed as

Mspa = Softmax
(
Qspa ·Kspa√

d
+B

)
(11)

Out2 = MspaVspa (12)

whereB is the relative deviation, d the dimension ofQspa, and
its value is C/N .
Therefore, the output of DC-SFM is expressed as

Out = Out1 +Out2 (13)

The dual-channel design of DC-SFMessentially decomposes
the spatial degradation process in hyperspectral images. One
branch handles the degradation caused by the atmosphere and
optical system, while the other branch handles the degradation
caused by the sensor. This decomposable design more compre-
hensively models complex mixed degradation processes than
single-mechanism approaches, such as pure CNNs or pure
Transformers. Consequently, it effectively avoids issues like
excessive smoothing or detail loss that arises from overly sim-
plistic mechanisms.

2.3. Multi-Scale Spectral Feature Extractionwith Self-Attention
Module (MSFE)
The dual-channel spatial feature fusion module (DC-SFM) can
capture rich spatial details of a hyperspectral image. However,
due to the unique spectral information of a hyperspectral image,
simple spatial features are not sufficient to fully reflect their in-
trinsic characteristics. Therefore, a multi-scale spectral feature
extraction with self-attention module (MSFE) is proposed to
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FIGURE 3. Multi-scale spectral feature extraction with self-attention module MSFE.

fully extract and utilize global correlation in the spectral do-
main. It focuses on analyzing the connection between different
bands in hyperspectral image and analyzing spectral features
from a multi-scale perspective. The MSFE can not only cap-
ture local spectral changes but also perceive a wider spectral
context.
The structure of MSFE is shown in Figure 3. Firstly, the

input feature Zspa is processed through 1× 1 convolution and
3× 3 depth-wise convolution to obtain query Qspe, key Kspe,
and value Vspe, which can be expressed as

Qspe = W1W2Zspa, Kspe = W1W2Zspa,

Vspe = W1W2Zspa (14)

where W1 denotes the 1 × 1 convolution, and W2 denotes the
3 × 3 depth-wise convolution. The W1 and W2 in Qspe, Kspe,
and Vspe are independent convolutional kernels, so the gener-
atedQspe,Kspe, and Vspe are numerically distinct due to the ab-
sence of weight sharing.
The similarity between query Qspe and key Kspe is calcu-

lated to obtain the attention matrix Mspe ∈ RC×C , which re-
flects the interdependence between query and key in the entire
feature space. Then, the attention matrix is multiplied by Vspe

to generate a context-aware feature representation that could
capture long-range dependency between features, thereby en-
hancing the model’s understanding and expression of complex
patterns. Compared to Zspa, Zspe has more spectral details and
preserves key spatial information.

Mspe = Softmax
(
Qspa ·Kspa

ε
+B

)
(15)

Zspe = Vspe ·Mspe (16)

where ε is a learnable parameter that adjusts the point-wisemul-
tiplication of Qspe and Kspe, and B is a learnable relative po-
sition encoding.
The MSFE module constructs a learning framework aligned

with hyperspectral physics principles. The multiscale convo-
lutions analyze spectral curves, while self-attention selects and
fuses features. This design ensures that critical spectral fea-
tures are preserved during denoising while noise and outliers
are effectively suppressed, fundamentally guaranteeing spec-
tral fidelity in the denoised images.

3. EXPERIMENTS AND ANALYSIS

3.1. Datasets
The ICVL dataset [34] and the Urban real dataset [35] are used
to evaluate the proposed model. The ICVL dataset contains
201 hyperspectral images with a spectral range of 400–700 nm.
100 clean hyperspectral images are randomly selected and add
different intensities of Gaussian noise as the training set. The
size of the image in ICVL dataset is 1392 × 1300 × 31. Each
image is cropped, randomly flipped, and adjusted to form a 64×
64 × 31 training set. For the test set, 50 hyperspectral images
were selected, and each hyperspectral image is cropped to a size
of 512× 512× 31 to achieve better visual effect.

