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ABSTRACT:Magnetic forces play a significant role in modern engineering applications, frommedical imaging, data storage to transporta-
tion and industrial machinery. Accurate and efficient computational methods for magnetic force are necessary for engineering design and
optimisation. However, different methods are typically based on distinct assumptions and are suited to different application scenarios. To
assist researchers and engineers in selecting the most appropriate method for their specific needs, this review provides a comprehensive
overview of various numerical approaches for calculating magnetic forces across different magnetic systems. Several key methods such
as Dipole Method, Filament Method, Finite Element Method (FEM), Energy Method, Maxwell Tensor Method, Integral Method and
Boundary Element Method (BEM) are discussed in detail, demonstrating their fundamental theories, applicable scenarios, advantages,
and limitations. Recent advancements and improved versions of these methods are also covered, demonstrating their enhanced accu-
racy and efficiency. In addition, the potential solutions of these methods and future directions of developing advanced magnetic force
computation techniques are also discussed in this paper.

1. INTRODUCTION

Magnetic forces arise from the interaction between mag-
netic fields and magnetic materials, playing a crucial role

in various natural phenomena and technological applications.
These forces are fundamental to the behavior of magnets and
are described by the laws of electromagnetism [1]. Magnetic
forces are ubiquitous in human society, playing a significant
role in various applications, such as aligning compass needles
with the Earth’s magnetic field, powering electric motors and
generators, and enabling the operation of various electronic de-
vices [2]. The study of magnetic forces involves understanding
the principles of magnetism, the behavior of magnetic materi-
als, and the mathematical models used to calculate these forces.
In the realm of technology, magnetic forces are involved in
the design of many engineering applications [3]. For example,
magnetic resonance imaging (MRI) relies on magnetic forces
to produce detailed images of the human body, revolutionizing
medical diagnostics [4]. Additionally, magnetic forces are inte-
gral to data storage technologies, such as hard drives, enabling
the vast amounts of digital information we rely on daily [5].
Beyond technology, magnetic forces influence navigation, re-
newable energy solutions, and measurement techniques, high-
lighting their importance in advancing human knowledge and
improving quality of life [6–8].
Building on recent advancements, magnetic levitation (ma-

glev) technology has emerged as a widely adopted technique in
industrial applications, which allows objects to be suspended
without physical contact by harnessing magnetic forces [9].
Since maglev technology was successfully developed in the last

* Corresponding author: Yuxin Yang (yuxin.yang@adelaide.edu.au).

century, it has been widely applied across various fields, which
is regarded as a mature and reliable technique [10, 11]. Mag-
netic forces are fundamental to the operation of maglev sys-
tems, such as operations of high-speed maglev trains. In ma-
glev train systems, magnetic forces are generated to lift and pro-
pel the train, eliminating friction between the train and tracks
and allowing for smoother and faster travel. The significance
of magnetic forces in maglev systems lies in their ability to pro-
vide stable levitation and propulsion, which are essential for the
efficient and safe operation of these trains [12–14]. The mag-
netic forces inmaglev systems are influenced by several factors,
including the strength of the magnetic field, the self-weight of
the train, and the distance between the magnets [15].
Magnetic forces are integral to various magnetic systems,

each with unique characteristics and applications. Permanent
magnets, such as neodymium magnets and ceramic magnets,
are generally popular types of magnets. They can generate a
consistentmagnetic field without the need for an external power
source. These magnets are widely used in applications rang-
ing from electric motors to MRI machines due to their strong
and stable magnetic fields [16, 17]. Superconducting magnets,
on the other hand, operate at extremely low temperatures to
achieve zero electrical resistance, allowing them to generate ex-
ceptionally high magnetic fields. These magnets are crucial in
applications like particle accelerators and simple maglev sys-
tems, where high magnetic field strength and stability are es-
sential [18, 19]. Another significant magnet type, electromag-
netic magnets, which rely on electric current to produce a mag-
netic field. By adjusting the current in coils, the strength of the
magnetic field can be varied, making these magnets suitable for
applications such as electric cranes and maglev trains [20]. Hy-
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brid magnets combine the properties of permanent magnets and
electromagnets to achieve even higher magnetic fields, and this
type of magnets is becoming more popular for industrial appli-
cations. These systems are used in advanced scientific research
and industrial applications where both high field strength and
stability are required [21, 22]. To provide a clearer perspec-
tive on the relationship between magnet types, their magnetic
force characteristics, and typical use cases, a summary of var-
ious magnetic systems and their common applications is illus-
trated in Figure 1.

FIGURE 1. Magnetic force within different magnetic systems and their
popular applications.

The accurate calculation of magnetic forces is critical for the
optimal design, operation, and reliability of a wide range of
electromagnetic systems, including electric motors, magnetic
bearings, maglev transportation, and other high-precision mag-
netic devices [23]. These forces directly influence performance
characteristics such as torque generation, load capacity, energy
efficiency, and dynamic stability. Inaccuracies in force estima-
tion can lead to suboptimal component design, excessive en-
ergy consumption, thermal losses, and, in severe cases, me-
chanical failure due to unintended vibrations or structural fa-
tigue [24]. Beyond conventional electromechanical systems,
magnetic force accuracy is paramount in medical technolo-
gies, such as MRI machines, where precise control of magnetic
fields is essential for achieving high-resolution imaging, patient
safety, and diagnostic reliability [25]. Additionally, in indus-
trial applications, accurate magnetic force computations facil-
itate the development of advanced manufacturing systems and
novel magnetic materials [26].
Given its wide-ranging importance, magnetic force mod-

elling has been an active area of research for several decades.
This sustained interest has led to the development of several
theoretical and numerical techniques, each based on different
physical assumptions and offering distinct trade-offs in compu-
tational complexity, accuracy, and applicability. For instance,
methods such as Filament Method and Integral Method have

demonstrated strong performance in both academic studies and
engineering practice [27–30]. As modern applications continue
to demand greater precision, compactness, and reliability, the
need for accurate and efficient magnetic force computation has
become increasingly significant. This demonstrates the need
for a comprehensive evaluation of available methods, consid-
ering not only their mathematical formulations but also their
practical implications in diverse application domains.
While there are several comprehensive reviews regarding

popular magnetic devices [31–37] and magnetic materials [38–
42], as well as application-focused surveys on systems such as
maglev trains and magnetic bearings [13, 14, 43–47], there re-
mains a notable gap in the literature, which is a systematic re-
view of the fundamental numerical methods for magnetic force
calculation. Each approach, based on distinct theoretical princi-
ples, presents different strengths and limitations depending on
system geometry, material properties, and boundary conditions.
Consequently, no single method consistently outperforms the
others across all scenarios. Addressing this gap requires a con-
solidated assessment that compares numerical approaches on a
common basis, linking their theoretical foundations to their per-
formance in specific magnetic configurations. Such a review
would help researchers and engineers with clearer guidance for
selecting the most suitable method for their needs, ultimately
supporting more effective design and optimisation of magnetic
technologies.
This paper presents a comprehensive review of widely used

numerical approaches for magnetic force calculation across
various magnetic systems. The review is organized into seven
core sections, each dedicated to a specific method: Dipole
Method, Filament Method, FEM, Energy Method, Maxwell
TensorMethod, IntegralMethod, and BEM. For each approach,
fundamental principles, typical application scenarios, and in-
herent limitations are systematically analysed. Additionally, a
detailed comparative analysis is provided at the end of each sec-
tion to highlight the advantages of the selected methods. The
final section summarizes the review and discusses future poten-
tial directions for advancing magnetic force computation tech-
niques.

