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ABSTRACT: Reliable modelling of rainfall-induced attenuation is crucial for designing and operating high-frequency communication
systems, particularly those operating above 10 GHz, in regions with severe rainfall conditions such as subtropical climates. This study
offers a comparison of supervised machine learning (ML) models — k-nearest neighbours (KNN), decision trees (DT), and random forests
(RF) — against traditional statistical methods such as the lognormal and gamma distributions for estimating raindrop size distribution
(DSD) and specific attenuation. Rainfall measurements taken between 2018 and 2019 were obtained from a 1-minute disdrometer at the
measurement location in Durban, South Africa (29.8651°S, 30.9734°E). The investigated models were then tested across four different
rainfall regimes processed from the dataset: drizzle, widespread rain, shower and thunderstorm. An adaptive tuning method for selecting
the best k-value in KNN was introduced to enhance prediction accuracy across various rainfall intensities. Model performances are
evaluated using metrics such as root mean square error (RMSE), mean absolute error (MAE), and the coefficient of determination (R?).
The results show that KNN outperforms RF and DT, providing the highest accuracy and lowest prediction errors across all rainfall
regimes. The confidence interval (CI) analysis confirms that KNN delivers more precise and stable estimates, while RF and DT exhibit
greater variability and uncertainty in performance. Additionally, specific attenuation estimations from these ML models are compared
at different rain rates with the ITU-R P.838-8 estimations for frequencies up to 100 GHz. These findings highlight the superiority of
data-driven model, particularly the adaptive KNN, in capturing complex rainfall microstructures and improving attenuation predictions.
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This has direct implications for planning and deploying rain-resilient wireless networks in variable climatic regions.

1. INTRODUCTION

ireless communication systems have become fundamen-

tal to everyday human life and are crucial for essential
sectors such as finance, healthcare, and transportation. These
systems employ wireless signals in the form of travelling elec-
tromagnetic waves to transmit and receive information through
the propagation medium. However, when these signals are dis-
rupted — through attenuation, interference, or other propaga-
tion impairments — the reliability of connectivity is compro-
mised, which can lead to severe interruptions in these criti-
cal services. The past decade has seen an increasing global
dependence on communication technologies. This trend has
driven the demand for expanded network capacity, particularly
in high-frequency systems operating within the microwave and
millimetre-wave bands, between 10 GHz and 100 GHz. How-
ever, this shift introduces new challenges, notably signal prop-
agation impairments caused by atmospheric conditions such
as rainfall, humidity, fog, dust and turbulence, which lead to
attenuation. Accurate modelling of these impairments, along
with the application of suitable mitigation techniques such as
adaptive power control, site diversity, and fade margin design,
is critical to ensuring system reliability and performance. In
rain-prone regions within the South African territory, studies
have shown that rainfall-induced attenuation can significantly
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degrade signal quality, resulting in reduced system availability
and capacity [1, 2].

Rainfall is the result of water droplets formed in clouds which
return to the Earth surface as precipitation. Thus, the intensity,
duration, and the distribution of rain drops vary both spatially
and temporally. Rainfall-induced attenuation is primarily due
to the scattering and absorption of electromagnetic waves by
raindrops — a process governed by the DSD and its interac-
tion with signal frequency along the propagation path [3]. DSD
modelling serves as the cornerstone for estimating rainfall-
specific attenuation, which quantifies the power loss per unit
distance due to rain [4]. Traditional statistical approaches have
been used to model local DSDs by fitting empirical data to para-
metric distributions such as the lognormal and gamma DSD
models [4-9]. These methods provide simplicity and physical
interpretability; however, they often struggle to capture the full
variability of DSD characteristics, particularly in cases where
the relationships between drop sizes and other rainfall micropa-
rameters are highly non-linear and embedded within large com-
plex datasets. Traditional methods often rely on manual fea-
ture engineering, distribution fitting, or iterative statistical tech-
niques to handle large volumes of data, which can be computa-
tionally expensive or even impractical. This highlights the need
for more powerful, efficient, and scalable approaches such as
machine learning (ML). By utilizing scalable algorithms and
computational frameworks, ML can reveal hidden structures
within data, deliver robust predictions, and adapt to various do-
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mains characterized by complex, high-dimensional variability
[10]. ML models can effectively capture intricate dependencies
without requiring explicit functional assumptions while learn-
ing patterns directly from the data.

To overcome the deficiencies of statistical DSD models,
emerging approaches related to machine learning techniques
are robust alternatives for data processing and modelling.
These models have been effectively employed in various
fields, especially in environmental monitoring, hydrometeoro-
logical modelling, radio system design and radar meteorology
[11-13]. Numerous studies have investigated statistical meth-
ods for modelling DSD and estimating specific attenuation,
but the application of machine learning (ML) models in this
domain remains limited and underexplored. Unlike traditional
statistical approaches, ML models can factor in the complex
non-linear relationships within datasets and generalize patterns
across diverse features and labels, without relying on paramet-
ric assumptions [14-16]. Likewise, supervised ML algorithms
such as k-nearest neighbours (KNN), decision trees (DT), and
random forests (RF) have shown strong potential for producing
accurate predictions with high computational efficiency.

This current study seeks to close the gap by introducing three
supervised machine learning models — KNN, DT, and RF —
while comparing their performances against traditional lognor-
mal and gamma models for estimating DSD and specific atten-
uation prediction. The study area is Durban, a coastal city in
South Africa located at the coordinates, 29.8651°S, 30.9734°E.
The city experiences a humid subtropical climate, which is clas-
sified as Cfa under the Koppen climate classification system
[http://stepsatest.csir.co.za]. The climate is modulated by the
Agulhas current within the eastern Indian Ocean, with annual
rainfall exceeding 1000 mm [2]. Thus, the city expanse is char-
acterized by hot, humid summers and mild winters, with rel-
atively consistent rainfall throughout the year. Due to its ge-
ographical location, it ranks among the wettest urban areas in
South Africa, showing notable variability in rainfall patterns
across the seasons. This study utilizes disdrometer dataset col-
lected in Durban from 2018 to 2019 to evaluate models across
four distinct rainfall regimes: drizzle, widespread rain, show-
ers, and thunderstorms. The results are evaluated based on met-
ric measures and their alignment with empirically derived at-
tenuation values from measured data. This work contributes
to the growing evidence that data-driven methods can outper-
form traditional statistical models in capturing real-world rain-
fall microstructures, with direct implications for the design of
rain-resilient wireless networks in subtropical climates.

