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Evaluation of Complex Permittivity for Composite Dispersive
Media Including Concrete
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ABSTRACT: In this paper, the dielectric constant distribution of concrete was determined, which is consistent with the experimental val-
ues, and the complex dielectric constants obtained were evaluated. Numerical results are given by resulting complex dielectric constant
distributions of four types, the time response waveforms and frequency spectra of a composite dispersive medium consisting of concrete
using these dielectric constant distributions, and the time response waveforms and frequency spectra separated by each reflection com-
ponent. A fast inversion of the Laplace transform method was used for the numerical analysis. Consequently, we were able to clarify the
dielectric constant distribution suitable for the analysis by using these time response waveforms and frequency spectra.

1. INTRODUCTION

In recent years, aging and corrosion of buried pipes in additionto buildings (tunnels and roads) constructed during Japan’s
high economic growth period have become more pronounced,
causing road subsidence accidents, burst water pipes, and other
serious damage in Japan. Early detection through periodic in-
spection and maintenance is essential to prevent these acci-
dents, and technologies that enable nondestructive inspection
are attracting attention. Ground penetrating radar (GPR) [1, 2]
is known to be an effective tool in relatively shallow under-
ground structures under concrete. In general, the electric con-
stants in subsurface media (concrete, soil, and so on) are a func-
tion of frequency and need to be treated as a dispersive medium.
In our previous paper [3], we developed a method to deter-

mine the unknown coefficients of the complex dielectric con-
stant for fitting to experimental values for soil [4]. The com-
plex dielectric constants are calculated using Sellmeier trino-
mial with the addition of an orientation polarization term, con-
sidering the loss of moisture. We have examined the validity
of the obtained complex dielectric constants by using time re-
sponse analysis.
On the other hand, Refs. [5] and [6] have investigated the

electromagnetic field distribution of concrete bridge decks
with embedded reinforcing bars using the method of moments
(MoM) and the dielectric constant of sub-soil materials such as
asphalt, concrete, and soil. In our recent papers [7, 8], the tran-
sient scattering problem of the reflection response waveforms
has been investigated for the case of a conducting strip buried
in the soil medium and that of a multilayered dispersive media
structure with the soil of different dielectric constants by using
the fast inversion of the Laplace transform (FILT) method [9].
The FILT method can be numerically transformed to the time
domain from complex frequency domain. Though we have
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not investigated the frequency dispersion characteristics of
concrete, the papers reported in [5] and [6] analyze the concrete
as a lossy medium. In general, the concrete is considered an
inhomogeneous medium with a function of space coordinate
whose dielectric constant varies with location and depth. Since
we can use the FILT method to perform calculations in the
complex frequency domain, it is more convenient to treat the
medium as having frequency-dependent complex dielectric
constants. Accordingly, it is necessary to represent concrete as
a dispersive medium as well as soil.
In this paper, the dielectric constant distribution of concrete

was determined, which is consistent with the experimental val-
ues [10], and complex dielectric constants obtained were eval-
uated. The evaluation was performed using the following pro-
cedures: (1) The time response waveform and frequency spec-
trum of a single-layer concrete structure were analyzed. (2) The
time response waveform and frequency spectrum of a compos-
ite dispersive medium consisting of concrete and soil were an-
alyzed. Based on these results, the obtained dielectric constant
distributions were evaluated which were suitable for use in the
analysis. In addition, the numerical technique for time response
waveforms uses the FILT method.

2. SETTING OF PROBLEM

2.1. Analysis Method of Dielectric Constant Distribution
A method is described here for determining the unknown coef-
ficients of the dielectric constant of dispersive media. The di-
electric constant of dispersive media ε(s) is expressed by Sell-
meier trinomial and orientational polarization, based on previ-
ous paper [3].