2. DIPOLE METHOD

Dipole Method is a widely used approach for calculating mag-
netic forces, particularly in systems involving small magnetic
particles or dipoles. This method models each magnetic en-
tity as a magnetic dipole, simplifying the complex interactions
into more manageable calculations. The fundamental theory
behind the Dipole Method involves magnetic dipole moment
m and magnetic field B. The force F on a magnetic dipole for
the separated magnetic charge model is given by:

F = (m · ∇)B (1)

It describes how the magnetic dipole interacts with magnetic
field, leading to forces that depend on the gradient of the mag-
netic field and the orientation of the dipole [48, 49]. In 1998,
an analytical solution was developed that explicitly defines the
relationship between the magnetic force and distance term, ex-
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pressed as:

F (d,m1,m2) =
3µ0

4πd5

[
(m1 · d)m2 + (m2 · d)m1

+(m1 ·m2) d− 5(m1 · d)(m2 · d)
d2

d
]
(2)

where d is the distance-vector from dipole momentm1 to dipole
moment m2 [50]. Several improved versions of this method
based on the same concept have also been developed by the
following researchers [51, 52].
Dipole Method is a widely adopted analytical and numer-

ical approach for calculating magnetic forces, particularly in
systems comprising multiple small magnetic entities. This
method simplifies complex magnetic interactions by approxi-
mating each particle as a magnetic dipole, effectively reducing
the problem to a series of dipole-dipole interactions. The pri-
mary advantage of this approach lies in its computational effi-
ciency, as it allows for the rapid estimation of magnetic forces
in large-scale particle systems without solvingMaxwell’s equa-
tions in their full form. Dipole approximation assumes that each
particle is sufficiently small and well separated from its neigh-
bors, so that higher-order multipole contributions can be ne-
glected. Under these conditions, the magnetic field produced
by a particle is treated as equivalent to that of an ideal dipole,
and the resultant forces can be derived from the interaction en-
ergy between such dipoles. This assumption is valid in dilute
systems or when particles are much smaller than the character-
istic length scale of the system. However, in densely packed
configurations or for particles of larger dimensions, dipole ap-
proximation may introduce significant errors, as it does not ac-
count for near-field effects, magnetic shape anisotropy, or col-
lective field interactions.
Dipole Method is especially applicable in scenarios involv-

ing paramagnetic colloids, ferrofluids, and magnetic nanopar-
ticles, where particle sizes are typically in the nanometer to mi-
crometer range, and interactions are weak enough to justify the
dipole model. Recent advancements in this field include the
development of micro-mutual-dipolar (MMD) model, which
extends the traditional dipole framework by incorporating mu-
tual dipole-dipole interactions within particle aggregates [53].
This enhancement enables a more accurate representation of
interparticle forces, particularly in cases where magnetic cou-
pling effects cannot be neglected. MMD model improves pre-
dictive accuracy for force and torque calculations in complex,
clustered systems of paramagnetic particles, offering greater fi-
delity in simulating the behavior of magnetic fluids. There-
fore, while the classical Dipole Method provides a computa-
tionally tractable solution for modeling magnetic forces in dis-
persed systems, its limitations in accuracy under specific condi-
tions have prompted the development of more refined models
such as MMD. These ongoing improvements continue to ex-
pand the applicability and precision of dipole-based force cal-
culation techniques in nanoscale and mesoscale magnetic sys-
tem.

3. FILAMENT METHOD
Filament Method is a widely used approach for calculating
magnetic forces between current-carrying conductors. This
method simplifies the complex problem of magnetic force cal-
culation by representing conductors as a series of filaments,
each carrying a portion of the total current. By breaking down
conductors into smaller elements, the method allows for a
more manageable and precise calculation of magnetic interac-
tions [54]. The fundamental theory behind Filament Method
involves calculating the mutual inductance between these fil-
aments and using this information to determine the resulting
magnetic forces. The governing equations for FilamentMethod
are based on the Biot-Savart law and Ampère’s circuital law.
Magnetic field B at a point due to a current element I · dI is
given by the Biot-Savart law, as shown in Equation (3):

B =
µ0

4π

∫
I · dI × r

|r|3
(3)

where µ0 is the permeability if free space, I the current, and r
the position vector from the current element to the point of inter-
est [55–57]. In Equation (4), the force F between two current-
carrying filaments can then be calculated using the Lorentz
force law [58, 59].

F = I · dI × B (4)
By applying these laws, Filament Method calculates the

magnetic field generated by each filament and then determines
the mutual inductance between pairs of filaments. Mutual in-
ductance is a measurement of how the magnetic field produced
by one filament induces a voltage in another filament. This
mutual inductance is then used to calculate the magnetic forces
between filaments, which can be summed together to find the
total magnetic force between these conductors.

3.1. Coaxial Magnetic System
The magnetic force between two current-carrying circular coils
with current values I1 and I2 can be derived from the general
expression for their mutual inductance M with respect to dis-
tance Z [60].

F = I1I2
∂M

∂Z
(5)

The FilamentMethod for calculating magnetic forces in coaxial
systems was initially proposed to determine the magnetic force
generated by a filament coil and a circular coil under coaxial
conditions. This method leverages the fundamental theory of
mutual induction, simplifying the problem by representing the
conductors as a series of filaments. This approach was first
applied to calculate the magnetic forces between a filament
coil and a circular coil, providing a straightforward solution for
systems with simple geometries [61]. Then, the method was
adapted to handle more complex systems, such as calculating
magnetic forces between coils with axial length rather than just
single circular coils. For coaxial thin coil pairs, where the coils
are assumed to have no radial thickness, the method simplifies
the problem by representing each coil as a series of filaments
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for analysis. This simplification has been used in some liter-
ature, which allows for accurate force calculations in systems
with simple geometries, making it a useful tool for analyzing
magnetic interactions in such configurations [62].
When dealing with thick coil pairs, where the coils possess

significant radial thickness, the traditional Filament Method for
calculating magnetic forces requires modifications to account
for the added complexity. The presence of radial thickness in-
troduces additional factors that must be considered to ensure
accurate force calculations. Specifically, radial thickness af-
fects the distribution of the magnetic field and resulting forces,
which requires a more sophisticated approach. To address these
challenges, the Filament Method was enhanced by incorporat-
ing the effects of the coil’s cross-sectional area. This enhance-
ment involved the use of semi-analytical expressions that in-
clude complete elliptic integrals and Heuman’s Lambda func-
tion. These mathematical tools provide a more precise rep-
resentation of the magnetic interactions within thick coil sys-
tems, capturing the nuances introduced by the coil’s geome-
try. The improved method allows for the accurate calculation
of magnetic forces in a broader range of practical applications,
including those involving thick coils with substantial radial di-
mensions. By incorporating these advancedmathematical tech-
niques, the method can effectively handle the additional com-
plexity introduced by the coil’s geometry, ensuring reliable and
precise results. The coil system is illustrated in Figure 2, which
provides a visual representation of the coil geometries. The
magnetic force on the thick coil can be calculated using the im-
proved method, as described by Equation (6):