2. RELATED WORKS

Marshall and Palmer (1948), in their earliest works, defined
DSD as an important tool for determining the size variation and
concentration of raindrops in a specified volume of air during
a rainfall event. It is an essential parameter for understanding
the influence of rainfall on electromagnetic wave propagation,
particularly in terrestrial (microwave transmission) and satellite
communication systems [13]. Several traditional DSD mod-
els are derived from popular statistical distributions, such as
the negative exponential, lognormal, and gamma distributions,
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among others, which are widely used. Afullo [17] and Owolawi
[7], in their study, expressed the general form of DSD as:

N (D)= N. x (D) (1)

where N (D) denotes the density of raindrops per unit volume
for each size of diameter, usually represented in (m2>mm™1!).
The constant N, is a normalisation factor or scaling constant
dependent on rainfall intensity and environmental parameters.

(1) describes the variation of raindrop accumulation within
diametric clusters in a unit volume of air. Various empirical and
theoretical models employ different mathematical functions to
represent the drop size probability density function, f(D), ac-
curately. To this end, several statistical models have been de-
veloped to describe DSD, each with different assumptions and
fitting techniques. The negative exponential model, introduced
by Marshall and Palmer [18], is recognised as one of the earliest
and most widely used DSD models with the formulation given
as:

N (D) = Noe P 2

Ny represents the intercept parameter, expressed in
(mm~'m™3), which defines the instant concentration (m~2)
of raindrops at a given diameter. The slope parameter, A,
measured in mm™!, characterizes the rate of decrease in
raindrop concentration as the drop size increases. Lastly, the
parameter D denotes the raindrop diameter in millimetres
(mm), which is a key variable in determining the distribution
and behaviour of raindrops within a given rainfall event.

Other relevant models for characterizing rainfall DSD have
been developed by several authors [5,6]. One such model is
the gamma distribution, which offers improved flexibility over
simpler models like the exponential distribution. The model
introduces an additional shape parameter u, to enable the ac-
curate representation of a broader range of rainfall conditions.
The gamma DSD is mathematically expressed as [5]:

N (D) = NyDte AP 3)

wherein the empirical regression power-law equations are
given as thus,

N, = aR’ (3a)
A = apR* (3b)

The gamma DSD model is confirmed to perform well under
convective rainfall conditions marked by high rain rates in trop-
ical and subtropical regions [8, 9, 19].

The lognormal DSD model represents another statistical
model; it assumes that raindrop diameters follow a lognormally
distributed probability function. Ajayi and Olsen [6] employed
this DSD model in a tropical region study as defined:

N (D) = “

<mD—mT
202

Ny
———exp [—
oD+ 2m P
The parameter N, represents the overall sum of drops across
all diameter classes. The parameters p, o, and N, are typically
estimated from empirical DSD measurements using the method

of moments (MoM) [2,4, 11]. The result is a set of empirical
power-law relationships that link the DSD parameters to rain-
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fall rate R as follows:

N, = aR® (4a)
= A,+B,InR (4b)
02 = A, + B, InR (4¢)

The lognormal distribution has also demonstrated superior per-
formance in modelling the natural variability of DSD, particu-
larly in subtropical and tropical regions characterised by intense
and highly variable rainfall conditions [6, 8,9, 19, 20].

3. INTRODUCTION TO MACHINE LEARNING AP-
PROACHES FOR DSD MODELLING

Traditional DSD models depend on fixed equations — with un-
derlying statistical characteristics — which often restrict their
ability to adapt to complex and dynamic meteorological con-
ditions. Machine learning (ML), however, offers an alterna-
tive approach by learning patterns directly from rainfall data to
reveal the complex relationships among feature variables and
labels [16].

3.1. The k-Nearest Neighbours (KNN) for DSD Estimation

KNN is a versatile learning method based on instances, com-
monly utilized for classification and regression tasks [21].
KNN, as a lazy learning method, does not build a global model
during training. Instead, it keeps the complete training dataset
and performs calculations solely when generating a prediction.
When a new input, z, is presented, the algorithm locates the
closest training samples using a specified distance measure and
derives the prediction from their associated outputs. In classi-
fication problems, KNN assigns a class to a new input by ma-
jority voting among its k nearest neighbours. Given a training
set:

D= {(x’uyl)}?zl
where each z;€R? and y;€{1,2,3, ...
¢ is defined as:

®)
,C}, the predicted class

Yy = argmax Z I(y (6a)

ce{1,...,C} VN ()

where NV () is the set of the k nearest neighbours of z, and
I(...) is the indicator function.

In regression, KNN determines the output for a specified in-
put, z, by averaging the output values of its k nearest neighbors
in the training set. The fundamental idea behind KNN is based
on the premise that data points sharing similar input features
often exhibit related output values, ensuring the proximity of
observations in the feature space is essential for accurate pre-
dictions [21]. For regression, the prediction is the mean of the
output values of the neighbours:

>

i€N(T)

(6b)

<>

The accuracy of KNN is heavily influenced by the distance met-
ric employed. Commonly used metrics include Euclidean dis-

67

tance [14,21,22],

(7a)

the Manhattan distance,

(7b)

— Tij

and the general form is known as the Minkowski distance,

1
/p

d(z,z;) = Z|x

(7c)

xm

Presume that the sequence of the norm is defined by p.

