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ABSTRACT: Long-time coherent integration (LTCI) is an effective method for maneuvering target detection, as it accumulates signal en-
ergy over a long observation period, thereby enhancing the signal-to-noise ratio (SNR). However, as the observation duration increases,
range migration (RM) and Doppler frequency migration (DFM) occur, which degrade integration performance. To this end, a scaling fac-
tor is first introduced into the parameterized centroid frequency–chirp rate distribution (PCFCRD) algorithm, thereby yielding the scaled
PCFCRD (SPCFCRD), which enables flexible adjustment of the chirp rate estimation range and resolution. Furthermore, SPCFCRD is
combined with the keystone transform (KT) to form the proposed KT-SPCFCRD algorithm. The RM caused by unambiguous velocity is
first corrected by KT, after which the residual RM and DFM are further compensated by SPCFCRD to achieve coherent integration. The
effectiveness of the proposed algorithm is validated through simulations and real-data analysis. Compared with several representative
algorithms, KT-SPCFCRD achieves superior detection performance while maintaining a balanced computational cost.

1. INTRODUCTION

With the widespread deployment of radar systems in in-
creasingly complex environments, the robust detection of

maneuvering targets has become a significant technical chal-
lenge. These targets typically exhibit low radar cross-section
(RCS) values due to their small size or stealth characteristics,
leading to weak backscattered echoes that are easily masked by
noise or interference [1–3]. To mitigate this issue, long-time
coherent integration (LTCI) techniques have been widely em-
ployed. By coherently accumulating the received signal over an
extended observation period, LTCI can significantly improve
signal-to-noise ratio (SNR), thereby enhancing the detectability
of weak target echoes [4–6]. However, the motion of maneu-
vering targets may lead to range migration (RM) and Doppler
frequencymigration (DFM), which degrade the integration gain
in the moving target detection (MTD) algorithm [7–9]. These
issues must be effectively addressed to achieve ideal coherent
integration.
Existing research on LTCI algorithms has primarily focused

on uniformly moving targets [10–12], uniformly accelerated
targets [13–15], and targets with jerk [16–18]. In practical sce-
narios, it is difficult for the target to maintain an ideal radial
motion relative to the radar, and a certain level of radial ac-
celeration is almost inevitable. To mitigate the impact of ac-
celeration on coherent integration performance, the integration
time is typically limited to a short period [19]. In contrast,
the influence of jerk and higher-order motion components is
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relatively minor, which allows for more flexibility in integra-
tion time [20]. However, incorporating the jerk term into the
signal model significantly increases the computational cost of
LTCI algorithms. Consequently, most current studies on co-
herent integration for maneuvering targets focus on uniformly
accelerated motion to achieve a balance between detection per-
formance and computational efficiency.
For uniformly accelerated targets, existing detection al-

gorithms can be broadly classified into two types. The first
category includes algorithms based on multi-dimensional joint
parameter search. For example, generalized Radon Fourier
transform (GRFT) performs a three-dimensional search to cor-
rect RM and extract the target trajectory. Based on estimated
parameters, it constructs a matched Doppler filter to com-
pensate for DFM, thereby enabling coherent integration [21].
In addition to GRFT, algorithms such as Radon-fractional
Fourier transform (RFRFT) [22] and Radon-Lv’s distribution
(RLVD) [23] also perform three-dimensional parameter
searches to correct RM and extract motion trajectories. RFRFT
and RLVD leverage the fact that, under acceleration-induced
modulation, slow-time signal can be modeled as a linear
frequency modulated (LFM) waveform. Therefore, these
algorithms employ joint time-frequency analysis (JTFA)
techniques to achieve coherent integration [24, 25]. Although
these algorithms provide excellent detection performance,
their high computational cost caused by multi-dimensional
parameter search remains a significant drawback.
To reduce computational cost, various stepwise pro-