3.2. Experimental Details
In the experiments, Adam optimization algorithm [36] is em-
ployed to fine tune our network architecture. Parameter ini-
tialization follows the Xavier initialization scheme, which can
help accelerate the training process and avoid gradient vanish-
ing or exploding problems. Setting the batch size to 8 means
that during each iteration, the network will process 8 samples
simultaneously to update weights, balancingmemory usage and
training efficiency. The training runs a total of 100 epochs. The
learning rate adopts a phased approach. The initial learning rate
is set to 1 × 10−4, which provides sufficient flexibility in the
early stage of training to quickly adapt to data pattern. After the
60th epoch, the learning rate decreases to 1× 10−5. This strat-
egy helps refine the weight adjustment of the network, prevent
overfitting, and ensure stable convergence of the model in later
training. In order to quantify the deviation between the pre-
dicted result of the model and the actual hyperspectral image,
mean square error (MSE) is used as the loss function, because
MSE loss can effectively measure the average square differ-
ence between the predicted value and the true value, and can
sensitively reflect the quality of denoising effect.
The proposed method is compared with traditional methods

such as KSVD [14], BM4D [19], and deep learning basedmeth-
ods such as SERT [29], D2Net [25] and DIP-SLR [23]. Tradi-
tionalmethods run inMATLAB environment, while deep learn-
ing methods and the proposed method are implemented in Py-
Torch environment and run with GeForce RTX 3060.
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TABLE 1. Comparison of denoising performance for Gaussian noise with different variances on ICVL dataset.

σ Index Noisy KSVD BM4D SERT DIP-SLR D2Net Our
PSNR 18.58 29.65 36.41 43.35 42.13 42.51 43.77

30 SSIM 0.121 0.830 0.917 0.991 0.947 0.962 0.997
SAM 31.013 9.172 4.242 1.973 2.183 1.840 1.731
PSNR 13.15 28.23 35.35 40.93 38.51 40.83 41.43

50 SSIM 0.042 0.797 0.891 0.984 0.952 0.974 0.995
SAM 56.637 18.859 7.452 3.271 3.310 3.581 2.161
PSNR 11.27 25.89 32.05 39.44 39.31 39.64 39.99

70 SSIM 0.035 0.891 0.844 0.987 0.947 0.950 0.992
SAM 53.885 13.758 6.707 3.107 3.271 3.260 3.146
PSNR 16.83 29.79 38.20 42.24 40.73 42.01 43.03

Blind SSIM 0.103 0.814 0.853 0.958 0.943 0.990 0.995
SAM 72.516 33.936 13.873 3.011 3.270 3.105 2.833

In this paper, spectral angular mapping (SAM), structural
similarity (SSIM), and peak signal-to-noise ratio (PSNR) are
selected as evaluation metrics to quantitatively evaluate the de-
noising performance. The larger the values of PSNR and SSIM
are, the better the denoising effect is, while the smaller the value
of SAM is, the better the spectral fidelity of the denoised image
is.

3.3. Experiments on the ICVL Dataset

3.3.1. Results on the Hyperspectral Image with Gaussian Noise

In order to evaluate the performance of our method in dealing
with Gaussian noise, the zero-mean additive Gaussian white
noise is added on the original pure hyperspectral image. The
noise intensity is controlled by its variance σ, and different val-
ues of σ represent different degrees of noise pollution. The ex-
perimental results on the ICVL dataset are summarized in Ta-
ble 1. It is worth noting that the best performance results in
Table 1 are marked in bold, and the second-best performance
results are underlined. It can be seen from Table 1 that when
the noise variance σ is 30 and 50, respectively, the noise reduc-
tion effect of the proposed method is the best. When the noise
variance σ is 70, the values of PSNR and SSIM obtained by the
proposed SSAT-HSI are still the highest. Even in the case of
blind noise, all the metrics of the proposed SSAT-HSI are still
the best.
In order to more intuitively show the noise reduction per-

formance of the proposed SSAT-HSI, Figure 4 shows the hy-
perspectral image after denoising when the variance of Gaus-
sian noise is 50. In order to better display the denoising ef-
fect, the local details of the hyperspectral image are enlarged.
It can be seen that the denoised images obtained by KSVD and
BM4D still contain noise, and the denoising effect is not satis-
factory. The results of DIP-SLR and D2Net have artifacts near
the eaves, and the proposedmethod in this paper has better edge
detail preserving ability. The experimental results show that
the proposed SSAT-HSI achieves favorable performance in low

noise environments, demonstrating its robustness and excellent
denoising capabilities.