KNN performs well with both numerical and categorical
data, especially when the data is low-dimensional and follows
a relatively simple distribution [22]. However, its effective-
ness can be impacted by differences in feature scales, which
makes data preprocessing, such as normalization or standard-
ization, essential. The key strengths of this algorithm lie in
its straightforward implementation, the absence of a training
phase, and its ability to handle multi-class classification tasks
naturally. However, it requires substantial computational time
during prediction, especially with large or high-dimensional
datasets. This issue is widely referred to as the “curse of dimen-
sionality”, highlighting the decline in performance that occurs
with an increasing number of input features [23].

3.2. Decision Trees (DT) for DSD Estimation

The DT model employs feature space splitting with axis-
aligned divisions, thereby creating separate regions for which
predictions are made [15,24]. It creates a decision tree where
each non-leaf node partitions the data using a feature-value
comparison. This method applies to both classification and
regression tasks, offering an intuitive, rule-based approach to
decision-making.

In classification problems, widely used algorithms such as
ID3 (Iterative Dichotomiser 3) and CART (Classification and
Regression Trees) rely on impurity measures to guide the split-
ting process. ID3 is a decision tree algorithm that employs
the Top-Down Induction of Decision Trees (TDIDT) method,
which is designed to efficiently produce detailed decision trees
from datasets containing numerous instance attributes. It re-
lies on an entropy-based method to evaluate splits, selecting
the attribute that offers the highest information gain at each de-
cision point [24]. In contrast, CART employs Gini impurity as
its splitting criterion [15]. Gini impurity is defined as:

®)
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While the entropy measures the amount of impurity or disorder
in dataset using,

C

H(S) = = p(c)log2p ()

c=1

)

where p(c) represents the fraction of samples in the node that
belong to class (¢) in node S. The split at a given feature is
chosen to maximize Information Gain (IG):

>

veValues(A)

| S |

IG (S, A) = H(S) — El

H(S,) (10

where S, is the subset of samples in .S with feature A = v.
For regression tasks, decision trees use variance reduction as
a splitting criterion. The variance of a node .S is calculated as:

Var(S):%Z(yi—g)Q (11)

where § refers to the average predicted value for observations
innode S. A split is selected to minimize the weighted average
variance of the resulting child nodes.

To avoid overfitting, decision trees apply pruning techniques.
Pre-pruning prevents over-complex trees by imposing limits
such as how deep the tree can grow or how many samples a
node must contain to be split. In contrast, post-pruning tech-
niques, such as cost-complexity pruning, trim back branches
after the entire tree has grown, removing those with minimal
predictive contribution [15].

3.3. Random Forest (RF) for DSD Estimation

Random Forest (RF) is an ensemble technique that enhances
prediction accuracy and reduces overfitting by building multi-
ple decision trees and combining their outputs [25]. At each
node where a split decision is made, the algorithm considers
only a randomly chosen subset of the available features, select-
ing a limited number of features from the complete feature set.
Mathematically, for a forest containing B trees, each tree 7T} is
trained on a unique bootstrap sample .S, drawn from the com-
plete dataset D. The predicted class in classification is deter-
mined by aggregating the votes from all trees and selecting the
majority class [25]:

B

g = argmaxz I[(Ty(z) =¢)
¢ b=l

(12)

where I(..) is the indicator function. In regression tasks, the
output represents the mean of the predictions from individual
trees,

(13)

A significant advantage of RF is its capability to estimate the
feature importance. This is generally calculated by consider-
ing the overall decrease in impurity attributed to each feature
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throughout all the trees. For a given feature j, its importance is
calculated as [26],

j{: %z;zx@

tesplits on j

(14

importance (j) =

where Ai; represents the impurity decrease at node ¢, N, refers
to the count of samples reaching a particular node, and N
is the total sample size of the dataset. RF excels with high-
dimensional datasets and can handle both numerical and cat-
egorical data variables. However, it is less interpretable than
a single decision tree and can be computationally demanding,
especially when the number of trees or data size is large [27].

4. METHODOLOGY

The following outlines the procedure for training ML models to
estimate DSD across different drop diameter bins in four rain-
fall regimes. The predicted values are used in Mie scattering
calculations to determine the extinction cross-sections (ECS),
which are then employed to estimate rainfall-induced attenua-
tion.

4.1. Data Acquisition and Preprocessing

This research primarily used data collected from an impact dis-
drometer, specifically the RD-80 Joss-Waldvogel impact dis-
drometer, developed by Disdromet Ltd in Switzerland. The de-
vice was installed at the University of KwaZulu-Natal in Dur-
ban, which is known for its humid subtropical climate and dis-
tinct seasonal variations rainfall. The data collection process
lasted for two years, spanning from January 2018 to Decem-
ber 2019. The equipment consists of two main components,
the outdoor sensing unit which detects the raindrop impacts via
a sensor and generates corresponding electrical signals — and
the indoor processing unit which processes the received signal
by categorizing them into specified raindrop sizes for data stor-
age. Measurement of rainfall microphysical properties such as
rain rate, rainfall DSD, and accumulated rainfall are done in
real-time. The sensing area, covering 50 cm?, captures rain-
drops at 1-minute interval and classify them into 20 separate
diameter bins ranging from 0.359 to 5.373 mm. The precision
of the instrument ensures measurement accuracy within 5% of
actual values. The disdrometer computes rainfall rate by using
the equation [28]:

6 x 1074 f
R=————"> n; x D} [mm/h] (15)
AxT pt

where A is the area from which the sensor collects data, 7" the
duration for sampling, D; the drop diameter for the size class
i, and n; the quantity of drops documented in class ¢. The drop
number density V' (D, ), which defines the drop size distribution
(DSD) for diameter classes, D;, is calculated as described [28],

Uz

N(DZ) - AxT x U(Di) X ADZ [ ’ 1]

m “mm-

(16)

where v(D;) represents the drop velocity, and AD; indicates
the diameter width measured in mm.
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The obtained rainfall data was further processed into four
distinct rainfall regimes based on the recorded maximum rain
rate per DSD spectra: drizzle (for rains less than 5mm/h),
widespread (for rains between 5 mm/h and 10 mm/h), showers
(for rain between 10 mm/h and 40 mm/h), and thunderstorms
(for rains greater than 40 mm/h) [29]. Samples with a rain rate
below 0.1 mm/h and fewer than 10 total drops were excluded to
minimize the impact of dead time errors [30]. The disdrometer
dataset was carefully divided into training, optimal k tuning,
and validation subsets wherein a 56 : 16 : 28 ratio was applied
to ensure thorough and reliable model evaluation.