ε(s)

ε0
:= 1 +

3∑
L=1

Ω2
L

s2 + gLs+ γ2
L

+
τ0

1 + sτ
, (1)
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= 1 +
Ω2

1

s2 + g1s+ γ2
1

+
Ω2

2

s2 + g2s+ γ2
2

+
Ω2

3

s2 + g3s+ γ2
3

+
τ0

1 + sτ
, (2)

where ΩL is the plasma frequency; gL is the loss coefficient;
γL is the resonance frequency; τ and τ0 are unknown values for
regarding of orientational polarization. (ΩL, gL, γL)L=1∼3, τ ,
and τ0 are unknown coefficients.
Substituting s = jω into Eq. (1), the complex dielectric con-

stants are obtained as follows:

ε(s)

ε0

∣∣∣∣
s=jω

:= εr(ω)− jεj(ω), (3)

εr(ω) := 1 +

3∑
L=1

Ω2
L(γ

2
L − ω2)

(γ2
L − ω2)2 + (ωgL)2

+
τ0

1 + (ωτ)2
, (4)

εj(ω) :=
σ(ω)

ωε0
=

3∑
L=1

Ω2
L(ωgL)

(γ2
L−ω2)2+(ωgL)2

+
τ0(ωτ)

1+(ωτ)2
, (5)

where the real and imaginary parts of the complex dielectric
constants are defined by Eqs. (4) and (5), respectively. If the
eleven unknown coefficients (Ω1, Ω2, Ω3), (g1, g2, g3), (γ1,
γ2, γ3), and (τ, τ0) are determined such that both the real and
imaginary parts are simultaneously fitted to the experimental
values, the value of complex dielectric constants in Eq. (1) can
be obtained.
For the real part, numerator unknown coefficients Ω2

1, Ω2
2,

Ω2
3, and τ0 except (γ2

L − ω2) in Eq. (4) were determined using
the following procedure:
First, it is very difficult to determine the eleven unknown co-

efficients so that both the real and imaginary parts simultane-
ously fit the experimental values. Therefore, since there are
four numerator unknown coefficients Ω2

1, Ω2
2, Ω2

3, and τ0 in
Eq. (4), we expressed a 4 × 4 matrix equation using these as
the unknown values, as shown below:

A(l) · x
(l)
0 = B, (6)

where

A(l) :=



(γ2
1−ω2

1)

(γ2
1−ω2

1)
2+(ω1g1)2

(γ2
2−ω2

1)

(γ2
2−ω2

1)
2+(ω1g2)2

(γ2
3−ω2

1)

(γ2
3−ω2

1)
2+(ω1g3)2

1
1+(ω1τ)2

(γ2
1−ω2

2)

(γ2
1−ω2

2)
2+(ω2g1)2

(γ2
2−ω2

2)

(γ2
2−ω2

2)
2+(ω2g2)2

(γ2
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(γ2
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1
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(γ2
3−ω2

3)
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1
1+(ω3τ)2

(γ2
1−ω2

4)

(γ2
1−ω2

4)
2+(ω4g1)2

(γ2
2−ω2

4)

(γ2
2−ω2

4)
2+(ω4g2)2

(γ2
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(γ2
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1
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

x(l)0 :=


Ω2

1

Ω2
2

Ω2
3

τ0

 , B :=


εr(ω1)− 1
εr(ω2)− 1
εr(ω3)− 1
εr(ω4)− 1

 ,

Matrix A(l) is the 4× 4 square matrix (coefficient matrix); ma-
trix x(l)0 is the solution vector; matrix B is the experimental
value versus the frequency ω; and variable l indicates the num-
ber of computations. By treating the denominator unknown co-
efficients (gL, γL)L=1∼3 and τ as known values and assigning
appropriate values to them, the coefficient matrix A(l) is de-
termined. For matrix B, the experimental values are obtained
from literature. Subsequently, four points for the frequency are
selected to calculate Eq. (6).
Second, Eqs. (4) and (5) were then calculated for the real and

imaginary parts, respectively, using the unknown coefficients
(ΩL, gL, γL)L=1∼3, τ , and τ0 obtained from the above process.
Next, errors ρ between the two experiments and calculated

values were determined by the unknown coefficients obtained
from the four points of the real and imaginary parts according to
the frequency of matrix B. The error value is set to |ρ| ≤ 10−3.
Third, if the condition |ρ| ≤ 10−3 can be satisfied, we verify

whether the differential coefficient at the midpoint of the four

selected frequency points satisfies the following equation:

dεr(2πfm)

df
< 0, (7)

dσ(2πfm)

df
> 0, (8)