F =
µ0N1N2I1I2

12 (R4 −R3) (R2 −R1) (Z4 − Z3) (Z2 − Z1)

·
∑n=16

n=1
(−1)n−1φn (6)

where N1 and N2 are the number of turns of both coils; R1–
R4 are the inner and outer radii of both coils; Z1–Z4 are the
cylindrical coordinates; and φn represents a complex magnetic

FIGURE 2. A schematic of two coaxial thick coils.

term that involves both the first and second kind elliptic inte-
grals in the evaluation of multiple integrals. Detailed deriva-
tion and calculation procedures are available in the original
literature [63]. In addition, Integral Method for coaxial sys-
tems has evolved significantly, providing accurate and efficient
solutions for calculating magnetic forces in both simple and
complex geometries. Several advanced methods based on the
same concept have been proposed for solving magnetic force
in coaxial systems, further demonstrating its reliability and ac-
curacy [64, 65]. By leveraging these advanced techniques, the
IntegralMethod can effectively handle a wide range of practical
applications, from simple coaxial coil systems to more complex
configurations involvingmultiple coils and varying geometries.

3.2. Misaligned Magnetic System

Even though magnets or coils are often designed to be coaxial
to achieve maximum force along the coils’ centerlines, achiev-
ing an ideal coaxial condition is extremely challenging. This
difficulty arises due to offsets incurred during installation, vi-
brational influences, or other extraneous perturbations, which
result in the occurrence of radial force components within mag-
netic systems [66]. These misalignments can significantly af-
fect the performance and efficiency of electromagnetic devices,
making it crucial to accurately calculate the resulting forces.
Filament Method has also been extensively used to calculate
magnetic forces in misaligned coils, addressing the challenges
posed by lateral and angular displacements.
The investigation of restoring forces between non-coaxial

circular coils was first conducted by Kim et al., who pro-
posed a calculation method for these forces and analyzed their
characteristics. This pioneering work provided valuable in-
sights into the behavior of radial magnetic forces between two
current-carrying coils, highlighting the complexities introduced
by misalignment. Their method involved calculating the mu-
tual inductance between misaligned coils and using this infor-
mation to determine the resulting forces. This approach laid the
groundwork for further research into the effects of misalign-
ment on magnetic systems [67]. The effects of coil misalign-
ments on the magnetic field and magnetic force components
between circular filaments were further investigated. Detailed
results were obtained using advanced models and SCILAB ap-
plication software, which allowed for a comprehensive analysis
of the impact of misalignments onmagnetic interactions. These
studies demonstrated that even small misalignments could lead
to significant changes in the magnetic forces, underscoring the
importance of accurate force calculations in misaligned sys-
tems [68].
Additionally, advanced methods using Filament Method

with Grover’s formulas have been proposed to calculate the
mutual inductance and magnetic forces between misaligned
coils with parallel axes. These methods have demonstrated
high accuracy and applicability, particularly in the context
of superconducting magnets. By incorporating Grover’s
formulas, the Filament Method can account for the mutual
inductance between misaligned coils, providing a more precise
calculation of the resulting magnetic forces. In this method,
Coil 1 is discretized into (2m+1)×(2n+1) cells, while Coil 2
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FIGURE 3. A schematic of two misaligned thick coils.

is divided into (2K +1)× (2N +1) cells in the cross-section,
as illustrated in Figure 3. Axial and radial components of
the magnetic force are then calculated using the following
equations:

FAxial =
N1N2

∑g=k
g=−K

∑h=N
h=−N

∑p=m
p=−m

∑l=n
l=−n F1

(2K + 1)(2N + 1)(2m+ 1)(2n+ 1)
(7)

FRadial =
N1N2

∑g=k
g=−K

∑h=N
h=−N

∑p=m
p=−m

∑l=n
l=−n F2

(2K + 1)(2N + 1)(2m+ 1)(2n+ 1)
(8)

where F1 represents the axial magnetic force between a sin-
gle pair of circular elements, and F2 represents the radial mag-
netic force between a single pair of circular elements. Their
detailed calculation methods can be referred to the original lit-
erature [69]. In 2010, a similar method was also proposed to
analyze the mechanical stability of superconducting magnets
with misaligned coils, which proved the method’s effective-
ness in handling complex geometries and misalignment sce-
narios [70]. In addition, Filament Method has been extended
to coils with arbitrary relative orientations and positions, im-
proving the precision of magnetic force calculations in complex
configurations [71]. More recently, a sensitivity analysis has
also been conducted to support the design of misaligned coil
systems [72]. Beyond force analysis, a numerical approach,
has also been developed to calculate both the magnetic force
and torque between circular coils with nonparallel axes [73].
However, existing literature on magnetic force or torque anal-
ysis in more complex magnetic system configurations remains
limited, and the accuracy of applying Filament Method in these
configurations requires further validation.
Filament Method is particularly useful in scenarios where

conductors have simple geometries, such as coaxial coils,
solenoids, and circular loops. The method is less effective
for conductors with highly irregular shapes or varying cross-
sections. Furthermore, the accuracy of results depends on
the number of filaments used, with higher accuracy requiring
more filaments and increased computational effort. This

method has been commonly applied in the design and analysis
of electromagnetic devices like inductors and transformers.
Moreover, one significant recent improvement to Filament
Method includes segmentation approach, which enhances
the accuracy and efficiency of calculations. This approach
involves interpolating complex curves with a set of line seg-
ments, allowing for more precise force calculations between
filaments of arbitrary shapes. However, extending the method
to three-dimensional problems can be challenging and may
require additional computational resources [74].
Filament Method’s ability to handle misaligned coils has

made it a significant tool in various applications, including
magnetic levitation systems, magnetic bearings, and electro-
magnetic actuators. In magnetic levitation systems, for exam-
ple, lateral or angular misalignments can significantly reduce
levitation force and compromise stability. Filament Method
provides a practical way to quantify these effects and guides
control system design. Similarly, in magnetic bearings, small
displacements between rotor and stator coils can introduce
uneven forces, leading to increased instability, making accu-
rate misalignment analysis essential. This method has also
been used in electromagnetic actuators and contactless energy
transfer systems, where force sensitivity to coil displacement
must be well understood for reliable operation. Extensions of
Filament Method, often combined with integral formulations,
now allow the accurate and efficient computation of forces in
both coaxial and non-coaxial configurations. By incorporat-
ing advanced mathematical techniques and refined discretiza-
tion schemes, Filament Method continues as a valuable tool for
engineers and researchers working with complex electromag-
netic systems where geometric accuracy and misalignment ef-
fects play a decisive role.