3.3.2. Results on the Hyperspectral Image with Complex Noise

To further validate the performance of the proposed SSAT-HSI,
the denoising performance under various complex noises is
analyzed. The complex noise mainly includes non-independent
and identically distributed Gaussian noise, deadline noise,
stripe noise, and their mixture noise. The experimental
results on the ICVL dataset under various complex noises
are presented in Table 2. From Table 2, it can be seen that
the proposed method achieves the best noise reduction effect
when dealing with deadline noise, stripe noise, and mixture
noise. For non-i.i.d. Gaussian noise, the proposed SSAT-HSI
yields the highest PSNR and SSIM values, with SAM being its
second-strongest metric.
To illustrate the advantage of the proposedmethod over other

methods, Figure 5 displays the mixture noise removal results
of hyperspectral images obtained by different methods on the
ICVL dataset. From Figure 5, it can be seen that the denois-
ing results of KSVD and BM4D methods have artifacts and
partial loss of structural information. The denoising results of
SERT, DIP-SLR, and D2Net have some blurry details, while
the result of our method is relatively clear. This is mainly be-
cause the MSFE module extracts spectral features from differ-
ent receptive fields, and the subsequent self-attention mech-
anism dynamically assigns weights to different bands based
on these multi-scale features. It automatically identifies and
suppresses “low signal-to-noise ratio” bands severely contam-
inated by noise while enhancing “high signal-to-noise ratio”
bands. This adaptive feature selection capability enables the
model to intelligently prioritize during denoising. It effectively
reduces noise while maximally preserving the shape and char-
acteristics of the original spectral curve. Moreover, the strength
of SSAT-HSI does not stem from a single module, but rather
from the collaborative operation of DC-SFM and MSFE within
cascaded SSDB modules. The residual connection and skip
connection design ensures effective flow of shallow-level de-
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TABLE 2. Comparison of denoising performance for complex noise on ICVL dataset.

Case Index Noisy KSVD BM4D SERT DIP-SLR D2Net Our
PSNR 17.86 26.78 34.73 43.53 42.03 42.13 44.21

Case 1 SSIM 0.175 0.838 0.881 0.994 0.970 0.989 0.996
SAM 36.211 18.564 4.526 2.074 3.192 3.108 2.430
PSNR 17.30 26.91 25.95 39.66 35.49 38.95 42.13

Case 2 SSIM 0.159 0.809 0.869 0.985 0.970 0.972 0.997
SAM 47.384 8.361 6.986 2.539 4.103 3.174 2.421
PSNR 18.86 26.93 29.06 41.93 38.62 40.54 42.16

Case 3 SSIM 0.214 0.816 0.845 0.948 0.961 0.973 0.979
SAM 56.924 18.965 17.532 2.462 3.101 2.516 2.155
PSNR 13.99 28.38 32.44 40.78 36.15 38.97 41.25

Case 4 SSIM 0.108 0.863 0.841 0.984 0.926 0.959 0.993
SAM 48.04 47.039 27.158 2.836 2.639 2.851 2.461

(a) Noisy (b) KSVD (c) BM4D (d) SERT

(e) Clean (f) DIP-SLR (g) D2Net (h) Our

FIGURE 4. The denoising results on the ICVL dataset under Gaussian noise with variance σ = 50. (a) Noisy. (b) KSVD. (c) BM4D. (d) SERT. (e)
Clean. (f) DIP-SLR. (g) D2Net. (h) Our.