If these conditions are not satisfied, the elements of coefficient
matrix A are updated according to the following equation:

gL,l+1 ← gL,l +∆g, (9)
γL,l+1 ← γL,l +∆γ, (10)
τl+1 ← τl +∆τ, (11)

The value of∆g,∆γ,∆τ is proportional to the calculation step.
Then, the matrix equation in Eq. (6) is solved again, and this
process is repeated until the conditions are met.
This method was applied to a concrete medium to determine

unknown coefficients of the complex dielectric constant. How-
ever, while experimental values for a soil medium are available
over a wide frequency range from 30MHz to 3.84GHz, the val-
ues for a concrete medium are limited to a narrower range from
100MHz to 1GHz. Consequently, since the dielectric constant
distribution cannot be uniquely determined in the frequency
range outside the experimental values, it is necessary to evalu-
ate which dielectric constant distribution is suitable for use in
the analysis.
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FIGURE 1. Structure and coordinate system of composite dispersive
media including concrete.

2.2. Evaluation Based on Time Response Waveforms
Next, the formulation for the reflection coefficient is presented
in order to evaluate the obtained dielectric constant distribu-
tions based on time response waveforms. The composite dis-
persivemedia with concrete embeddedwith the perfect conduc-
tor at x = d is considered, as shown in Fig. 1. The structure
in Fig. 1 is uniform in the z-direction. The region S0(x < 0)
represents a dielectric constant ε0; the regions S1(0 ≤ x < d1)
and S2(d1 ≤ x < d(:= d1 + d2)) are respectfully defined
by the dielectric constant ε1 and ε2. Here, εc(s) denotes the
complex dielectric constant of the concrete medium, and εs(s)
represents the complex dielectric constant of the soil medium,
which has been investigated in previous paper [3]. The perme-
ability is assumed to be µ0 in all regions. In this paper, the TE
case is discussed (the electric field has only the z-component)
for the complex frequency domain in the following formula-
tion.
The electromagnetic fields of regions S0, S1, and S2 are

E(0)
z (s, x) = E(in)

z (s, x) + E(r)
z (s, x), (12)

E(in)
z (s, x) = E

(in)
0 (s)e−k0(s)x, (13)

E(r)
z (s, x) = R(s)ek0(s)x, (14)

E(1)
z (s, x) = G1(s)e

−k1(s)x +G2(s)e
k1(s)x, (15)

E(2)
z (s, x) = G3(s)e

−k2(s)x +G4(s)e
k2(s)x, (16)

H(α)
y (s, x) =

1

sµ0

∂E
(α)
z (s, x)

∂x
, (17)

kα(s) := s
√
εαµ0 , (α = 0 ∼ 2), (18)

where E(in)
0 (s) is the image function of the incident sine pulse

E
(in)
0 (t)without a direct current component at x = 0, as shown

in Fig. 2(a), and its frequency spectrum is shown in Fig. 2(b).
Then, tw(:= 1/f0) is the pulse width, and f0 is the center fre-
quency. kα(s) is the wave number and the propagation con-
stant in the x-direction; k0(s)(:= s/c0) is the wave number in
free space; c0 is the velocity of light; and R(s), G1(s), G2(s),
G3(s), and G4(s) are the unknown coefficients to be deter-
mined from the boundary conditions.
The equations of boundary conditions are therefore as fol-

lows:

x = 0 :

{
E

(0)
z (s, x) = E

(1)
z (s, x)

H
(0)
y (s, x) = H

(1)
y (s, x)

, (19)

x = d1 :

{
E

(1)
z (s, x) = E

(2)
z (s, x)

H
(1)
y (s, x) = H

(2)
y (s, x)

, (20)

x = d : E(2)
z (s, x) = 0, (21)

From the boundary conditions at x = 0, x = d1, and x = d,
the reflection coefficients are obtained as follows:

R(s) =
η1(η2e

−2k2(s)d2−1)+(e−2k2(s)d2−η2)e
−2k1(s)d1

η2e−2k2(s)d2−1+η1(e−2k2(s)d2−η2)e−2k1(s)d1
, (22)

where

η1 :=
1− Γ1

1 + Γ1
, η2 :=

1− Γ2/Γ1

1 + Γ2/Γ1
,

Γ1 :=
√
ε1/ε0, Γ2 :=

√
ε2/ε0.