cessing algorithms have been proposed. These algorithms
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typically begin by correcting the RM, followed by DFM
compensation to achieve coherent integration. Represen-
tative algorithms include keystone transform and modified
GRFT (KT-MGRFT) [20], KT and matched filtering process
(KT-MFP) [26], improved axis rotation and FRFT (IAR-
FRFT) [27], and modified axis rotation transform and Lv’s
transform (MART-LVT) [28]. KT performs a scaling oper-
ation on the slow-time axis, which corrects the phase terms
associated with RM, thereby achieving RM compensation.
However, when the Doppler frequency induced by high-speed
target motion exceeds the radar’s pulse repetition frequency
(PRF), velocity ambiguity arises. Under such circumstances,
the RM caused by the target’s velocity can be decomposed into
two components: one resulting from unambiguous velocity
and the other caused by velocity ambiguity factor. Since KT
can only correct the RM associated with the unambiguous
velocity, both KT-MFP and KT-MGRFT need to search for
the ambiguity factor to achieve ambiguity compensation (AC).
Specifically, KT-MFP constructs a Doppler filter based on
searching ambiguity factor and acceleration to compensate for
both RM and DFM, thereby enabling coherent integration. In
contrast, KT-MGRFT reduces the velocity search in GRFT to a
search over the ambiguity factor, thereby narrowing parameter
search space and reducing computational cost. Axis-rotation
(AR) operation corrects RM by means of axis rotation and is
applicable only to uniformly moving targets. Improvements to
AR, such as IAR-FRFT and MART-LVT, have been proposed
to extend its applicability to uniformly accelerated targets. Af-
ter RM correction using AR, coherent integration is achieved
through JTFA techniques. Compared with search-based
approaches, these algorithms provide reduced computational
cost while maintaining satisfactory integration performance.
Another type of stepwise processing algorithm achieves co-

herent integration through correlation functions, such as three-
dimensional scaled transform (TDST) and symmetric corre-
lation function-scaled Fourier transform (SAF-SFT) [29, 30].
TDST operates on echoes in the two-dimensional time domain
by introducing a delay variable along the slow-time dimension,
thereby constructing a three-dimensional correlation function.
Two subsequent SFT operations are then performed to com-
pensate for RM and DFM, respectively, thereby enabling ac-
curate parameter estimation and coherent integration. In con-
trast, SAF-SFT introduces a delay variable in the fast-time fre-
quency domain and reduces the three-dimensional correlation
function to two-dimensional by summation. An SFT is first
applied to coherent integration to estimate velocity and range.
Subsequently, acceleration estimation and further coherent in-
tegration are performed through an additional SAF and SFT
operation. Compared with TDST, SAF-SFT offers lower com-
putational cost but exhibits relatively weaker detection perfor-
mance.
In [31], a novel JTFA algorithm, termed parameterized cen-

troid frequency–chirp rate distribution (PCFCRD), was pro-
posed for parameter estimation of LFM signals. This algo-
rithm exhibits superior noise robustness relative to several con-
ventional algorithms, thereby making it suitable for estimating
the motion parameters of maneuvering targets. However, its
chirp-rate estimation accuracy is constrained by radar system

parameters. To overcome this limitation, a scaled PCFCRD
(SPCFCRD) algorithm is introduced by incorporating a scaling
factor to flexibly adjust the resolution and range of chirp rate
estimation. Building upon this, the present paper proposes a
novel algorithm for maneuvering target detection, termed KT-
SPCFCRD, which integrates SPCFCRD with KT. RM intro-
duced by unambiguous velocity is first corrected using the KT,
after which the residual RM and DFM are compensated via
SPCFCRD, thereby enabling coherent integration. The effec-
tiveness of the algorithm is validated through simulations and
real-data processing. Compared with several representative al-
gorithms, KT-SPCFCRD achieves superior detection perfor-
mance with moderate computational cost.
The rest of this paper is organized as follows. Section 2

presents the signal model. Section 3 provides a detailed de-
scription of KT-SPCFCRD. Section 4 presents experimental re-
sults based on both simulation and real data. Finally, conclu-
sions are drawn in Section 5.

2. BACKGROUND
Suppose that the radar transmits an LFM signal as follows

st(t) = rect
(

t

Tp

)
exp

(
jπµt2

)
exp (j2πfct) , (1)

where rect(x) =
{

1, |x| ≤ 1/2
0, |x| > 1/2

denotes the rectangle win-

dow function; t denotes the fast time variable; TP denotes the
pulse duration; µ and fc denote the frequency modulated rate
and carrier frequency of the LFM waveform, respectively. Af-
ter pulse compression (PC), the received signal of radar can be
expressed as

sp (t, tm)=Asinc
{
B

[
t− 2R (tm)

c

]}
exp

[
−j4πfc

c
R(tm)

]
,

(2)
where sinc(x) = sin(πx)/πx; c denotes the speed of light; A
andB denote the signal amplitude and bandwidth, respectively;
R(tm) denotes the instantaneous slant range between the radar
and target; tm = mTr(m = 0, ...,M − 1) denotes the slow
time variable; Tr denotes the pulse repetition interval; and M
denotes the pulse number.