4.2. Optimising k in KNN for a Dynamic Approach to DSD Mod-
elling

The KNN algorithm works by finding and averaging the val-
ues of the k-nearest data points in the training dataset. Its per-
formance heavily depends on the hyperparameter k, which sets
the number of neighbouring points used for prediction. It is im-
plemented with the Kneighborsregressor module from Scikit-
Learn machine learning library. The proposed KNN model uses
the weighted approach introduced in [14], assigning importance
to neighbouring points based on their distance, as shown in the
following equation:

k
> wiNp (Xi)
Np(X)=" (17)

k
> W
=1

where Np (X)) denotes the values corresponding to the k closest
data points from the training set. This approach uses a weight
function, w;, that is dependent on the distance d(X, X;) be-
tween the test sample X and neighbour X;:

1

W; = ————

47X, X,) (1%

The weighted method is particularly effective when the train-
ing data is unevenly distributed. The hyperparameter £ must
be predefined before the training and predictions to ensure op-
timal performance. This study introduces an adaptive method
for choosing k, allowing the model to automatically select the
best k-value to improve prediction accuracy and reduce errors.

4.3. Adaptive Tuning for Optimal k Parameter

To enhance the adaptability of the proposed KNN model, an
adaptive tuning strategy was employed to identify the optimal
number of neighbours (k). This process involves using the
k-tuning subset reserved for each rainfall regime to train the
model to dynamically select the most appropriate k-value by
analysing the statistical properties of each individual sample.
For this, each feature vector z-; ER? represents a data point situ-
ated in a d-dimensional space, where d corresponds to the num-
ber of rainfall-microparameter variables such as drop diameter,
rainfall rate, and related characteristics. By treating each input
(feature) as a vector in R?, the KNN algorithm computes dis-
tances to its neighbours and predicts outcomes (DSD) based on
their proximity.
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The tuning process for determining the optimal k& value is
performed using a k-fold cross-validation method. In this ap-
proach, the tuning subset is divided into folds. The model is
trained on, k., — 1, folds for each candidate value of k£, which
ranges from 1 to 100, and validated on the remaining data fold.
This procedure is carried out for each fold, with the cross-
validation error calculated for every averaged candidate k. The
optimal value, k¥, is then chosen using the following criterion
given in [14],

k* = argmax CV Error (k)
ke

(19)

where K = {1,2,3,4,...,100} represents the set of prese-
lected candidate & values, and C'V Error(k) denotes the aver-
age validation error across all folds for that k. The aim is to
reduce expected prediction error and enhance model general-
ization through empirical risk minimization framework.

During the tuning process, the mean squared error (MSE)
serves as the performance metric and is calculated as follows
[21]:

m

MSE (k) = %Z (yj - 17§’“))2 (20)

j=1

where m denotes the quantity of validation samples, and yj.’“)
represents the anticipated value for the j** sample using k-
nearest neighbours. This approach is often referred to as the
“elbow method” because it visually highlights the point where
increasing the value of k no longer results in significant im-
provements in error reduction.

Once the optimal & value is determined for each sample
within the k-tuning dataset across different rainfall regimes, the
results are compiled into a reference dataset that links each spe-
cific rainfall condition to its associated k value. During model
execution, the algorithm uses this reference dataset alongside
the characteristics of the incoming input sample to dynamically
select and apply the most suitable & in real time.

This novel approach enables the model to generalize more
effectively across various rainfall conditions, ensuring that the
chosen k-value is well-suited to the given rainfall regime. The
results from this procedure showed that lower values of & cap-
ture noise and exhibit signs of overfitting the training data.
However, higher values of &, especially where k£ > 20, tend
to smooth predictions and result in underfitting of the dataset.
As a result, these values were discarded.

4.4. Analysis of Optimal k-Values for Various Rainfall Events

The analysis of the optimal k-value in relation to rainfall rate,
R, across different rainfall regimes from the observed data re-
veals distinct patterns that vary based on the nature of precip-
itation. These patterns are learned and subsequently influence
the adaptive behaviour of the model in choosing the optimal
k-value, enabling it to adapt dynamically to various rainfall in-
tensities across different events. Fig. 1 illustrates the optimal
k-value versus rain rate patterns identified for different rainfall
regimes during the training process.
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FIGURE 1. Optimal £ analysis in (a) Drizzle, (b) Widespread, (c) Shower and, (d) Thunderstorm regimes.

In drizzle events, no strong linear correlation exists between
k and R, as the optimal k-values appear scattered, indicating
their dependence on local variations in DSD. However, a trend
emerges where smaller k-values between 1 and 6 are more fre-
quent at higher rainfall rates above 1 mm/h, suggesting that
smaller neighbourhoods provide better local estimations due
to increased DSD variability. Conversely, for lower rainfall
rates less than 0.5 mm/h, larger k-values between 10 and 20 are
present, likely aiding in smoothing out local fluctuations.