Here, replacing the numerator and denominator of Eq. (22) with
f1(s) and f2(s), respectively, the equation is transformed as
follows:

R(s) =
f1(s)

f2(s)
= f1(s) (f2(s))

−1
, (23)

The reflection response can be separated by expanding
(f2(s))

−1 in Eq. (23) and is transformed into a power series.
By excluding multiple reflection components, the following
expression was obtained:

R(s) = η1, (24)
R(s) = −η2(η21 − 1)e−2k1(s)d1 , (25)
R(s) = −(η21 − 1)(η22 − 1)e−2k1(s)d1−2k2(s)d2 , (26)

Therefore, the reflected electric field E
(r)
z (s, x) in the com-

plex frequency domain is obtained by substituting Eq. (22) into
Eq. (14). The reflected electric fieldE(r)

z (T,X) obtained using
R(s) was transformed into a normalized time domain using the
FILT method [9] with the Euler transformation, as shown in the
following equation:

E(r)
z (T,X) :=

1

2πj

∫ β+j∞

β−j∞
E(r)

z (S,X)eST dS,

=
ea

T

[
N∑

n=1

Fn+2−J
J∑

M=1

CJMFN+M

]
, (27)

where

Fn := (−1)nIm
[
E(r)

z (S,X)
]
, S :=

a+ j(n− 0.5)π

T
,

CJJ = 1, CJM−1 := CJM +
J !

(M − 1)!(J −M + 1)!
.

where N is the truncation mode number of the FILT method;
J is the number of terms in the Euler transformation; a is
the approximation parameter; S(:= stw) is the normalized
complex frequency; T (:= t/tw) is the normalized time; and
X(:= x/(c0tw)) is the normalized coordinate system.
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FIGURE 2. Waveform and spectrum of the sine pulse. (a) Waveform. (b) Frequency spectrum.
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FIGURE 3. Complex dielectric constant distributions of concrete. (a) Real part. (b) Imaginary part.

3. NUMERICAL RESULTS

We performed fitting to the experimental values of concrete.
The experimental values are shown in Table 1. When we
achieved fitting the complex dielectric constant distribution be-
tween the experimental values and calculated values using our
past proposed method [3], the two results were in good agree-
ment. Since the frequency range of concrete is included within
that of soil, the complex dielectric constant of concrete was ex-
pressed using the same Eq. (1) as in [3].

TABLE 1. The experimental values obtained from [10].

f [GHz] εr(ω) σ(ω){= εj(ω)ε0ω}
0.10 10.78 0.0190
0.12 10.45 0.0237
0.15 10.10 0.0320
0.20 9.78 0.0378
0.30 9.39 0.0508
0.50 9.24 0.0902
0.70 9.07 0.1318

Based on the experimental values obtained from [10], four
sets of the unknown coefficients were determined by per-
forming iterative calculations with our method over about two
months. As a result of calculations, the following combinations

of values were obtained:

Ω1≈3.900×109, γ1≈1.000×107, g1≈9.000×109

Ω2≈7.029×109, γ2≈7.100×109, g2≈5.500×108

Ω3≈1.347×109, γ3≈1.100×109, g3≈1.570×109

τ0≈8.109, τ≈1.030×10−10

 (28)

Ω1≈1.270×109, γ1≈1.730×109, g1≈2.555×109

Ω2≈1.167×1010, γ2≈7.100×109, g2≈8.000×109

Ω3≈3.065×1010, γ3≈1.300×1010, g3≈4.000×109

τ0≈13.76, τ≈5.500×10−9

 (29)