FIGURE 1. Geometry relationship between the radar and the maneu-
vering target.
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Figure 1 illustrates the geometric relationship between the
radar and a maneuvering target. This study focuses on the ra-
dial component of the target motion, which directly determines
the phase of the received signal. Based on the Weierstrass ap-
proximation theorem, the phase term is approximated by a poly-
nomial of sufficient order [20]. Usually, the impact of phase
terms beyond the second order can be effectively mitigated by
restricting the integration time T , as discussed in Section 3.4.
Accordingly, R(tm) can be approximated as

R(tm) = R0 + vtm +
1

2
at2m, (3)

where R0, v, and a denote the initial radial range, velocity, and
acceleration, respectively.
When velocity ambiguity occurs, R(tm) can be rewritten as

R(tm) = R0 + (v0 + nvm) tm +
1

2
at2m, (4)

where n denotes the ambiguity factor; vm = λfp/2 denotes
the blind velocity; λ = c/fc denotes the signal wavelength;
and v0 = mod(v, vm) denotes the unambiguous velocity.
Substituting (4) into (2) yields

sp (t, tm)

= A0sinc

{
B

[
t−

2
(
R0 + v0tm + nvmtm + at2m/2

)
c

]}

× exp
[
−j4π

λ

(
R0 + v0tm + nvmtm +

1

2
at2m

)]
, (5)

where exp(−j4πnvmtm/λ) = exp(−j4πnm/2) = 1. Accord-
ingly, (5) can be simplified as

sp (t, tm)

= A0sinc

{
B

[
t−

2
(
R0 + v0tm + nvmtm + at2m/2

)
c

]}

× exp
[
−j

4π

λ

(
R0 + v0tm +

1

2
at2m

)]
, (6)

As shown in (6), the peak of the echo signal shifts with re-
spect to slow time. When this shift exceeds the range resolution
(i.e.,∆RM = vT + aT 2/2 > c/2B), RM occurs.
The instantaneous Doppler frequency under acceleration is

given by

fd (tm) = − 2

λ

d
[(
R0 + v0tm + at2m/2

)]
dtm

= − 2

λ
(v0 + atm) .

(7)
It can be observed from (7) that the target Doppler fre-

quency is no longer constant but varies as a function of acceler-
ation. When this variation exceeds the Doppler resolution (i.e.,
∆DFM = 2aT/λ > 1/T ), DFM occurs.

3. PRINCIPLE OF KT-SPCFCRD
This section first introduces the principle of SPCFCRD, fol-
lowed by a description of the KT-SPCFCRD for RM and DFM
correction.

3.1. Principle of SPCFCRD
The LFM signal conforms to the model

sL (tL) = AL0 exp
[
j2π

(
f0LtL +

1

2
γt2L

)]
, (8)

where AL, tL, f0L, and γ denote the amplitude, time variable,
centroid frequency, and chirp rate of the signal, respectively.
Based on CICPF [32], a novel correlation function is intro-

duced and defined as

RL (tL, τ)

= sL

[
tL +

(
τ +

h

2

)]
sL

[
tL −

(
τ +

h

2

)]

= A2
L0 exp

{
j2π

[
2f0LtL + γt2L + γ

(
τ +

h

2

)2
]}

, (9)

where τ and h denote the delay variable and constant delay,
respectively. The requirements for both the delay variable and
constant delay can be satisfied by incorporating historical data.
NUFFT is applied to achieve energy concentration along the

delay variable dimension, which can be expressed as

RL (tL, fτ )

=

∫
R (tL, τ) exp

[
−j2πξfτ

(
τ +

h

2

)2
]
dτ

= AL1 exp
[
j2π

(
2f0LtL + γt2L

)]
δ (fτ − ξγ) , (10)

where AL1 is the amplitude, fτ the scaled frequency with re-
spect to τ , and ξ the introduced scaling factor. A detailed anal-
ysis of the scaling factor will be presented in Section 3.4.
In (10), the energy along the delay variable axis is effectively

concentrated. However, due to the presence of t2L in the signal,
the energy along the time dimension cannot be properly focused
using the fast Fourier transform (FFT). Therefore, the terms re-
lated to t2L need to be eliminated first by dechirp processing
(DP), followed by coherent integration using FFT, i.e.,

RL (ftL , fτ ) = FFTtL

[
RN (tL, fτ ) exp

(
−j2πfτ

ξ
t2L

)]
= AL2δ (ftL − 2f0L) δ (fτ − ξγ) , (11)

where AL2 denotes the amplitude, FFTtL [·] the FFT operation
with respect to tL, and ftL the frequency with respect to tL.
From (11), it can be observed that the SPCFCRD achieves co-
herent integration in the ftL − fτ plane.
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3.2. RM Correction via KT
Applying the FFT to (5) with respect to t yields

sp (f, tm) = A0 rect
(
f

B

)
exp

(
−j4πf

c
nvmtm

)