tailed information and deep-level semantic information, pre-
venting information decay in deep networks. Through iterative
optimization across multiple SSDB layers, spatial and spec-
tral features undergo deep fusion at different levels, ultimately
achieving strong robustness against complex noise — particu-
larly mixed noise, as demonstrated in Case 4.
Furthermore, in order to further quantify the performance of

the proposed method, the model complexity is analyzed here.
The number of parameters in the proposed SSAT-HSI is 2.97M,
and the giga floating-point operations per second (GFLOPs) is
2671. Compared to the suboptimal model SERTwith a parame-
ter count of 1.91M and GFLOPs of 1018.9 [29], our model has
a slightly higher complexity, but it achieves better denoising
performance than SERT on both Gaussian noise and complex
noise.

3.4. Experiments on the Urban Dataset
To further validate the effectiveness of the method proposed
in this paper, experiments were conducted on the real dataset
Urban. The spectral range of the Urban dataset is 0.4–2.5µm,
and the image size of each band is 307 × 307, consisting of a
total of 210 bands. This dataset is affected by mixed noises,
especially stripe noise.
Due to the lack of training samples that match the Urban

dataset in practical scenarios, the model trained on the ICVL
dataset is utilized for evaluation. Figure 6 presents the compar-
ison of denoising results on real dataset Urban, using pseudo
color images from the 60th band of data. From these results, it
can be clearly observed that our method effectively suppresses
complex noise in the image, and the resulting denoised image
is not only clear, but also successfully preserves the subtle tex-
tures and features in the original image. Figure 7 gives the
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(a) Noisy (b) KSVD (c) BM4D (d) SERT

(e) Clean (f) DIP-SLR (g) D2Net (h) Our

FIGURE 5. The mixture noise removal results of hyperspectral images obtained by different methods on the ICVL dataset. (a) Noisy. (b) KSVD. (c)
BM4D. (d) SERT. (e) Clean. (f) DIP-SLR. (g) D2Net. (h) Our.

(a) Noisy (b) KSVD (c) BM4D (d) SERT

(e) DIP-SLR (f) D2Net (g) Our

FIGURE 6. Denoising results for the real dataset Urban. (a) Noisy. (b) KSVD. (c) BM4D. (d) SERT. (e) DIP-SLR. (f) D2Net. (g) Our.

curves of PSNR and SSIM on the Urban dataset. In Figure 7,
through intuitive comparison, it can be clearly observed that
the method proposed in this paper demonstrates significant su-
periority in two key image quality indicators PSNR and SSIM.
These results not only reflect the ability of SSAT-HSI in restor-
ing image details and structural integrity, but also confirm the
effectiveness of the proposed method.

3.5. Ablation Experiment

To verify the effectiveness of the proposed modules, we con-
ducted ablation experiments on the ICVL dataset and tested

the performance of each module under Gaussian noise variance
σ = 50. The results are shown in Table 3. In the experimen-
tal analysis, we focused on exploring the functions and perfor-
mance of each key sub-component in the spatial spectral fea-
ture extraction module, especially dual channel spatial feature
fusionmodule DC-SFM andmulti-scale spectral feature extrac-
tion with self-attention module MSFE. These sub-components
play a crucial role in the feature extraction process. Through
their collaborative work, they can effectively capture and inte-
grate spatial and spectral information in hyperspectral images,
thereby improving the overall performance of the model.

41 www.jpier.org



Ren et al.

FIGURE 7. The curves of PSNR and SSIM on the Urban dataset.

From Table 3, it can be seen that removing the dual channel
spatial feature fusion module DC-SFM leads to a decrease in
PSNR of 0.64 dB, while removing the multi-scale spectral fea-
ture extraction with the self-attention module MSFE reduces
PSNR of 0.92 dB. Therefore, it can be seen that the fusion of
spatial and spectral information improves the denoising effect
without significant increase in computational cost, fully verify-
ing its effectiveness.

TABLE 3. Ablation experiments for each sub-module.