Ω1≈3.447×109, γ1≈3.239×109, g1≈5.085×109

Ω2≈3.135×1010, γ2≈1.143×1010, g2≈6.900×109

Ω3≈1.204×1010, γ3≈1.170×1011, g3≈8.400×109

τ0≈12.22, τ≈4.900×10−9

 (30)

Ω1≈1.075×1010, γ1≈2.800×109, g1≈4.950×1010

Ω2≈7.690×1010, γ2≈3.600×1010, g2≈9.600×1010

Ω3≈1.852×1010, γ3≈1.000×1010, g3≈6.000×109

τ0≈1.325, τ≈9.000×10−10

 (31)

where Eq. (28) is defined as data I, Eq. (29) as data II, Eq. (30)
as data III, and Eq. (31) as data IV. Fig. 3 shows the frequency
characteristics obtained by substituting these data into Eqs. (4)
and (5). In Fig. 3, the circular (⃝) and triangular (△) plots
represent experimental values, while the solid lines show the
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(a) (b)

(c)

FIGURE 4. Reflection response waveforms with varying data. (a) Case of f0 = 700MHz. (b) Case of f0 = 1GHz. (c) Case of f0 = 2GHz.

results for data I, II, III, and IV, respectively, obtained using
the method described in a previous paper [3]. From Fig. 3, the
following characteristics can be seen:
(1-1) It can be seen that data I, II, III, and IV show good

agreement with the experimental values.
(1-2) When comparing the results of data I, II, III, and IV, it

can be seen that the characteristics differ significantly outside
certain frequency ranges of the experimental values. The real
part shows the differences between the frequency ranges of the
f < 100MHz and f > 1GHz, whereas the imaginary part
shows differences in the distribution of the f > 1GHz.
(1-3) It can be seen that resonance due to the orientational

polarization occurs near f = 1GHz in the real and imaginary
parts of data I, II, III, and IV.
To evaluate which of the four obtained data were available,

the influence of these data on the time response waveforms was
next examined.
The normalized depthD(:= d/(c0tw)) = 0.5. The complex

dielectric constants were determined as follows: data I, II, III,
and IV. For all results, the FILT parameters were fixed at N =
50, J = 5, a = 4.
Figures 4(a), (b), and (c) show the reflection response wave-

forms obtained with data I, II, III, and IV under the condition of
ε1 = ε2 = εc(s) with varying center frequencies. From these
results, the following features f0 can be observed:
(2-1) FromFig. 4(a), atT = 1, the reflection from the surface

is observed, and at T = 2.5, the reflection from the perfect
conductor appears. It can be observed that, in the case of data I,
the reflection waveform exhibits oscillations in the range 1 <
T < 2.5, while for data II, III, and IV, undershoot occurs at
T ≈ 1.

(2-2) Figure 4(b) shows that the reflection waveform for the
soil medium (with a moisture content of 20%) exhibits neither
oscillations nor undershoots/overshoots, in contrast to that for
the concrete medium. Therefore, it is assumed that the oscilla-
tions and undershoots that occur in the reflection waveform for
the concrete medium are caused by the resonance effect near
f = 1GHz, resulting from the complex dielectric constant dis-
tribution of the concrete.
(2-3) Figure 4(c) shows that the amplitude of the response

waveform varies depending on the data. In particular, a signif-
icant undershoot can be observed for data II and III.
To investigate the cause of the oscillations and undershoot in

the reflection response waveform, the calculation accuracy of
the reflection response waveform was confirmed using a con-
vergence test of the truncation mode number 1/N in the FILT
method, as shown in Fig. 5. Fig. 5 shows the convergence of
E

(r)
z (T ) versus 1/N at T = 1.26 for data I, II, III, and IV,

FIGURE 5. Convergence of |E(r)
z (T )| vs. 1/N .
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(a) (b)

FIGURE 6. Frequency spectrum with varying data. (a) Case of f0 = 1GHz. (b) Case of f0 = 2GHz.