× exp
[
−j4π (f + fc)

c

(
R0 + v0tm +

1

2
at2m

)]
(12)

where A0 is the amplitude, and f is the range frequency. As
shown in (12), RM originates from the coupling between f and
tm.
The KT eliminates the RM caused by unambiguous velocity

v0 through a scaling transformation, expressed as

tm =
fc

f + fc
t′m, (13)

where t′m is the scaled slow time.
Substituting (13) into (12) yields

sKT (f, t
′
m) = A0 rect

(
f

B

)
exp

[
−j4π

λ

(
f

f + fc

)
nvmt′m

]

× exp
[
−j4π (f + fc)

c
R0

]
exp

(
−j4π

λ
v0t

′
m

)

× exp
[
−j2π

λ

(
fc

f + fc

)
at′2m

]
. (14)

Under narrowband environment f ≪ fc, we have
fc/(fc + f) ≃ 1 − f/fc [20, 26]. Thus, (14) can be rewritten
as

sKT (f, t
′
m) = A0 rect

(
f

B

)
exp

[
−j4π

λ

(
f

f + fc

)
nvmt′m

]

× exp
[
−j4π (f + fc)

c
R0

]
exp

(
−j4π

λ
v0t

′
m

)

× exp
(
j
2πf

c
at′2m

)
exp

(
−j2π

λ
at′2m

)
(15)

In (15), the coupling between f and tm is removed, which ef-
fectively corrects RM. Nevertheless, with respect to long-range
surveillance radar, the range resolution is relatively low, and the
integration time is limited; therefore, the RM caused by accel-
eration can be neglected [27, 28]. Therefore, (15) can be sim-
plified as

sKT (f, t
′
m)

= A0 rect
(
f

B

)
exp

[
−j4π

λ

(
R0 + v0t

′
m +

1

2
at′2m

)]

×exp
(
−j4πf

c
R0

)
exp

[
−j4π

λ

(
f

f + fc

)
nvmt′m

]
(16)

3.3. Integration via SPCFCRD
In (16), the RM induced by velocity ambiguity and the DFM
resulting from acceleration remain uncorrected and need to be
compensated. To enable AC, all possible ambiguity factors nt

are iteratively evaluated to construct the phase compensation
function, which is given by

H1 (nt; f, t
′
m) = exp

[
j
4π

λ

(
f

f + fc

)
ntvmt′m

]
(17)

When nt = n, multiplying (16) by (17) yields

snt
KT (f, t

′
m) = A0 rect

(
f

B

)
exp

(
−j4πf

c
R0

)

× exp
[
−j4π

λ

(
R0 + v0t

′
m +

1

2
at′2m

)]
(18)

Applying the inverse FFT (IFFT) to (18) with respect to f
yields

snt
KT (t, tm) = A0 sinc

[
B

(
t− 2R0

c

)]

× exp
[
−j4π

λ

(
R0 +v0t

′
m +

1

2
at′2m

)]
, (19)

As shown in (19), the RM is fully corrected, leading to the
concentration of signal energy within a single range cell. To
determine the target’s range cell while achieving coherent inte-
gration via PCFCRD, a novel correlation function is introduced,
i.e.,

Rnt
p (t, t′m, τ)

= snt
KT

[
t, t′m +

(
τ +

h

2

)]
snt
KT

[
t, t′m −

(
τ +

h

2

)]

= A1

{
sinc

[
B

(
t− 2R0

c

)]}2

exp
(
−j8π

λ
v0t

′
m

)

× exp
(
−j4π

λ
at′2m

)
exp

[
−j4π

λ
a

(
τ +

h

2

)2
]
, (20)

whereA1 = A2
0 exp(−j8πR0/λ) is the amplitude. TheNUFFT

is applied to achieve signal concentration along the delay vari-
able dimension, which can be expressed as

Rnt
p (t, t′m, fτ )

=

∫
Rnt

p (t, t′m, τ) exp

[
−j2πξfτ

(
τ +

h

2

)2
]
dτ

= A2

{
sinc

[
B

(
t− 2R0

c

)]}2

exp
(
−j8π

λ
v0t

′
m

)

× exp
(
−j4π

λ
at′2m

)
δ

(
fτ +

2aξ

λ

)
(21)
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FIGURE 2. Process of signal energy concentration.

where A2 denotes the amplitude.
Subsequently, coherent integration is achieved via DP and

FFT with respect to t′m, i.e.,

Rnt
s

(
t, ft′m , fτ

)
= FFTt′m

[
Rnt

p (t, t′m, τ) exp
(
−j2πfτ

ξ
t′2m

)]

= A3

{
sinc

[
B

(
t− 2R0

c

)]}2

δ

(
ft′m +

4v0
λ

)

×δ

(
fτ +

2aξ

λ

)
(22)

where A3 represents the amplitude. From (22), it
is observed that the result exhibits a unique peak at
(2R0/c,−4v0/λ,−2aξ/λ). Based on this, the target is
detected if the ratio of the peak value to noise exceeds a given
threshold. The process of obtaining acceleration and ambiguity
factor estimates can be expressed as(

ae = −λfτ
2ξ

, ne

)
= argmax

nt,t,ft′m
,fτ

∣∣Rnt
s

(
t, ft′m , fτ

)∣∣ (23)

where ae and ne denote the estimated acceleration and ambigu-
ity factor, respectively. The process of signal energy concentra-
tion is depicted in Fig. 2, in which the dark shading corresponds
to regions of signal peaks.