Baseline DC-SFM MSFE PSNR (dB) Params (M)
√

× × 39.45 2.01
√

×
√

39.79 2.55
√ √

× 39.91 2.42
√ √ √

41.43 2.97

4. CONCLUSION
This study constructed a hyperspectral image denoising model
based on Transformer spatial spectral attention network. This
model mainly consists of a dual channel spatial feature fu-
sion module and a multi-scale spectral feature extraction self-
attention module. The dual-channel spatial feature fusion mod-
ule, through convolution and attention mechanisms, collabo-
rates with local processing units and global processing units to
obtain rich local detail features while capturing global features.
The multi-scale spectral feature extraction self-attention mod-
ule analyzes spectral features from a multi-scale perspective,
enhances the mining of global correlations in the spectral do-
main, and improves the model’s understanding and processing
capabilities of spectral features. Experiments were conducted
on the ICVL dataset and Urban real dataset to compare various
denoising methods, demonstrating that the method proposed in
this paper has good denoising performance.

ACKNOWLEDGEMENT
This work was supported by the Natural Science Project of
Science and Technology Department of Henan Province under
Grant 252102211029; Natural Science Project of Zhengzhou
Science and Technology Bureau under Grant 22ZZRDZX31;
Project of HenanKey Laboratory of Superhard Abrasives under
Grant JDKFJJ2023010; High-Performance Computing Plat-
form of Henan University of Technology.

REFERENCES
[1] Qin, X., Y. Zhang, and Y. Dong, “Domain alignment dynamic

spectral and spatial feature fusion for hyperspectral change de-
tection,” IEEE Journal of Selected Topics in Applied Earth Ob-
servations and Remote Sensing, Vol. 18, 557–568, 2025.

[2] Song, S.-Z., Y.-Y. Liu, Z.-Y. Zhou, X. Teng, J.-H. Li, J.-L.
Liu, and X. Gao, “Identification of sorghum breed by hyper-
spectral image technology,” Spectroscopy and Spectral Analysis,
Vol. 44, No. 5, 1392–1397, 2024.

[3] Lu, B., P. D. Dao, J. Liu, Y. He, and J. Shang, “Recent advances
of hyperspectral imaging technology and applications in agricul-
ture,” Remote Sensing, Vol. 12, No. 16, 2659, 2020.

[4] Zhang, J., Q. Zhang, J. Wang, Y. Wang, and Q. Li, “A dual
branch based stitching method for whole slide hyperspectral
pathological imaging,” Displays, Vol. 89, 103090, 2025.

[5] Wu, G., M. A. A. Al-Qaness, D. Al-Alimi, A. Dahou, M. A.
Elaziz, and A. A. Ewees, “Hyperspectral image classification
using graph convolutional network: A comprehensive review,”
Expert Systems with Applications, Vol. 257, 125106, 2024.

[6] Zhao, X.-L., H. Zhang, T.-X. Jiang, M. K. Ng, and X.-J. Zhang,
“Fast algorithm with theoretical guarantees for constrained low-
tubal-rank tensor recovery in hyperspectral images denoising,”
Neurocomputing, Vol. 413, 397–409, 2020.

[7] Zhang, A., F. Liu, and R. Du, “Probability-weighted tensor
robust PCA with CP decomposition for hyperspectral image
restoration,” Signal Processing, Vol. 209, 109051, 2023.

[8] Zhang, Q., Y. Dong, Q. Yuan, M. Song, and H. Yu, “Combined
deep priors with low-rank tensor factorization for hyperspectral
image restoration,” IEEE Geoscience and Remote Sensing Let-
ters, Vol. 20, 1–5, 2023.

42 www.jpier.org



Progress In Electromagnetics Research C, Vol. 162, 34–43, 2025

[9] Wang, Z., M. K. Ng, L. Zhuang, L. Gao, and B. Zhang, “Non-
local self-similarity-based hyperspectral remote sensing image
denoising with 3-D convolutional neural network,” IEEE Trans-
actions on Geoscience and Remote Sensing, Vol. 60, 1–17, 2022.