(a) (b)

FIGURE 7. Structure to analyze. (a) Structure A. (b) Structure B.

under the same conditions shown in Fig. 4(b). Fig. 5 shows
that the relative errors with respect to the extrapolated true val-
ues at N = 50 are 0.25% for data I, 0.61% for data II, 0.42%
for data III, and 0.38% for data IV. Therefore, from the con-
vergence test, we can confirm to obtain the reflection response
waveform with high accuracy.
Next, the effect of the complex dielectric constant distri-

bution was investigated based on the frequency spectrum.
Figs. 6(a) and (b) show the results obtained by applying the
discrete Fourier transform (DFT) of the reflection response
waveform in Figs. 4(b) and (c). Fig. 6 shows the following
characteristics:
(3-1) Figure 6(a) shows that the amplitude of the reflection

spectrum is approximately half that of the incident spectrum.
Although slight differences were observed around f = 1GHz,
the general characteristics were almost identical.
(3-2) From Fig. 6(b), it can be seen that the reflection spec-

trum differs in the frequency range of f = 1 to 3GHz. In
addition, when the center frequency is higher, the reflection
spectrum contains more high-frequency components. Conse-
quently, oscillations and undershoots occur in the reflection re-
sponse waveform owing to the influence of the resonance that
occurs in the high-frequency region of the complex dielectric
constant distribution of the concrete medium.
Data I and II led to significant oscillations and undershoots

in the reflection response waveform, making them unsuitable
for analysis. Therefore, data III and IV were examined in more
detail.
Subsequently, the complex dielectric constant distribution of

the concrete medium was evaluated using time response wave-
forms of a composite structure consisting of concrete and soil
media with different dispersions.

Structures A and B under investigation are shown in Fig. 7.
In both structures, the normalized depths were set to D1 =
D2 = 0.25. Structure A represents the case in which the con-
crete medium (ε1 = εc(s)) is placed above the soil medium
(ε2 = εs(s) with 5% moisture content), whereas structure B
represents the case in which the soil medium (ε1 = εs(s)
with 5%moisture content) is placed above the concrete medium
(ε2 = εc(s)).
Figure 8(a) shows reflection responsewaveforms of structure

A under the same conditions as shown in Fig. 4(b), for data
III and IV, respectively. Fig. 8(b) shows reflection response
waveforms of structure B under the same conditions as those
in Fig. 8(a). The following observations can be derived from
Figs. 8(a) and (b):
(6-1) From Fig. 8(a), it can be seen that the reflection from

the surface of the concrete medium appears in the range of
0 < T ≤ 1, and the reflection from the perfect conductor ap-
pears around T = 2. The reflection from the soil medium is
barely visible, which is probably because the dielectric constant
of the concrete medium is higher than that of the soil medium,
resulting in greater transmission. There is also an undershoot
at T = 1, and its magnitude is smaller for data IV than for data
III.
(6-2) From Fig. 8(b), it can be seen that a reflection from the

surface of the soil medium occurs in the range 0 < T ≤ 1;
a reflection from the concrete medium occurs in the range
1 < T ≤ 2; and a reflection from the perfect conductor oc-
curs around T = 2. It can also be observed that the response
waveforms for data III and IV are almost identical.
Next, reflection components of each medium in structures

A and B were examined using Eqs. (24)–(26), respectively.
Figs. 9(a) and 9(b) show time response waveforms of the reflec-
tion components from each medium under the same conditions
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(a) (b)

FIGURE 8. Reflection response waveforms with varying center frequencies. (a) Case of structure A. (b) Case of structure B.

(a) (b)

FIGURE 9. Reflection components of each medium (case of data III). (a) Structure A. (b) Structure B.

(a) (b)

FIGURE 10. Frequency spectrum (case of data III). (a) Structure A. (b) Structure B.

as in Fig. 8, using Eqs. (24)–(26) with data III. From Fig. 9, the
following characteristics can be observed:
(7-1) From Fig. 9(a), it can be seen that reflection waves

from the surface appear in the range 0 < T ≤ 1, from the
soil medium in the range 1 < T ≤ 3, and from the perfect con-
ductor in the range 2 ≤ T < 4. It can also be observed that an
undershoot occurs in the surface reflection from the concrete
medium.
(7-2) FromFig. 9(b), it can be seen that reflectionwaves from

the surface appear in the range 0 < T ≤ 1, from the concrete
medium in the range 1 < T ≤ 2, and from the perfect con-
ductor in the range 2 < T ≤ 4. It can also be observed that
an undershoot occurs in the vicinity of T = 2 in the reflection
from the concrete medium.