3.4. Some Remarks
Remark 1: In (11), by introducing the scaling factor ξ, the sig-
nal energy becomes concentrated at fτ = ξγ. Accordingly,
the estimation resolution and range of chirp rate are given by
fτ−max/Lξ and [−fτ−max/2ξ, fτ−max/2ξ], respectively, where
L is the length of tL, and fτ−max is the maximum value of
fτ . Remark 2: In the process of constructing the correlation
function in (20), the phase term related to velocity is doubled.
As a result, the Doppler frequency corresponding to the tar-
get’s unambiguous velocity is also doubled. Therefore, when

|v0| > vm/4, SPCFCRD fails to accurately estimate the un-
ambiguous velocity. To overcome this limitation, a phase com-
pensation function can be constructed based on the estimated
ambiguity factor and acceleration, and applied to (16) to cor-
rect the RM and DFM, i.e.,

H2 (ne, ae; f, t
′
m) = exp

[
j
4π

λ

(
f

f + fc

)
nevmt′m

]
× exp

(
j
2π

λ
aet

′2
m

)
(24)

When ne = n and ae = a, multiplying (16) and (24) yields

sp (f, t
′
m) = A0 rect

(
f

B

)
exp

(
−j4πf

c
R0

)
× exp

[
−j4π

λ
(R0 + v0t

′
m)

]
(25)

Subsequently, coherent integration is achieved by applying
IFFT with respect to f and FFT with respect to t′m, yielding

sp (t, tm) = A4sinc
[
B

(
t− 2R0

c

)]
δ

(
ft′m +

2v0
λ

)
(26)

where A4 denotes the amplitude.
In (26), the unambiguous velocity can be obtained through

peak detection.
Remark 3: For targets with jerk, the RM and DFM cannot

be effectively corrected using KT-SPCFCRD when the jerk is
large. The following section analyzes the applicability condi-
tions of KT-SPCFCRD in the presence of jerk.
Assume that the target has a jerk denoted as j. Accordingly,

R(tm) can be approximated as

R(tm) = R0 + vtm +
1

2
at2m +

1

6
jt3m. (27)

The instantaneous Doppler frequency is given by

fd,jerk (tm) =
2

λ
·
d
(
jt3m/6

)
dtm

=
jt2m
λ

. (28)
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To achieve coherent integration, the Nonlinear RM (NRM)
and DFM introduced by jerk must remain within a single reso-
lution cell, i.e.,{

∆NRMjerk =
1
6jT

3 < c
2B

∆DFMjerk =
jT 2

λ < 1
T

. (29)

Therefore, the coherent integration time is limited by TNRM < 3

√
6(c/2B)

j

TDFM < 3

√
λ
j

. (30)

Typically, in radar systems, TDFM is more restrictive than TNRM,
and it is generally satisfied in practice. Remark 4: As a lin-
ear transformation, the KT does not introduce cross terms in
multi-target scenarios [14]. Meanwhile, PCFCRD has been
demonstrated in [31] to exhibit strong suppression of cross
terms. Therefore, KT-SPCFCRD inherits these advantages and
achieves excellent multi-target resolution performance, as will
be further illustrated in Section 4.2.

3.5. Detailed Procedure of KT-SPCFCRD
The overall flowchart of KT-SPCFCRD is illustrated in Fig. 3,
and the procedure is summarized as follows:

Step 1: Perform pulse compression on the received signal
sr(t, tm), yielding sp(t, tm);
Step 2: Perform the FFT on sp(t, tm) with respect to t,
yielding sp(f, tm);
Step 3: Apply the KT to sp(f, tm) to correct RM, yielding
sKT(f, t

′
m);

FIGURE 3. Flowchart of KT-SPCFCRD.

Step 4: Construct a phase compensation function based on
the ambiguity factor ne to mitigate velocity ambiguity in
sKT(f, t

′
m), yielding snt

KT(f, t
′
m). Subsequently, apply the

IFFT with respect to f to obtain snt
KT(t, t

′
m).

Step 5: Construct the correlation function Rnt
p (t, t′m, τ)

using snt
KT(t, t

′
m).