4. FINITE ELEMENT METHOD
Unlike Filament Method, which represents conductors as a se-
ries of current-carrying filaments and focuses on the mutual in-
ductance and forces between these filaments, FEM simplifies
the calculation process by discretizing the entire problem do-
main into smaller, finite elements. This approach focuses on
the mutual inductance and forces between these elements, mak-
ing calculations more straightforward. The magnetic force be-
tween these elements is then calculated using complete elliptic
integrals. The governing equations in this method are Gauss’
law of magnetism and Ampere’s law with Maxwell’s correc-
tion:

∇ · B = 0 (9)

∇×H = J+ ∂D

∂t

(Always simplify as ∇×H = J) (10)
where B is the magnetic flux density, H the magnetic field in-
tensity, and J the current density. FEM solves these equations
by breaking down the domain into elements, applying boundary
conditions, and using interpolation functions to approximate
the field variables within each element.
One of the primary advantages of this method is its ability

to provide faster computation times than traditional methods.

82 www.jpier.org



Progress In Electromagnetics Research B, Vol. 115, 78–94, 2025

This makes it particularly suitable for real-time applications
where quick and efficient calculations are essential. However,
the method has its limitations. It is less effective for conduc-
tors with highly irregular shapes or varying cross-sections, as
the simplification to elements may not accurately represent the
actual geometry. Additionally, the accuracy of results depends
on the number of elements used, and higher accuracy requires
more elements, which in turn increases the computational ef-
fort.
FEM can be effectively applied in scenarios involving cylin-

drical coils, where the geometry lends itself well to the FEM
approximation. It is also useful for calculating forces in sys-
tems with complex shapes by segmenting the conductors into
elements. This segmentation allows for a more manageable and
precise calculation of magnetic interactions. In 2009, a new and
fast procedure for calculating magnetic force between cylindri-
cal coils was proposed. As shown in Figure 4, two coils are
divided into nr1 × na1 cells and nr2 × na2 cells, respectively,
and the force between them can be calculated with the follow-
ing equation:

F =

nr2−1∑
k=0

nr1−1∑
j=0

na2−1∑
l=0

na1−1∑
i=0

az

·

(
µ0N1I1N2I2Zilk

′

2
√
rkrj (1− k′2)nr1nr2na1na2

)

·


(
1− k

′2
)
K
(
k

′
)

−
(
1− 1

2k
′2
)
E
(
k

′
)
 (11)

where az is a unit vector, and other geometric parameters can
be referred to the original literature. The new methodology
for calculating magnetic forces using concentric rings method
has been validated through experimental tests and simulations,

FIGURE 4. Division of the coils into different meshes to calculate the
force between them.

demonstrating its effectiveness in various practical applica-
tions. By leveraging finite element analysis, this method avoids
the need to analyze complicated geometric details, significantly
enhancing calculation efficiency. This improvement increases
the speed of the calculation process without compromising the
level of accuracy achieved, making it a highly efficient ap-
proach for real-time applications [75].
In addition to its application in cylindrical coils, this method

has also been successfully applied to magnetic force calcula-
tions between planar spiral coils, which are another significant
type of coil used in engineering designs. Planar spiral coils
are commonly used in applications such as inductive charg-
ing systems, wireless power transfer, and various types of sen-
sors. The ability to accurately calculate magnetic forces in
these coils is crucial for optimizing their performance and en-
suring reliable operation [76, 77]. FEM, with its enhanced effi-
ciency and accuracy, provides a practical solution for engineers
and researchers working with both cylindrical and planar spiral
coils. Recent studies have demonstrated its capability across
a variety of electromagnetic systems, such as modelling run-
ning magnetic resistance in superconducting maglev systems
using COMSOLMultiphysics, evaluating vector and scalar po-
tential formulations for dipole magnet modelling, and design-
ing permanent magnetic holding devices as well as active mag-
netic bearings in ANSYS Maxwell [78–80]. These examples
highlight FEM’s ability to handle nonlinear material proper-
ties, three-dimensional geometries, and coupled multi-physics
problems with high fidelity. By simplifying the problem of
mutual inductance and forces between elements, FEM-based
approaches can still be computationally efficient while retain-
ing flexibility to accommodate complex geometries. Therefore,
Filament Method is a simpler and more efficient approach for
systems with straightforward geometries and thin coils, while
FEM remains a more versatile and accurate method suitable for
complex and detailed analyses.

5. ENERGY METHOD
Energy Method is another powerful approach for calculating
magnetic forces, and it involves determining the force by ana-
lyzing the change in energy of the system as a function of po-
sition. This method is based on the principle of virtual work,
which states that the work done by the forces during a virtual
displacement is equal to the change in energy. For magnetic
systems, this can be expressed as:

F = −∂W

∂x
(12)

where W is the magnetic energy, and x is the position. In ad-
dition, the magnetic energy in a system can be calculated using
magnetic field B and magnetic permeability µ:

W =
1

2µ

∫
B2dV (13)

where the integral is taken over the volume V of the magnetic
field [81, 82]. Once the magnetic energy is known as a func-
tion of position, the force can be found by taking the derivative
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of the energy with respect to the position. Energy Method is
widely used in the design and analysis of electromechanical de-
vices such asmotors, generators, and actuators. EnergyMethod
provides a straightforward way to calculate forces without the
need to directly solvemagnetic field equations, and it can be ap-
plied to a wide range of magnetic systems, including those with
complex geometries and material properties. However, the ac-
curacy of the force calculation highly depends on the accuracy
of the magnetic field distribution [83, 84].
Several studies have highlighted the effectiveness and versa-

tility of the EnergyMethod for magnetic force calculations. For
instance, a recent study discussed the advantages of using en-
ergy approach to determine magnetic force in complex geome-
tries, demonstrating its applicability in various scenarios [85].
Another work focused on the accuracy and applicability of the
Energy Method (also called virtual work principle) for noise
and vibration assessment, providing an analytic comparison on
magnetic force computation between the Energy Method and
other methods, and the relative error of magnetic force calcu-
lation between different methods is as shown in Figure 5 [86].

FIGURE 5. The relative error between VWP and Maxwell tensor and
the discretization error. Reproduced from [86].