Figures 10(a) and (b) show the results of the discrete Fourier
transform applied to the reflection response waveforms in
Fig. 9. From Fig. 10, it can be seen that the reflection spectrum
from the soil medium contains more low-frequency compo-
nents without including frequencies above the f = 1GHz,
whereas the reflection spectrum from the concrete medium
contains more high-frequency components, including those
above f = 1GHz.
Figures 11(a) and (b) show time response waveforms of the

reflection components from each medium using data IV. Fig. 11
shows that an undershoot occurs on part of the reflection re-
sponse waveform from the concrete medium. Its magnitude is
smaller for data IV than for data III.
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(a) (b)

FIGURE 11. Reflection components of each medium (case of data IV). (a) Structure A. (b) Structure B.

(a) (b)

FIGURE 12. Frequency spectrum (case of data IV). (a) Structure A. (b) Structure B.

(a) (b)

FIGURE 13. Reflection components of each medium (case of data I). (a) Structure A. (b) Structure B.

(a) (b)

FIGURE 14. Frequency spectrum (case of data I). (a) Structure A. (b) Structure B.
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Figures 12(a) and (b) show the results of the discrete Fourier
transform applied to the reflection response waveforms in
Fig. 11. By comparing Fig. 12 and Fig. 10, it can be seen that
their characteristics are almost identical.
Finally, Fig. 13(a) and (b) show time response waveforms

of the reflection components from each medium using data I.
Fig. 13 shows that the reflection response waveform from the
concrete medium exhibits oscillations.
Figures 14(a) and (b) show results of the discrete Fourier

transform of reflection response waveforms shown in Fig. 13.
Fig. 14 shows that the reflection spectrum from the concrete
medium has a peak near f = 1GHz.
Therefore, among the complex dielectric constant data I–IV

determined for the concrete medium, data IV of Eq. (31) was
considered the most suitable for analysis.

4. CONCLUSIONS
In this paper, a method from a previous paper was applied to a
concrete medium to determine the dielectric constant distribu-
tions, and the obtained distributions were evaluated. The time
response waveforms and frequency spectra of a single-layer
concrete structure and a composite dispersive medium consist-
ing of concrete and soil were analyzed to evaluate which dielec-
tric constant distribution was suitable for analysis. It turned out
that data IV was the most suitable for the analysis.
In the future, we plan to develop a mathematical model and

formulation for reinforced concrete and investigate the reflec-
tion response of reinforced concrete structures.
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APPENDIX A. DERIVATION OF THE FORMULA OF

FILT [14]
The inverse Laplace transform is defined by

f(t) =
1

2πj

∫ β+j∞

β−j∞
F (s)estds. (A1)

FILT is based on the approximation of the exponential func-
tion est in the Bromwich integral. The approximate function
Eec(st, a) is represented by

Eec(st, a) =
ea

2 cosh(a− st)
= est−e−2ae3st+e−4ae5st−. . . ,

=
ea

2

∞∑
n=−∞

j(−1)n 1

st−[a+j(n−0.5)π]
, (A2)

where a is the approximate parameter. We replace est in
Eq. (A1) by Eec(st, a). Therefore

f(t) :=
1

2πj

∫ β+j∞

β−j∞
F (s)Eec(st, a)ds =

ea

t

∞∑
n=1

Fn, (A3)

where

Fn := (−1)nIm
[
F

{
a+ j(n− 0.5)π

t

}]
. (A4)

To truncate the infinite series, the Euler transformation is useful
for achieving rapid convergence. Considering the transforma-
tion, Eq. (A3) can be approximated by

f(t) =
ea

T

[
N∑

n=1

Fn + 2−J
J∑

M=1

CJMFN+M

]
, (A5)

where

CJJ = 1, CJM−1 := CJM +
J !

(M − 1)!(J −M + 1)!
,

N is the truncation number of FILT, and J is the number of
terms in the Euler transformation.
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