Step 6: Apply the NUFFT along the delay variable di-
mension ofRnt

p (t, t′m, τ) to achieve energy focusing in the
delay-frequency domain, resulting in Rnt

p (t, t′m, fτ ).
Step 7: Perform the DP on Rnt

p (t, t′m, fτ ), followed by an
FFT with respect to t′m to obtain Rnt

p (t, ft′m , fτ ).
Step 8: Peak detection is then performed on
Rnt

p (t, ft′m , fτ ) to detect the target and estimate its
range re, ambiguity factor ne, and acceleration ae.
Step 9: Use the estimated ambiguity factor and accelera-
tion to construct a phase compensation function that cor-
rects the RM and DFM in sKT(f, t′m). Finally, apply IFFT
with respect to f and FFT with respect to t′m to achieve
coherent integration, and further detect the target within
range re.

3.6. Computational Cost
This section compares RFRFT [22], GRFT [21], KT-
MGRFT [20], MART-LVT [28], and SAF-SFT [30], with
computational cost evaluated by counting complex multi-
plications. The number of the pulses, range cells, searching
fractional orders, searching rotation angles, searching ve-
locities, searching ambiguity factors, and accelerations are
denoted by M , N , Nβ , Nθ, Nv , Nn, and Na, respectively.
The RFRFT determines target trajectories by conducting
a search over the range, velocity, and acceleration dimen-
sions, where the FRFT is employed along each candidate
trajectory to accumulate signal energy. This process results
in a computational cost of O[NrNnNvNa(NβM log2 M)].
Similar to RFRFT, GRFT determines target trajectories by
performing a search over range, velocity, and acceleration,
followed by phase compensation and summation for coher-
ent integration. This procedure leads to a computational
cost of O(NrNvNnNaM). For KT-MGRFT, the KT can
be efficiently implemented using the chirp-Z transform
(CZT)-based SFT and IFFT, resulting in a computational
cost of O(4MN log2 N). The MGRFT performs trajectory
searching over the range, ambiguity factor, and acceleration
dimensions, and integrates signal energy using the FFT,
leading to a computational cost of O(NrNnNaM log2 M).
Therefore, the computational cost of KT-MGRFT is about
O(NrNnNaM log2 M). MART-LVT mainly consists of two
stages: MART operation, which has a computational cost of
O(NθN), and LVT operation, with a computational cost of
O(4M2 log2 M). Therefore, the total computational cost of
MART-LVT is about O[NθN(4M2 log2 M)]. The SAF-SFT
involves two SAF-SFT operations, with computational costs of
O[M3+MN(3 log2 M+log2 N)] and O(M2+4M2 log2 M),
respectively. The main steps and their corresponding com-
putational costs of KT-SPCFCRD are as follows: AC with
O(NnMN), correlation function with O(NnM

2N), NUFFT
with O(2NnM

2N log2 M), DP with O(NnM
2N), and FFT
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TABLE 1. Computational cost of each algorithm.

Algorithm Computation cost
RFRFT O(NnM

5 log2 M)
GRFT O(NnM

4)
KT-MGRFT O(NnM

3 log2 M)
MART-LVT O(4M4 log2 M)
SAF-SFT O(M3)

Proposed KT-SPCFCRD O(3NnM
3 log2 M)

with O(NnM
2N log2 M). Therefore, the total computational

cost of KT-SPCFCRD is about O(3NnM
2N log2 M).

Assuming that Np = Nθ = Nv = Na = N = M ,
the computational costs of the compared algorithms are sum-
marized in Table 1. Taking Nn = 10 as an illustrative case,
Fig. 4 presents how the computational cost evolves as the num-
ber of pulses increases from 32 to 1024. According to Ta-
ble 1 and Fig. 4, KT-SPCFCRD achieves a significant reduc-
tion in computational burden compared with RFRFT, GRFT,
and MART-LVT. Its computational cost is comparable to that
of KT-MGRFT, though higher than SAF-SFT.

FIGURE 4. Computational cost of each algorithm.

4. EXPERIMENTAL RESULTS
This section validates the effectiveness of the proposed algo-
rithm through both simulations and real radar data. The radar
system and target parameters employed in the simulations are
listed in Tables 2 and 3, respectively.

TABLE 2. Simulation parameters of radar.

Parameters Value Parameters Value
Carrier frequency 3GHz Bandwidth 3MHz

PRF 2 kHz Sampling frequency 5MHz
Pulse duration 25µs Pulse number 512

TABLE 3. Simulation parameters of targets.