[10] Zha, Z., B. Wen, X. Yuan, J. Zhang, J. Zhou, Y. Lu, and C. Zhu,
“Nonlocal structured sparsity regularization modeling for hyper-
spectral image denoising,” IEEE Transactions on Geoscience
and Remote Sensing, Vol. 61, 1–16, 2023.

[11] Wang, P., L. Wang, H. Leung, and G. Zhang, “Super-resolution
mapping based on spatial-spectral correlation for spectral im-
agery,” IEEE Transactions on Geoscience and Remote Sensing,
Vol. 59, No. 3, 2256–2268, 2020.

[12] Zhou, Y., Y. Chen, J. Zeng, W. He, and M. Huang, “Unidirec-
tional spatial and spectral smoothed tensor ring decomposition
for hyperspectral image denoising and destriping,” IEEE Geo-
science and Remote Sensing Letters, Vol. 21, 1–5, 2024.

[13] Zhao, S., X. Zhu, D. Liu, F. Xu, Y. Wang, L. Lin, X. Chen,
and Q. Yuan, “A hyperspectral image denoising method based
on land cover spectral autocorrelation,” International Journal
of Applied Earth Observation and Geoinformation, Vol. 123,
103481, 2023.

[14] Aharon, M., M. Elad, and A. Bruckstein, “K-SVD: An algorithm
for designing overcomplete dictionaries for sparse representa-
tion,” IEEE Transactions on Signal Processing, Vol. 54, No. 11,
4311–4322, 2006.

[15] Dabov, K., A. Foi, V. Katkovnik, and K. Egiazarian, “Image de-
noising by sparse 3-D transform-domain collaborative filtering,”
IEEE Transactions on Image Processing, Vol. 16, No. 8, 2080–
2095, 2007.

[16] Chang, Y., L. Yan, and S. Zhong, “Hyper-Laplacian regularized
unidirectional low-rank tensor recovery for multispectral image
denoising,” in 2017 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 5901–5909, Honolulu, HI, USA,
2017.

[17] Peng, Y., D. Meng, Z. Xu, C. Gao, Y. Yang, and B. Zhang, “De-
composable nonlocal tensor dictionary learning for multispectral
image denoising,” in 2014 IEEE Conference on Computer Vi-
sion and Pattern Recognition, 2949–2956, Columbus, OH, USA,
2014.

[18] Peng, J., W. Sun, H.-C. Li, W. Li, X. Meng, C. Ge, and Q. Du,
“Low-rank and sparse representation for hyperspectral image
processing: A review,” IEEE Geoscience and Remote Sensing
Magazine, Vol. 10, No. 1, 10–43, 2022.

[19] Maggioni, M., V. Katkovnik, K. Egiazarian, and A. Foi, “Nonlo-
cal transform-domain filter for volumetric data denoising and re-
construction,” IEEE Transactions on Image Processing, Vol. 22,
No. 1, 119–133, 2013.

[20] Meng, P., Z. Xu, X. Wang, W. Yin, and H. Liu, “A novel method
for solving the inverse spectral problem with incomplete data,”
Journal of Computational and Applied Mathematics, Vol. 463,
116525, 2025.

[21] Jiang, Y., H. Liu, T. Ni, and K. Zhang, “Inverse problems for
nonlinear progressivewaves,”Calculus of Variations and Partial
Differential Equations, Vol. 64, No. 4, 116, 2025.

[22] Yin, W., Z. Shen, P. Meng, and H. Liu, “An online interac-
tive physics-informed adversarial network for solving mean field
games,” Engineering Analysis with Boundary Elements, Vol.
169, 106002, 2024.

[23] Nguyen, H. V., M. O. Ulfarsson, J. Sigurdsson, and J. R. Sveins-
son, “Deep sparse and low-rank prior for hyperspectral im-
age denoising,” in IGARSS 2022 — 2022 IEEE International
Geoscience and Remote Sensing Symposium, 1217–1220, Kuala
Lumpur, Malaysia, 2022.

[24] Yuan, Q., Q. Zhang, J. Li, H. Shen, and L. Zhang, “Hyperspectral
image denoising employing a spatial-spectral deep residual con-
volutional neural network,” IEEE Transactions on Geoscience
and Remote Sensing, Vol. 57, No. 2, 1205–1218, 2019.