In widespread rainfall regimes, no clear monotonic trend ex-
ists, but for low values of R less than 1 mm/h, k-values range
widely, indicating the high variability of DSD. Moderate rain-
fall rates between 1 and 5 mm/h exhibit more stable k-values,
frequently between 10 and 17, while higher rainfall rates above
5 mm/h favour higher k-values between 16 and 20. Unlike driz-
zle, widespread rainfall does not show abrupt shifts in k-values
but follows a gradual transition.

The scatter plot reveals a correlation between R and the op-
timal k-value in shower rainfall events. Although a strict linear
correlation cannot be established, trends do appear across vari-
ous rain rate ranges. At low rain rates, higher k-values (k = 7,
11, 12, 16, 17, 18, 20) are more common, and at rain rates
higher than 10 mm/h, % is generally larger, often reaching 20,
which indicates the need for broader neighbourhoods to sustain
prediction stability. The horizontal axis follows a logarithmic
scale, highlighting a nonlinear relationship where k increases
with rain rate, but not in a proportional manner. The visualiza-
tion typically suggests a moderate positive correlation, where
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higher rain rates tend to correspond to higher optimal k-values,
albeit with some variability at lower rain rates.

For thunderstorm events, the relationship between optimal k-
values and rainfall rate tends to be non-linear, suggesting com-
plex interactions between rainfall intensity and DSD character-
istics. Like shower rain events, thunderstorm events demon-
strate a weak correlation between rainfall rate and k, with
highly variable k-values at different rainfall levels. The scat-
ter plot analysis suggests that extreme conditions (very low and
very high rainfall) tend to have smaller k-values, possibly due
to rapid changes in DSD. The presence of logarithmic trends in
the rainfall rate further supports the need for dynamic tuning in
KNN models.

Overall, the findings highlight the necessity of an adaptive
KNN approach, as rainfall-induced attenuation modelling can-
not rely on a fixed k-value, but should instead be adjusted based
on the specific characteristics of each rainfall regime.

4.5. Random Forest (RF) Approach for DSD Estimation

The RF algorithm employs an ensemble learning approach for
building various decision trees and merging their results to en-
hance accuracy, minimize errors and overfitting. This study
uses the RF model to predict the DSD for each drop diameter
bin, following the approach suggested as follows [31]:

Np(X) ==Y fm(X) 1)
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where M is the total count of decision trees included in the
ensemble, and f,,(X) represents the prediction made by the
mt" decision tree for the input X. To reduce prediction error
in DSD estimation, the model adopts a performance criterion
based on the MSE, as described by Hastie etal. [32],

1 N

MSE = =% [N (D)rue =N (D)pred} 2
i=1

(22)

This MSE metric evaluates the deviation of predicted DSD
from actual values, aiding model optimization. The RF model
was implemented using Jupyter Notebook, utilizing the Ran-
dom Forest Regressor module from the scikit-learn for regres-
sion library.

4.6. Approach to Using Decision Trees for DSD Modelling

Decision tree (DT) is a rule-based model that recursively splits
the dataset based on attribute values to create a predictive struc-
ture. For DSD prediction, the DT model estimates Np(X) by
averaging the target values of the training samples that fall into
the same terminal node (or region) R;. This approach, origi-
nally proposed by Quinlan [24], is expressed as:

Np(X) = Ni z Np(X;)
J iR,

(23)

where N; represents the count of training samples within region
R;, and Np(X;) is the observed value corresponding to the ith
sample.

In this study, the DT model is initialized via the Decision-
TreeRegressor class from the Scikit-learn library, setting the
random_state parameter to a constant value for consistent re-
sults. Setting this parameter guarantees that the same sequence
of random numbers is used each time the model is run, making
the outcomes reproducible.

4.7. Training the DT Model

The model undergoes training on the dataset by gradually split-
ting the data, D = { X3, X5, X3..., X, }, at each node accord-
ing to a chosen feature f; and its corresponding threshold value
;. During this process, the algorithm selects the best feature
for splitting at each node. Accordingly, the dataset is then di-
vided into two subsets at each split [24]:

DTt = {X|f5 (X)) < 0;} (24a)

and,

D" = {Xif; (X)) > ;) (24b)
where f; (X;) denotes the j*" feature corresponding to the data
point X;, and ¢; is the selected threshold for that feature. The
best feature f; and threshold 6; are selected by minimizing a
splitting criterion — specifically, the MSE in this study. The
MSE for each possible split is calculated by adding the squared

differences between the actual and predicted target values for
both subsets [24, 32, 33],

1 i
MSE: = oz D (wi— )’

t jepleft
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1 .
T pright > i —9) (25)
t

.~ yright
i€D;

Then, the optimal feature f; and threshold 6; combination is
selected from the lowest calculated MSE using the equation:

(fF,07) = argminy, 9, MSE, (206)

FERG]
This equation leads to the most accurate regression model at
each split in the decision tree [24, 32].

4.8. Model Performances with Metric Measures

This study employed three well-established regression evalua-
tion metrics — Root Mean Square Error (RMSE), Mean Ab-
solute Error (MAE), and Coefficient of Determination (R?) —
to objectively assess the performance of the machine learning
models in predicting DSD. These metrics are standard in pre-
dictive modelling literature and offer complementary insights
into model accuracy, residual behaviour, and overall predictive
power [34, 35].

The RMSE serves as a widely recognised metric that mea-
sures the standard deviation of prediction errors, and it is de-
fined as [34],

@7

Here, y; represents the observed value, y; the anticipated value,
and n the total count of observations. A lower RMSE suggests a
better model performance. The MAE calculates the mean mag-
nitude of errors in a set of predictions, ignoring their direction,
and is given by,

1 n
MAE = — i — Ui 28
= lvi — il (28)

i=1

It is less impacted by outliers than RMSE and offers a clear
understanding of average prediction error [35].