Parameters Target A Target B Target C
SNR after PC 7 dB 7 dB 7 dB

Range 6 km 6 km 6 km
Velocity 710m/s 720m/s 710m/s

Acceleration 30m/s2 30m/s2 40m/s2

4.1. Coherent Integration for a Single Target

In this section, Target A is considered as a single target. In this
scenario, the blind velocity is set to 100m/s, and the target has
an ambiguity factor of 3, corresponding to an unambiguous ve-
locity of 10m/s. The range resolution is 15m, while the RM
induced by acceleration is only 0.98m, which is smaller than
the range resolution and can thus be neglected. This result is
consistent with the analysis presented in Section 3.2. As shown
in Fig. 5(a), after PC, the signal peak appears as a slanted line
in the fast-time versus slow-time plane, indicating significant
RM due to target maneuvering. If the echo signal is directly
processed using MTD, as illustrated in Fig. 5(b), the signal en-
ergy spreads across both the range and Doppler dimensions,
thereby preventing effective energy focusing. The parameter
estimation results after applying the proposed KT-SPCFCRD
algorithm are shown in Figs. 5(c)–(e), where a notable energy
concentration is observed. Furthermore, after phase compen-
sation, the MTD result in Fig. 5(f) demonstrates that the target
energy is well focused, thereby achieving effective coherent in-
tegration.

4.2. Coherent Integration for Multiple Targets

The following simulation aims to verify the multi-target pro-
cessing capability of the algorithm. The motion parameters of
multiple targets are summarized in Table 3. Fig. 6(a) shows the
result after PC. Due to the similarity of the motion parameters
of the three targets, their motion trajectories are closely inter-
twined. The simulation results of the proposed algorithm are
presented in Figs. 6(b)–(h). In Fig. 6(b), three distinct peaks
appear on the acceleration-velocity plane, which verifies the
strong cross-term suppression capability of the PCFCRD algo-
rithm. Similarly, the presence of multiple distinct energy peaks
in Figs. 6(c)–(f) clearly demonstrates the successful separation
of multiple targets. Since Targets A and B share the same am-
biguity factor and acceleration, the compensation function con-
structed based on the estimated parameters aligns both targets
in the MTD results, as shown in Fig. 6(g). Overall, the KT-
SPCFCRD algorithm demonstrates strong capability in han-
dling multiple targets effectively.
The above simulation scenario mainly considered multi-

ple targets with comparable SNRs. However, when strong
and weak targets coexist within the same range cell, separat-
ing the aliased multi-target signals becomes more challeng-
ing. Moreover, the main-lobe and sidelobes of the strong tar-
get’s SPCFCRD response may mask weak targets with simi-
lar motion parameters. To address this issue, methods such as
CLEAN algorithm [33, 34], blind source separation (BSS) al-
gorithm [35], and analytic signal construction-BSS (ASC-BSS)
algorithm [36] can be considered to achieve more reliable sep-
aration and detection of strong and weak targets.

4.3. Coherent Integration for Real Data

The proposed KT-SPCFCRD algorithm is further validated us-
ing real radar data for unmanned aerial vehicle (UAV) target
detection, as described in [37]. The radar system parameters
and target parameters are listed in Tables 4 and 5. The blind
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(a) (b)

(c) (d)

(e) (f)

FIGURE 5. Simulation results for a single target. (a) Result after PC. (b) Result after MTD. (c) Velocity-acceleration estimation result. (d) Range-
velocity estimation result. (e) Range-acceleration estimation result. (f) MTD result after RM and DFM correction.

TABLE 4. Parameters of radar.

Parameters Value Parameters Value
Carrier frequency 35GHz Sampling frequency 80MHz

PRF 32 kHz Pulse number 1600

TABLE 5. Parameters of a single target.

Parameters Value
Range 285m
Velocity −40.31m/s

Acceleration 0.34m/s2

speed is 137.14m/s, and thus the ambiguity factor of the target
is 0.
The radar echo after PC is shown in Fig. 7(a), where the tar-

get trajectory is submerged in strong ground clutter. The re-
sult after moving target indication (MTI) processing is shown in
Fig. 7(b), which demonstrates that MTI effectively suppresses

ground clutter. Furthermore, as shown in Fig. 7(b), unlike the
simulated signal, the real radar data are non-ideally continu-
ous, exhibiting missing pulses and fluctuations in signal am-
plitude. The simulation results of the proposed algorithm are
presented in Figs. 7(c)–(f). It can be observed that, due to the
velocity-related phase term being doubled in the AF, the unam-
biguous velocity estimation result is inaccurate. However, af-
ter compensation, the result obtained using the matched filter-
based MTD in Fig. 7(f) is close to the actual target parame-
ters. The simulation results validate the effectiveness of the
KT-SPCFCRD algorithm for handling real radar data.