Furthermore, a detailed analysis of energy and co-energy
methods was provided in 2002, which focuses on the evalua-
tion of forces in magnetic materials. The expressions of mag-
netic energy in magnetic system driven by current sources and
magnetic system driven by a permanent magnet are obtained
respectively:

WCurrent =

∫∫∫ Ω∞

0

(∫ H

0

B · dH

)
dΩ (14)

WPm =

∫∫∫ Ω∞−Ωpm

0

(∫ B

0

H(B, T ) · dB

)
dΩ

+

∫∫∫ Ωpm

0

(∫ B

B0

H(B, T ) · dB

)
dΩ (15)

where Ω is the volume of the magnetic field,WCurrent the mag-
netic energy in the current source magnetic system, and WPm

the magnetic energy in the permanent magnet magnetic sys-
tem [87]. These applications of Energy Method demonstrate
its accuracy and efficiency in different scenarios and prove its
broad applicability in various magnetic systems. By analyz-
ing the change in energy of the system, this method provides
a clear and precise way to determine the resulting magnetic
forces, making it become an essential tool in the field of elec-
tromagnetics.
Energy Method is based on the principle that the magnetic

force can be derived from the rate of change of stored magnetic
energy or co-energy with respect to displacement. This makes
it particularly effective in systems where the magnetic field dis-
tribution is well characterized, allowing force evaluation with-
out the need to directly compute local field stresses. Traditional
formulations are often limited by the difficulty of obtaining ac-
curate energy distributions in systems with complex geometries
or nonlinear material properties. To address this, improved ver-
sions of Energy Method frequently incorporate advanced nu-
merical techniques such as finite element analysis (FEA), which
enables precise modelling of the magnetic field and energy den-
sity. By integrating energy over the computational domain,
the method provides reliable force predictions even in compli-
cated configurations [86]. This combined approach has been
successfully applied in the design of electromagnetic actuators,
solenoids, andmagnetic bearings, where force-displacement re-
lationships are critical for performance optimization. In mag-
netic levitation systems and wireless power transfer coils, En-
ergy Method is particularly valuable for analysing stability and
efficiency, as it allows designers to evaluate how small posi-
tional changes influence the stored magnetic energy and, con-
sequently, the restoring or coupling forces. Through these ap-
plications, Energy Method — especially when being enhanced
with numerical simulation — demonstrates both versatility and
robustness as a tool for modern electromagnetic system design.

6. MAXWELL TENSOR METHOD
Maxwell Stress Tensor Method is a powerful tool in electro-
magnetism for calculating the forces and stresses in a magnetic
field. Maxwell stress tensor T is a second-order tensor that rep-
resents the interaction between electromagnetic forces and me-
chanical momentum. The governing equation for the Maxwell
stress tensor in a magnetic field is:

Tij =
1

µ0

(
BiBj −

1

2
δijB

2

)
(16)

whereBi andBj are the components of the magnetic flux den-
sity B; µ0 is the permeability of free space; and δij is the Kro-
necker delta. The force F on a body can then be calculated by
integrating the Maxwell stress tensor over a closed surface S
surrounding the body:

F =

∮
T · ndA (17)

where n is the unit normal vector to the surface, and A is the
surface area [88–90]. Recently, a modified Maxwell stress ten-
sor for more accurate local force calculations in magnetic bod-
ies has been proposed, which give a detailed guide on applying
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FIGURE 6. Surface of Maxwell stress tensor integration with a
demonstration of magnetic force in different directions. Reproduced
from [91].

this method for force calculation in different directions [91].
For magnetic forces in different directions (Figure 6), they can
be expressed as:

Fz =
1

µ0

∮
BzBrdA (18)

Fθ =
1

µ0

∮
BθBrdA (19)

Fr =
1

µ0

∮
B2

r −B2
θ −B2

z

2
dA (20)

Similar to Energy Method, the final form of magnetic force
equations derived from Maxwell Stress Tensor Method can
vary significantly depending on the specific application sce-
nario. This method provides precise force calculations by con-
sidering the entire magnetic field distribution, making it highly
accurate for a wide range of applications. However, compu-
tation can be expensive for systems with highly complex ge-
ometries, and the accuracy of the results depends on the precise
calculation of the magnetic field distribution. This reliance on
detailed field calculations can be a limitation in scenarios where
the magnetic field is difficult to model and calculate accurately.
Maxwell TensorMethod evaluatesmagnetic force and torque

by integrating the electromagnetic stress over a closed surface
enclosing the region of interest, thereby avoiding the need to di-
rectly calculate current-field interactions inside the body. This
makes it particularly powerful for systems with complex ge-
ometries or distributed fields, as the force can be determined
solely from boundary field values. Recent reviews have high-
lighted the versatility of the Maxwell Tensor Method approach
and its widespread use in numerical magnetic force calcula-
tions, particularly when being combined with finite element
analysis (FEA) for accurate field evaluation [92, 93]. The
method has been extensively applied in rotating electrical ma-
chines, where electromagnetic torque is obtained by integrating
the tensor over circular paths in the air gap to improve numeri-
cal stability and accuracy. It is also widely used in the design of
magnetic bearings, actuators, transformers, and magnetic lev-
itation systems, where precise knowledge of localised forces
is essential for performance and stability. In applications such
as superconducting magnets and MRI systems, Maxwell Ten-
sor Method provides a reliable framework for analysing large
magnetic forces acting on structural components. Although the

method can be computationally intensive and sensitive to the
choice of integration surface, coupling it with advanced nu-
merical solvers mitigates these challenges by enabling detailed
modelling of field distributions. As a result, Maxwell stress
tensor remains one of the most accurate and versatile methods
for magnetic force and torque computation across a broad range
of electromagnetic systems.

7. INTEGRAL METHOD
Integral Method for magnetic force calculations involves using
integral equations to determine the magnetic forces in a sys-
tem. This method is based on the principle that the magnetic
force can be derived from the magnetic field distribution and
the properties of the materials involved. The governing equa-
tion for the Integral Method is typically expressed as:

F =

∫
J× BdV (21)

where F is the magnetic force, J the current density, B is the
magnetic flux density, and V the volume over which the inte-
gration is performed [29]. Using Integral Method, Ravaud et
al. proposed an analytical solution for expressing the magnetic
field generated by a thick coil [94]. This solution provides a de-
tailed and accurate representation of the magnetic field, which
is essential for calculating the resulting forces. Subsequently,
by assuming an idealized magnet model, an advanced equa-
tion was developed to describe the magnetic force between a
coil and a permanent magnet as a function of axial displace-
ment [95]. This development allows for precise force calcu-
lations in systems where the relative position of the coil and
magnet changes, such as in actuators and sensors.
Furthermore, Babic et al. adopted a similar integral approach

to present analytic formulas for calculating the mutual induc-
tance and axial magnetic force between a thin wall solenoid
and a thick circular coil. These formulas, expressed in terms
of complete elliptic integrals and Heuman’s Lambda function,
provide a simpler and more accurate alternative to previously
published methods. The results of their work have been val-
idated through comparisons with numerical simulations and
experimental data, demonstrating the effectiveness and accu-
racy of the Integral Method in various practical applications, as
shown in Equation (22) [96]:

F =
µ0N1N2I1I2R

(R2 −R1)(Z2 − Z1)(Z4 − Z3)
×
∫ π

0

∫ R2

R1

∫ Z2

Z1

∫ Z4

Z3(
Z

′

2 − Z
′

1

)
cos θrdrdZ ′

1dZ
′

2dθ

r30
(22)

where r, θ, Z are the cylindrical coordinates. Due to the theory
of equivalent magnetization, the permanent magnet can be al-
ways treated as a coil with equivalent cylindrical surface current
density [97–99]. Therefore, to help understand the equation, a
3D representation of the adopted model used in these proposed
methods is created as shown in Figure 7.
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FIGURE 7. A thin wall solenoid and thick coil, with a demonstration of
equivalent magnetization of a thin wall solenoid and cylindrical per-
manent magnet.