The R? score, or coefficient of determination, shows how
much variance in the dependent variable can be predicted from
the independent variables. Itis a standardised measure of model
fit, defined as [36],

RP=1-2L (29)

where y; the mean of the observed values is located. A higher
R? value, closer to 1, suggests a strong correlation between pre-
dicted and actual outcomes, indicating that the model explains
a substantial amount of the variance. Negative values implies
a poor model performance in comparison to the mean of the
observed data.
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In addition to offering single-value estimates of model ac-
curacy, the interpretation of RMSE, MAE, and R? can be en-
hanced by using confidence intervals (Cls). Confidence inter-
vals help quantify the degree of uncertainty associated with
each metric, providing an estimated range in which the true
population parameter is likely to fall at a specified confidence
level, typically 95%. A confidence interval is generally ex-
pressed in the form [37]:

CI =0+ 7,5 x SE (9) (30)

where 6 is the sample estimate (e.g., mean R2, RMSE, or MAE)
and Z, /; is the critical value from the standard normal distri-
bution corresponding to the desired confidence level. The stan-
dard error of the estimate, SE(f), is calculated as:

€2))

where o is the sample standard deviation of the metric across
the rainfall events, and n is the number of rainfall cases in-
cluded in the evaluation of each metric.

Narrower intervals indicate greater precision and reliability,
while wider intervals suggest higher variability and less cer-
tainty in the estimate [37,38]. In this study, the reporting of
95% Cls for RMSE, MAE, and R? not only enables a more rig-
orous comparison of model performance but also ensures that
conclusions drawn are statistically robust and reliable.

4.9. Estimation of Rainfall Attenuation

Rain-induced attenuation of electromagnetic waves is esti-
mated using DSD data alongside Mie scattering theory, which
provides a comprehensive representation of wave interactions
with raindrops from microwave to terahertz frequencies. Rain-
fall causes signal attenuation primarily due to the scattering and
absorption of electromagnetic waves by raindrops [39]. The
methodology involves three computational steps: determining
the complex index of refraction of water, calculating the extinc-
tion cross-section (ECS), and estimating specific attenuation.
The exact reduction in radio wave strength caused by rainfall is
determined using a modified version of the formula in Adimula
and Ajayi [3] as further proposed in [9, 29]:

20
Ay =4.343 x 107 Y " N(Dy)kegra*dD,, [dB/km] (32)

n=1

The specific attenuation, Ag, is directly affected by the distri-
bution of raindrop sizes N (D,,) and the coefficients of ECS;
keot and Gepp. The ECS measures the overall impacts of scat-
tering and absorption of electromagnetic waves by raindrops.
The values of ECS are analyzed for different drop sizes at vari-
ous frequencies and ambient temperatures to evaluate how scat-
tering and absorption affect electromagnetic signal propagation
in rainfall conditions. To determine the scattering parameters,
Mie coefficients and Bessel functions are employed. The ECS,
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denoted as Q¢y¢, is calculated using the formulation provided
by Hult and Van de Hulst [40]:

Qurt (D) = 3Re {5 (0)}

(33)
where k is the wavenumber corresponding to the frequency of
the wave in a rain-filled medium, and s (0) represents the real

component of the forward scattering amplitude, as defined by
Mie [41]:

(oo}

> (@2n+1) [an (m,a) + by (m,a)]
n=0

5(0) = (34)

DN | =

In this summation, a,, and b, correspond to the coefficients
derived from Mie scattering theory, where m represents the
complex refractive index of water. The frequency of rain-
drops and the surrounding temperature significantly impact
how the « parameter changes. The average annual temperature
of 20.27°C was estimated for the location of Durban between
2018 and 2019. The computation results are undertaken to re-
veal frequency-dependent trends in specific attenuation mod-
elling. Therefore, ECS was calculated for frequency range
up to 100 GHz, covering both microwave and millimetre-wave
bands.

To evaluate the performance of ML-based attenuation mod-
els, predictions are compared against both traditional statisti-
cal models and ITU-R recommendations under various rainfall
regime variations.

5. RESULTS AND DISCUSSION

5.1. Performance Evaluation of Machine Learning Models

This section assesses the performance of k-nearest neighbours
(KNN), decision trees (DT), and random forest (RF) models
in predicting DSDs across various rainfall regimes: drizzle,
widespread rain, showers, and thunderstorms. For each model,
its capability to capture DSD variations at different rainfall in-
tensities is evaluated, highlighting their adaptability and gener-
alization capabilities, as presented in Figure 2.

During drizzle events, KNN closely approximates N (D) for
mid-range drop diameters but tends to overestimate at lower di-
ameters. The DT algorithm performs well in the mid-diameter
range but tends to underestimate small drops and overestimate
large ones. The RF approach performs well for small to mid-
sized drops but deviates for larger diameters. Figure 2(a) shows
the evaluation of the models during a drizzle rain event at
1.33 mm/h, where raindrop variability is minimal. KNN per-
formed the best by executing the local averaging of the retained
dataset to capture subtle changes in DSD. The decision tree,
while capable of recognising general patterns, exhibited signs
of overfitting due to its sensitivity to minor fluctuations in low-
variability data. Random Forest, by averaging multiple deci-
sion trees, offers a smoother and more stable output, though it
may miss some fine-grained DSD detail.

For a widespread rain event at 6.79 mm/h in Figure 2(b),
KNN continued to perform well, particularly with adaptive tun-
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FIGURE 2. Evaluation of machine learning models for DSD prediction across various rainfall regimes: (a) Drizzle at 1.33 mm/h, (b) Widespread at
6.79 mm/h, (c) Shower at 34.39 mm/h, (d) Thunderstorm at 81.61 mm/h.

ing of the neighbourhood size with DT showing reduced gener-
alization. Meanwhile, RF produced robust and accurate predic-
tions due to its ensemble nature, effectively handling the mod-
erate complexity in the data.