[25] Dusmanu, M., I. Rocco, T. Pajdla, M. Pollefeys, J. Sivic,
A. Torii, and T. Sattler, “D2-Net: A trainable CNN for
joint description and detection of local features,” in 2019
IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition (CVPR), 8084–8093, Long Beach, CA, USA, 2019.

[26] Wei, K., Y. Fu, and H. Huang, “3-D quasi-recurrent neural net-
work for hyperspectral image denoising,” IEEE Transactions on
Neural Networks and Learning Systems, Vol. 32, No. 1, 363–375,
2021.

[27] Maffei, A., J. M. Haut, M. E. Paoletti, J. Plaza, L. Bruzzone,
and A. Plaza, “A single model CNN for hyperspectral image de-
noising,” IEEE Transactions on Geoscience and Remote Sens-
ing, Vol. 58, No. 4, 2516–2529, 2020.

[28] Wang, W., E. Xie, X. Li, D.-P. Fan, K. Song, D. Liang, T. Lu,
P. Luo, and L. Shao, “Pyramid vision transformer: A versa-
tile backbone for dense prediction without convolutions,” in
2021 IEEE/CVF International Conference on Computer Vision
(ICCV), 568–578, Montreal, QC, Canada, 2021.

[29] Li, M., J. Liu, Y. Fu, Y. Zhang, and D. Dou, “Spectral enhanced
rectangle transformer for hyperspectral image denoising,” in
2023 IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), 5805–5814, Vancouver, BC, Canada,
2023.

[30] Zhang, Q., Y. Dong, Y. Zheng, H. Yu, M. Song, L. Zhang,
and Q. Yuan, “Three-dimension spatial-spectral attention trans-
former for hyperspectral image denoising,” IEEE Transactions
on Geoscience and Remote Sensing, Vol. 62, 1–13, 2024.

[31] Wang, Z., X. Cun, J. Bao, W. Zhou, J. Liu, and H. Li, “Uformer:
A general U-shaped transformer for image restoration,” in 2022
IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition (CVPR), 17 683–17 693, New Orleans, LA, USA, 2022.

[32] Pang, L., W. Gu, and X. Cao, “TRQ3DNet: A 3D quasi-recurrent
and transformer based network for hyperspectral image denois-
ing,” Remote Sensing, Vol. 14, No. 18, 4598, 2022.

[33] Dosovitskiy, A., L. Beyer, A. Kolesnikov, D. Weissenborn,
X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold,
S. Gelly, J. Uszkoreit, and N. Houlsby, “An image is worth
16 × 16 words: Transformers for image recognition at scale,”
arXiv:2010.11929, 2020.

[34] Arad, B. and O. Ben-Shahar, “Sparse recovery of hyperspec-
tral signal from natural RGB images,” in Computer Vision-
ECCV 2016: 14th European Conference, 19–34, Amsterdam,
The Netherlands, 2016.

[35] Kalman, L. S. and E. M. B. III, “Classification and material iden-
tification in an urban environment using HYDICE hyperspectral
data,” Imaging Spectrometry III, Vol. 3118, 57–68, 1997.

[36] Kingma, D. P. and J. Ba, “Adam: A method for stochastic op-
timization,” in The 3rd International Conference for Learning
Representations, San Diego, USA, 2015.

43 www.jpier.org


	Introduction
	PROPOSED DENOISING METHOD
	Spatial Spectral Feature Extraction Layer SSFEL
	Dual-Channel Spatial Feature Fusion Module (DC-SFM)
	Multi-Scale Spectral Feature Extraction with Self-Attention Module (MSFE)

	EXPERIMENTS AND ANALYSIS
	Datasets
	Experimental Details
	Experiments on the ICVL Dataset
	Results on the Hyperspectral Image with Gaussian Noise
	Results on the Hyperspectral Image with Complex Noise

	Experiments on the Urban Dataset
	Ablation Experiment

	CONCLUSION