4.4. Detection Performance

To evaluate the detection performance under noisy conditions,
a constant false alarm rate (CFAR) detector is applied to each
algorithm. The simulation parameters are consistent with those
listed in Tables 2 and 3. To further demonstrate the effec-
tiveness of the proposed algorithm, it is also compared with
the moving target detection (MTD) algorithm. The SNR be-
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIGURE 6. Simulation results for multiple targets. (a) Result after PC. (b) Velocity-acceleration estimation result. (c) Range-velocity estimation
result of Targets A and B. (d) Range-velocity estimation result of Target A. (e) Range-acceleration estimation result of Targets A and C. (f) Range-
acceleration estimation result of Target B. (g) MTD result after RM and DFM correction of Targets A and B. (h) MTD result after RM and DFM
correction of Target C.

fore PC ranges from −20 dB to 0 dB, with 500 Monte Carlo
trials conducted for each SNR level. Fig. 8 shows the detec-
tion probability and root mean square error (RMSE) of mo-
tion parameter estimation as functions of SNR for each al-
gorithm, with a false alarm probability of 10−6. As shown
in Fig. 8(a), when the detection probability reaches 1, the

proposed KT-SPCFCRD achieves approximately 4 dB, 4 dB,
2 dB, 3 dB, 10 dB, and 16 dB lower minimum detectable SNR
than RFRFT, MART-LVT, GRFT, KT-MGRFT, SAF-SFT, and
MTD algorithms, respectively. A joint analysis of Fig. 4 and
Fig. 8(a) indicates that KT-SPCFCRD delivers superior detec-
tion performance while maintaining computational cost compa-
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(a) (b)

(c) (d)

(e) (f)

FIGURE 7. Processing results of the real data. (a) Result after PC. (b) Result after MTI. (c) Velocity-acceleration estimation result. (d) Range-velocity
estimation result. (e) Range-acceleration estimation result. (f) MTD result after RM and DFM correction.

(b)

(c) (d)

(a)

FIGURE 8. Performance evaluation of different algorithms (a) Detection probability. (b) RMSE of velocity estimation. (c) RMSE of acceleration
estimation. (d) RMSE of range estimation.
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(a) (b)

(c) (d)

FIGURE 9. Experimental results for targets with different scaling factors. (a) Detection probability. (b) RMSE of velocity estimation. (c) RMSE of
range estimation. (d) RMSE of acceleration estimation.

rable to KT-MGRFT. This improvement is primarily attributed
to the strong noise robustness of SPCFCRD. Compared with
RFRFT, MART-LVT, and GRFT, KT-SPCFCRD provides en-
hanced detection capability with substantially reduced compu-
tational cost. Although SAF-SFT exhibits the lowest computa-
tional cost among all algorithms, it also suffers from the poorest
detection performance. Moreover, as shown in Figs. 8(b)–(d),
KT-SPCFCRD also demonstrates significant improvements in
motion parameter estimation accuracy compared with other al-
gorithms, consistent with its superior detection performance.

4.5. Analysis of the Introduced Scaling Factor

In previous simulations, a scaling factor of ξ = 1was used, cor-
responding to a maximum detectable acceleration of 50m/s2
and a resolution of 0.20m/s2. To evaluate the impact of the
scaling factor on the performance of the proposed algorithm,
scaling factors of 2 and 3 are also considered. Under these
conditions, the detection performance and the RMSE of mo-
tion parameter estimation are analyzed. As shown in Fig. 9, the
primary impact of the scaling factor is observed in the RMSE
of acceleration estimation, as it directly alters the acceleration
estimation range. In contrast, its influence on detection perfor-
mance, velocity estimation RMSE, and range estimation RMSE
is relatively minor. Overall, the scaling factor has minimal im-
pact on the overall performance of the algorithm, while improv-
ing its adaptability to different radar system configurations.

5. CONCLUSION

Based on the PCFCRD algorithm, this paper introduces a scal-
ing factor and develops SPCFCRD algorithm, which enables
flexible adjustment of the estimation range and resolution of the
chirp rate. Subsequently, by combining KT with SPCFCRD,
a KT-SPCFCRD-based algorithm for maneuvering target de-
tection and parameter estimation is proposed. This algorithm
effectively mitigates the effects of RM and DFM in the echo
signal. The effectiveness of the proposed algorithm is demon-
strated through theoretical analysis, simulation experiments,
and real radar data evaluations. Compared with several repre-
sentative algorithms, KT-SPCFCRD achieves enhanced detec-
tion performance while maintaining moderate computational
cost. Future research may focus on extending the algorithm
to scenarios where jerk cannot be neglected and on addressing
the scale effect (SE) in large time-bandwidth product (LTBP)
radars [38, 39]. In addition, effective detection strategies under
the coexistence of strong and weak targets, as well as integra-
tion with interference and clutter suppression techniques [40–
42], will be explored to further enhance radar detection robust-
ness in complex environments.
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