In the shower regime, the selected rainfall rates for consider-
ation range from 14.67 mm/h to 34.39 mm/h. KNN provides the
most accurate estimates across the range, closely tracking ob-
served N (D) values, particularly in mid-sized drops as seen in
Figure 2(c). RF exhibits variability, performing well while es-
timating smaller diameters, but often overestimating mid-sized
drops. DT tends to underperform, particularly for higher rain-
fall rates, with frequent underestimations in mid-to-large drop
sizes. At 34.39 mm/h, all three models showed nearly identical
performance across the range of drop sizes while underestimat-
ing smaller drops and overestimating drops larger than 2.5 mm.

During thunderstorms at a rain rate of 81.61 mm/h as shown
in Figure 2(d), both RF and DT showed significant performance
degradation. The ensemble structure of RF was inadequate for
the highly dynamic input, and DTs failed due to overfitting and
limited depth. KNN remained the most reliable model in this
regime, offering stable and accurate predictions thanks to adap-
tive tuning and local averaging, which demonstrated the ability
to handle noise and complexity.

Overall, KNN proved to be the most robust and adaptable
model across all rainfall regimes, particularly excelling in high-
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intensity cases conditions. Random forest performed well in
low to moderate rainfall scenarios, while the DT model was
generally less suitable for complex or noisy datasets.

5.2. Error Analysis of DSD Modelling for Different Rainfall
Regimes

A comparative analysis of DSD modelling across different rain-
fall regimes — drizzle, widespread rain, showers, and thunder-
storms — using KNN, RF, and DT reveals that KNN consis-
tently outperforms the other models. In Table 1, KNN achieves
the highest R? score values (with an average of 0.92), indicat-
ing strong correlation with observed N (D) values, while RF
(R? = 0.85) and DT (R? = 0.77) show more variability. In
terms of these error metrics, KNN maintains the lowest RMSE
score of 43.61 in Table 2 and MAE score of 26.58 in Table 3,
ensuring the most precise predictions across different drop sizes
and rainfall intensities. RF, while showing some promise, ex-
hibits higher prediction errors, especially in mid-sized drop dis-
tributions, while DT consistently underperforms, particularly in
higher rainfall rates where its RMSE and MAE values are sig-
nificantly larger. Across all rainfall regimes, KNN provides the
most reliable estimates, demonstrating lower RMSE and MAE,
even at extreme high rainfall rates such as 94.4 mm/h. RF oc-
casionally competes with KNN but shows greater fluctuations,
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TABLE 1. Coefficient of determination (R? score) for DSD predictions
across different rainfall regimes using ML models.

Rainfall Category | R (mm/h) | KNN | RF DT
0.814 092 | 0.85 | 0.55

Drizzle 1.33 0.9 0.86 | 0.64
1.16 0.89 | 0.73 | 0.67

1.07 0.9 0.82 | 0.64

1.63 0.89 | 0.87 | 0.78

Widespread 1.39 091 | 0.89 | 091
9.99 0.85 | 0.88 | 0.72

8.54 0.88 | 0.86 | 0.77

14.66 094 | 0.67 | 0.47

Showers 34.39 097 | 095 | 0.97
19.83 094 | 0.74 | 0.94

24.87 0.94 | 0.93 | 091

60.33 094 | 092 | 0.89

Thunderstorm 81.61 0.98 | 0.89 | 0.70
62.77 0.98 | 0.96 | 0.94

94.4 0.89 | 0.84 | 0.89

Average 0.92 | 0.85 | 0.77

TABLE 3. Mean absolute error (MAE) for DSD predictions across dif-
ferent rainfall categories using KNN.

Rainfall Category | R (mm/h) | KNN RF DT
0.814 6.78 8.01 19.44
Drizzle 1.33 16.07 | 18.61 | 27.28
1.16 8.02 | 11.88 | 12.59
1.074 834 | 11.97 | 158
1.63 19.85 | 27.02 | 34.72
Widespread 1.39 20.42 | 26.75 | 20.42
0.42 255 | 21.84 | 35.58
8.54 43.28 | 44.13 | 61.18
14.66 40.12 | 94.1 | 2522
Showers 34.39 25.22 | 35.55 | 29.35
19.83 29.35 | 51.02 | 51.1
24.87 44.19 | 44.54 | 89.59
60.33 32.32 | 35.88 | 40.54
Thunderstorm 81.61 18.59 | 4532 | 78.53
62.77 20.09 | 25.77 | 34.46
94.4 67.25 | 7431 | 67.25
Average 26.58 | 36.04 | 40.19

whereas DT model suffers from higher errors and lower predic-
tive accuracy.

To provide a statistically grounded comparison, 95% confi-
dence intervals (CIs) were estimated for each metric across the
rainfall regimes, as summarized in Table 4. The coefficient of
determination (R?) indicates the strength of the correlation be-
tween the KNN model and the measured DSD. The KNN model

TABLE 2. Root mean square error (RMSE) for DSD predictions across
different rainfall regimes using KNN, RF, and DT models.
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Rainfall Category | R (mm/h) | KNN RF DT
0.814 13.86 19.2 33.82
Drizzle 1.33 25.77 | 30.88 49.94
1.16 13.04 | 20.45 22.87
1.074 16.09 | 22.04 31.67
1.63 41.12 | 44.77 58.52
Widespread 1.39 41.95 | 47.23 41.95
0.42 42.09 | 38.50 58.37
8.54 6535 | 70.85 92.48
14.66 66.3 | 165.82 | 210.17
Showers 34.39 40.39 | 51.44 40.40
19.83 45.05 | 94.16 45.05
24.87 76.16 | 79.36 94.05
60.33 49.07 | 56.95 65.21
Thunderstorm 81.61 27.69 | 73.00 | 122.38
62.77 31.9 42.67 54.51
94.4 102 124.08 | 102.84
Average 43.61 | 61.34 70.26

TABLE 4. Performance metrics with 95% confidence intervals (CI) for
DSD predictions using KNN, RF, and DT models.