In addition, Integral Method has been applied to solve many
problems of magnetostatic interactions among magnetic ele-
ments with regular shapes [100, 101]. Based on this, another
significant work has been done, which has given an analytical
solution for calculating the magnetic forces between cylindrical
permanent magnets, and the magnetic force can be expressed as
follows:

F = −8πKdR
2

∫ +∞

0

J2
1 (q)

q

sinh (qτ1) sinh (qτ2) e−qζdq (23)

whereKd is the magnetostatic energy constant, and other mag-
netic or geometric parameters can be referred to Figure 8.

FIGURE 8. A scheme of the two interacting cylindrical permanent mag-
nets with a common axis. Reproduced from [101].

When two magnets are identical and at a coaxial condition
(t1 = t2 and r = 0), a new form of the equation can be ob-
tained as shown in Equation (20). However, this simplified
form can only provide a good force approximation when the
distance between magnets is much larger than their length and
diameters, and its accuracy will drop significantly if the dis-
tance gets smaller [102].

F = −1

2
πKdR

4

[
1

x2
+

1

(x+ 2t)2
− 2

(x+ t)2

]
(24)

Overall, by leveraging integral equations and advanced nu-
merical techniques, this method provides a clear and precise

way to determine the resulting forces. Integral Method is nor-
mally applied when the magnetic field distribution is complex
and difficult to solve analytically, and it is widely used in the
design and analysis of electromagnetic devices and permanent
magnets. Improved versions of Integral Method often involve
advanced numerical techniques and optimizations to enhance
accuracy and efficiency. For instance, the use of Gaussian nu-
merical integration and semi-analytical expressions can signif-
icantly improve the computational performance and accuracy
of the method. A recent study has presented an integral def-
inition method to solve the magnetic force between magnetic
rings in permanent magnetic bearings [30]. Furthermore, Inte-
gral Method has been used to precisely evaluate the local mag-
netic force distribution within several magnetic systems, which
demonstrates the effectiveness and computational efficiency of
the method [103, 104]. This method provides precise force cal-
culations by considering the entire magnetic field distribution,
but again it sometimes brings intensive calculations.

8. BOUNDARY ELEMENT METHOD
BEM is a numerical computational technique always used to
solve linear partial differential equations (PDEs) that have been
reformulated as integral equations over the domain’s boundary.
In magnetostatics, BEM is particularly effective for calculating
magnetic fields and forces in scenarios where the problem can
be defined by boundary conditions, which reduces the problem
dimensionality by one to lower computational complexity (3D
problems become 2D, and 2D problems become 1D) [105, 106].
In magnetostatics, the governing equation for magnetic vector
potential A in the absence of free currents is:

∇×
(
1

µ
∇× A

)
= J

(It always simplifies to ∇2A = 0) (25)
For scalar magnetic potential ∅m in regions with no current:

∇ · (µ∇∅m) = 0 (26)

Therefore, using Green’s identity, the magnetic scalar potential
∅m at a point r can be expressed as:

∅m(r)=
∫ G(r, r

′
)
∂∅m
∂n

(r
′
)−∅m(r

′
)
∂G

(
r, r′

)
∂n

dΓ (27)

where G(r, r′)∂∅m

∂n is the free-space Green’s function, and ∂
∂n

is the derivative normal to the boundary Γ. Once the mag-
netic vector potential is solved on the boundary, magnetic field
and magnetic flux density are obtained. Then, Maxwell Tensor
Method can be used to compute the force value as previously
shown in Equation (16).
In addition to the dimensionality reduction advantage, BEM

naturally accommodates open-boundary problems without the
need for artificial domain truncation. It is particularly effec-
tive when material properties remain uniform within each sub-
domain, which makes it a great solution for problems involv-
ing permanent magnets and linear magnetic materials. How-
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ever, one significant drawback is the generation of dense sys-
tem matrices, in contrast to sparse matrices of FEM, which re-
sults in increasedmemory requirements and computational load
for large-scale applications. Moreover, BEM faces challenges
when being applied to problems involving nonlinear magnetic
behavior, such as saturation or hysteresis, often requiring hy-
brid formulations to overcome these limitations. The applica-
tion of BEM in magnetic force computation has been widely
explored in literature. For example, a 2022 study demonstrated
the method’s efficiency in electrostatic force calculations [107],
while another recent investigation used a hybrid BEM to im-
prove the accuracy and computational performance of force es-
timations in magnetically coupled systems [108]. In addition,
in 2020, a novel Current Sheet Element (CSE) was introduced
within the BEM framework to calculate magnetic forces and
torques. This approach eliminates the need for volume mesh-
ing by modeling current distributions directly on surfaces, lead-
ing to more efficient and scalable simulations. The geometrical
configuration used for field calculation with the CSE is illus-
trated in Figure 9.

FIGURE 9. A simplified illustration of the geometrical parameters for
the magnetic field calculation of a CSE. Reproduced from [109].

The magnetic field of the jth CSE is written as:

δ
−→
BJ =

µ0KZ,j

2π

(−→
tj (∅2,j − ∅1,j)

)
sgn (−→nj · −→ρc,j)

+−→nj In
ρ1,j
ρ2,j

(28)

where KZ,j is the current density, and
−→
tj and −→nj are unit vec-

tors in different directions. Other parameters can be referred
to Figure 9 [109]. Once the magnetic field is solved by Equa-
tion (28), the force can be calculated through Maxwell Stress
Tensor Method. Therefore, BEM stands out as an efficient
and accurate technique for magnetic force calculations in open-
boundary and piecewise homogeneous problems. It is espe-
cially helpful for computing magnetic forces, torques, and field

distributions when the problem domain is relatively large, in-
finite, or involves complex boundary geometries. In practical
applications, BEM has been used in the analysis of magnetic
shielding, eddy current problems, and contactless energy trans-
fer systems, where the unbounded nature of the domain makes
volume-basedmethods less efficient. It has also been applied to
the study of magnetic levitation configurations and linear mo-
tors, where accurate evaluation of leakage fields in open space
is crucial for predicting performance. These examples demon-
strate that while BEM is less commonly used than FEM, it pro-
vides distinct advantages in applications where infinite or semi-
infinite domains and boundary-focused accuracy are primarily
important.

8.1. Complexity
Dipole Method is relatively simple, modeling magnetic sources
as dipoles, which makes it straightforward but limited to small-
scale systems. FilamentMethod is more complex, requiring de-
tailed modeling of current paths, which can be challenging for
intricate geometries. Finite Element Method (FEM) is highly
complex, involving the discretization of the entire domain into
small elements and solving Maxwell’s equations numerically.
Energy Method is moderately complex, as it involves calculat-
ing energy variations, which can be intricate for complex sys-
tems. Maxwell Tensor Method requires detailed field calcula-
tions at boundaries, adding to its complexity. Integral Method
involves solving integral equations, which can be computation-
ally intensive and complex. Boundary Element Method (BEM)
reduces problem dimensionality but still requires solving com-
plex integral equations on boundaries. Table 1 highlights the
advantages, limitations, and applications of all these seven dis-
cussed methods.

8.2. Accuracy
DipoleMethod provides good accuracy for small-scale systems
with discrete magnetic moments but loses accuracy for larger
systems. Filament Method is accurate for systems with well-
defined current paths but less so for thick conductors or com-
plex geometries. FEM offers high accuracy for complex ge-
ometries and material properties, which makes it one of the
most precise methods. Energy Method can be accurate if the
energy landscape is well understood, but this is often challeng-
ing. Maxwell Tensor Method is accurate for systems with well-
defined boundaries but requires precise field calculations. In-
tegral Method can be very accurate for systems with known
boundary conditions. BEM is accurate for problems with ho-
mogeneousmaterials andwell-defined boundaries but struggles
with internal inhomogeneities. Across all these methods, ac-
curacy can be significantly affected by magnetic leakage, as
leakage fields alter the actual flux distribution compared with
idealized assumptions. Methods that rely on simplified field
representations, such as dipole or Filament Method, often un-
derestimate or overestimate forces when leakage is significant.
In contrast, numerical approaches like FEM, BEM, and Integral
Method can explicitly model leakage paths, allowing for better
agreement with experimental results in systems where fringing
or stray fields are non-negligible.
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TABLE 1. Detailed summary of seven magnetic force calculation methods.

8.3. Computational Efficiency

Dipole Method is computationally efficient for small systems
but scales poorly with system size. Filament Method becomes
computationally intensive for systems with many filaments.
FEM requires significant computational resources, especially
for large or detailed models. Energy Method is moderately ef-
ficient but depends on the complexity of energy calculations.
Maxwell Tensor Method can be computationally demanding
due to the need for detailed field calculations. Integral Method
is computationally intensive due to the complexity of solving

integral equations. BEM is computationally efficient for large
or infinite domains but limited by the complexity of bound-
ary conditions. When magnetic leakage is explicitly modelled,
computational efficiency can be further impacted, as capturing
leakage fields often requires extending the simulation domain,
refining the mesh in air regions, and accounting for additional
boundary conditions. Methods like FEM and BEM, while be-
ing capable of accurately representing leakage paths, experi-
ence increased computational loads in such cases, whereas sim-
plified methods that neglect leakage maintain higher efficiency
at the expense of accuracy.
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8.4. Applicability
Dipole Method is most appropriate for small-scale systems
characterized by discrete magnetic moments but is less applica-
ble in designs where magnetic leakage plays a significant role,
as leakage fields cannot be readily captured in its simplified
formulation. Filament Method is well suited for configurations
with clearly defined current paths, such as coils and solenoids,
although its applicability decreases in systems with substan-
tial fringing fields or open magnetic circuits. FEM offers high
versatility, accommodating complex geometries, nonlinear or
anisotropic materials, and explicit modelling of leakage paths,
making it suitable for accurately representing real-world de-
vices. Energy Method is advantageous when evaluating en-
ergy variations is more tractable than directly computing mag-
netic forces, but it requires a well-characterized magnetic field
distribution, which can be complicated by leakage. Maxwell
Stress Tensor Method is particularly effective for systems with
well-defined boundaries, yet its performance depends on pre-
cise field evaluation in regions where leakage may occur. In-
tegral Method is suitable for problems with known boundary
conditions and can capture leakage effects when the domain is
properly defined. BEM is ideal for large or infinite domains
with homogeneous material properties, and it can handle leak-
age fields extending into unbounded regions while reducing
computational complexity.

8.5. Mathematical Properties
Dipole Method uses simple mathematical models based on
dipole interactions. Filament Method involves detailed math-
ematical modeling of current paths. FEM uses numerical so-
lutions to Maxwell’s equations, involving complex mathemat-
ical formulations. Energy Method relies on energy principles
and variations, requiring precise mathematical descriptions of
the energy landscape. Maxwell Tensor Method uses Maxwell
stress tensor, involving detailed mathematical integration over
surfaces. Integral Method involves solving integral equations
derived from Maxwell’s equations, requiring advanced mathe-
matical techniques. BEM reduces problem dimensionality by
focusing on boundaries, involving complex integral equations
on these surfaces.

9. POTENTIAL SOLUTIONS AND RESEARCH DIREC-
TION
Based on the previously discussed limitations and challenges
of each numerical approach to magnetic force calculation, this
section introduces a range of potential solutions aimed at ad-
dressing these methodological constraints. These solutions are
designed not only to mitigate current shortcomings but also to
enhance the overall accuracy, computational efficiency, and ap-
plicability of the methods across various scenarios. In parallel,
several future research directions are proposed, offering path-
ways for continued advancement and innovation in the field.
Given that each method presents its own unique set of chal-
lenges, targeted improvements can be achieved through the ap-
plication of advanced numerical techniques and the develop-
ment of hybrid modeling approaches. In particular, future ef-

forts should concentrate on improving the performance of these
methods when they are applied to systems with complex ge-
ometries, nonlinear material behaviors, and dynamic operating
conditions. By leveraging ongoing advancements in compu-
tational power and algorithm design, researchers can signifi-
cantly expand the capabilities and practical use of magnetic
force calculation techniques, ultimately enabling more accurate
and robust analyses across a wider range of engineering appli-
cations.

9.1. Dipole Method
To improve the accuracy of the Dipole Method for larger sys-
tems, hybrid techniques that combine basic dipole approxima-
tions with higher-order multipole expansions may be adapted.
This approach allows for a more accurate representation of
magnetic interactions while retaining computational efficiency.
Additionally, machine learning algorithms can be used to pre-
dict dipole interactions in complex systems, potentially acceler-
ating computations and increasing accuracy. Another promis-
ing solution is the development of adaptive algorithms that dy-
namically adjust the level of approximation based on system
size and complexity, which help optimise performance across
varying scales.
Future research should emphasize the refinement of such

adaptive algorithms to enhance scalability and robustness. At
the nanoscale, incorporating quantum mechanical effects could
offer deeper insights into magnetic interactions that classical
dipole models fail to capture. Moreover, the exploration of ad-
vanced materials with unique magnetic properties may further
extend the applicability of the Dipole Method across emerging
domains such as spintronics and nanoscale sensing.

9.2. Filament Method
Enhancing the computational efficiency of Filament Method
can be achieved by optimizing numerical integration techniques
used to calculate magnetic forces between current-carrying fil-
aments. The application of parallel computing and GPU ac-
celeration has the potential to significantly reduce computation
times in systems comprising numerous filaments. Moreover,
incorporating detailed physical models that consider conductor
thickness and complex geometries can improve both accuracy
and applicability.
Future work should prioritize the development of these ad-

vanced models, particularly for systems where conductor shape
significantly affects magnetic behaviours. Integrating real-time
sensor data in practical applications— such as magnetic levita-
tion systems or wireless power transfer— can improve the Fila-
ment Method’s responsiveness and accuracy. Additionally, ex-
ploring novel conductor materials and structural designs could
open new avenues for performance optimization.

9.3. FEM
To address the high computational demands of FEM, re-
searchers can focus on the development of more efficient
meshing strategies, including adaptive mesh refinement and
intelligent domain decomposition. The use of advanced
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solvers supported by parallel processing and cloud computing
platforms can further reduce simulation time and resource re-
quirements. Hybridizing FEM with other numerical methods,
such as BEM, may also lead to robust and flexible solutions
capable of handling diverse system configurations.
Future research should aim to improve FEM’s accuracy in

modelling nonlinear materials and intricate boundary condi-
tions. The integration of machine learning techniques to op-
timize mesh generation and solver performance could further
elevate FEM’s efficiency. Additionally, expanding its use to
multi-physics environments involving thermal, structural, and
electromagnetic interactions can broaden its impact across sci-
entific and engineering disciplines.

9.4. Energy Method
Improving Energy Method involves the formulation of more
accurate models for evaluating energy variations in systems
with complex geometries and interactions. The application
of optimisation algorithms to minimize the computational bur-
den of energy-based calculations can enhance efficiency. Fur-
thermore, coupling Energy Method with complementary ap-
proaches such as FEM can conduct more comprehensive and
precise analyses, particularly for systemswith nonuniform field
distributions.
Future directions may include extending the Energy Method

to dynamic systems where temporal energy fluctuations are sig-
nificant. Its integration into multi-physics simulations — ac-
counting for coupled thermal, mechanical, and magnetic effects
— can also enhance its relevance to real-world problems. In-
vestigating novel energy storage mechanisms and the use of
functional magnetic materials may further enrich its applica-
bility.

9.5. Maxwell Tensor Method
The accuracy of Maxwell Tensor Method can be improved
through the development of more refined algorithms for evalu-
ating electromagnetic field quantities at boundaries. Advanced
numerical integration techniques can contribute to better pre-
cision and reduced computational costs. Additionally, hybrid
models that integrate the Maxwell Tensor Method with FEM
or other spatially adaptive methods can provide more complete
solutions for systems with complex structures.
Future research could focus on extending the applicability of

the Maxwell Tensor Method to handle geometrically intricate
and materially inhomogeneous domains. Incorporating real-
time sensor feedback in practical applications — such as ac-
tuator systems or contactless sensors — may also enhance the
method’s performance. Moreover, studies involving advanced
materials and unconventional boundary conditions could reveal
new ways to optimise force estimation using this method.

9.6. Integral Method
To mitigate the computational intensity of the Integral Method,
efforts should be directed toward developing more efficient
solvers for integral equations, particularly those capable of par-
allel execution. High-performance computing techniques and

algorithmic improvements, including fast multipole methods
and adaptive quadrature, can significantly reduce computation
time. Combining Integral Method with FEM or other localized
numerical techniques can also help address challenges associ-
ated with domain complexity.
Research should explore the method’s applicability to sys-

tems with complex boundary conditions and strongly nonlinear
materials. The formulation of new integral representations that
better capture physical behaviours in such environments could
enhance both accuracy and efficiency. Furthermore, the use of
advanced magnetic materials and multi-domain configurations
may reveal new opportunities for applying the Integral Method
in emerging applications.

9.7. BEM

Enhancing the efficiency of the boundary element method in-
volves the development of advanced algorithms for solving
boundary integral equations with improved convergence prop-
erties. Adaptive meshing, domain partitioning, and parallel
computing techniques can greatly accelerate simulations, par-
ticularly for large-scale or open-domain problems. When being
integrated with FEM or other volume-basedmethods, BEM can
serve as a powerful tool in hybrid frameworks that leverage the
strengths of each technique.
Future research should focus on extending BEM to better ac-

commodate nonlinear and inhomogeneous material properties.
Real-time data integration, especially in practical applications
such as magnetic field mapping and system monitoring, could
significantly improve accuracy and responsiveness. In addi-
tion, investigating novel formulations and leveraging emerging
materials may unlock new use cases and further enhance the
method’s versatility.

10. CONCLUSION
This review has analysed seven advanced numerical ap-
proaches for magnetic force calculations, including Dipole
Method, Filament Method, FEM, Energy Method, Maxwell
Tensor Method, Integral Method, and BEM, with respect to
their accuracy, computational efficiency, and applicability.
The comparative findings highlight that Dipole Method is
computationally efficient and suitable for small-scale or
weakly coupled systems but lacks accuracy in large or complex
configurations. Filament Method offers high accuracy for
coils and solenoids, particularly in misaligned cases, though
its efficiency decreases as the number of filaments increases.
FEM achieves the highest accuracy and versatility for complex
geometries, nonlinear materials, and anisotropic properties,
but at the cost of high computational demand. Energy Method
is moderately efficient and effective where energy variation is
easier to compute than force, especially when being integrated
with FEA for complex structures. Maxwell Tensor Method
provides highly accurate local force and torque evaluations
in systems with well-defined boundaries, though it requires
dense field data and can be computationally intensive. Integral
Method is robust for problems with infinite or semi-infinite
domains but is computationally heavy due to integral equation
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complexity. BEM is most efficient for large or open-boundary
problems, reducing dimensionality and computational effort,
though it is less flexible in handling heterogeneous materials.
From an accuracy perspective, FEM and Maxwell Tensor

Methods rank the highest, followed by Filament and Energy
methods for structured geometries, while Dipole and Integral
methods are more approximate. From a computational effi-
ciency perspective, Dipole and BEM methods perform the best
in their respective domains, while FEM demands a lot of re-
sources. In terms of applicability, FEM and Maxwell Tensor
methods are the most versatile across diverse electromagnetic
systems, while dipole, filament, and BEM excel in specialised
contexts.
In conclusion, these findings show that no single method

is universally optimal, and the choice depends on the trade-
off among accuracy, efficiency, and problem domain. Future
progress will rely on hybrid methods that integrate complemen-
tary strengths, as well as advanced computational techniques
such as parallelization and machine learning, to overcome ex-
isting limitations and further improve force calculation accu-
racy in complex electromagnetic systems.
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