Metric | Model 95% CI
KNN 0.92 4 0.02
R? RF 0.85 4 0.04
DT 0.77 £0.08
KNN | 43.61 +12.90
RMSE RF 61.34 +21.25
DT | 70.26 £24.91
KNN | 26.59 & 8.52
MAE RF 36.04 +12.31
DT | 40.19 +12.28

achieves an impressive average R? value of 0.92 4 0.02, vali-
dating over 90% of the variance in the observed data with min-
imal uncertainty. In comparison, the RF model reaches R? of
0.85 & 0.04, while the DT model shows the weakest fit with an
R? of 0.77 £ 0.08. The relatively narrow confidence interval
for the KNN model underscores its consistent predictive capa-
bility across various rainfall conditions. In contrast, the broader
intervals for the RF and DT models suggest greater variability
and less stable performance.

When evaluating error margin, KNN again demonstrates su-
perior performance, achieving the lowest RMSE margin of
43.61 £ 12.90. In contrast, RF produces a higher margin of
61.34 + 21.25, while DT records the largest margin at 70.26 £+
24.91. The comparatively wider confidence intervals for RF
and DT reflect greater variability and reduced reliability in pre-
dicting the DSD across different rainfall conditions, particu-
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TABLE 5. Input parameters obtained for DSD models using MoM technique in Durban.

DSD Model Input Parameters Coefficients R’
N a =102.42 b=10.51 0.4199
Lognormal A, =—0073 | B, =0.127 | 0.4296
o’ A, =0.0795 | B, =0.0023 | 0.0097
Gamma (4 = 2) No a = 13327 b=0.0911 0.0087
A ar = 4.8839 | by = —0.135 | 0.4144
larly during convective events. By comparison, the narrower In Figure 3(a), a light rain intensity of 5.07 mm/h shows
Cl associated with KNN underscores both its accuracy and sta- that all three models approximate the empirical DSD reason-
bility in error performance. ably well. However, KNN aligns most closely with the mea-
The MAE results further highlight the superiority of KNN, sured curve, especially around the peak drop concentration and
which achieved an average of 26.59 & 8.52. This significantly modal drop size. The lognormal distribution tends to under-
outperformed both RF, with an average of 36.04 & 12.31, and count smaller droplets (diameters less than 1 mm), a common
DT, which had an average of 40.19 + 12.28. These findings limitation due to its symmetric form, which restricts its abil-
indicate that KNN not only produces smaller deviations from ity to capture the skewed behavior of natural drop size distri-
the measured values but also maintains a consistent level of ac- butions, particularly in lighter rainfall conditions. The gamma
curacy across various rainfall conditions. model overpredicts across the entire diameter range, produc-
In summary, the error analysis establishes KNN as the most ing broader, exaggerated curves that deviate from the observed
robust and dependable regression model for DSD prediction. distribution.  As rain intensity increases, as shown in Fig-
Its statistical reliability, verified through 95% confidence in- ures 3(b)—(e), these trends remain evident. During moderate
tervals, underscores its suitability for rainfall attenuation mod- rainfall intensities of 46.53 mm/h and 59.94 mm/h, the lognor-
elling and related hydrometeorological applications. mal model tends to underestimate the concentrations of mid-
sized and smaller droplets. In contrast, the gamma model of-
ten overestimates concentrations, particularly for larger diam-
5.3. Comparison of ML DSD Model and Traditional Statistical eters. Meanwhile, the K-Nearest Neighbours (KNN) model
DSD Models closely aligns with the empirical DSD curves, effectively cap-
turing both the central peak and the tail behaviour with high
The KNN model, identified as the top-performing machine accuracy
learning model, is assessed and contrasted against the perfor- During heavy rainfall with rates exceeding 80 mm/h, the drop
mance of two selected traditional statistical methods. The com- size distributions often display multimodal and highly skewed
parison is based on observed variations of N (D) values with c.ha.racteristics, which further highlight thg limitations of sta-
different rainfall rates, R, specifically focusing on the strengths tistical models. The KNN model, with its adaptive nearest-
of each model when predicting DSDs across varying drop di- neighbour search, aligns well with the empirical curves and
ameters. These models were selected because several authors maintains fair accuracy throughout the entire range of drop di-
have demonstrated over the years that they provide a good rep- ameters.
resentation of DSD variations in Durban and other subtropical In summary, the lognormal model continues to show a down-
regions on the continent [9], [19, 20]. The modified gamma and ward bias, particularly for mid-sized and small drops. Mean-
lognormal distribution size models were chosen to represent the while, the overestimation by gamma model becomes more pro-
drop size distribution across various rainfall rates in Durban. nounced at higher intensities, suggesting a mismatch in its pa-
The method of moments (MoM) technique is applied to es- rameterization under such conditions. Overall, the results un-
timate DSD parameters for these models [6, 11]. The MoM derscore the limitations of traditional statistical models, which
derives these parameters from actual DSD measurements by rely on fixed functional forms, making them less responsive to
calculating specific statistical moments and utilizing non-linear the variability inherent in real-world precipitation data.
regression techniques to fit input parameter functions. Regres- KNN is a data-driven, non-parametric method that offers a
sion models obtained from MoM approximations for these two more flexible and precise tool for modelling DSDs, especially
models are presented in Table 5 based on the input parameter over a broad spectrum of rainfall intensities.
functions given in (3) and (4).
Figure 3 illustrates a comparison of three models — k- 5.4. Analysis of Specific Attenuation Across Rainfall Regimes
Nearest Neighbours (KNN), lognormal (LogN), and modified
gamma (Gamm) — for estimating the DSD under different Variations in specific attenuation across different rainfall
rainfall conditions. Our outcomes show that KNN provides regimes offer valuable insights into the effectiveness of
the most accurate depiction of the observed DSD, remaining machine learning models compared to traditional statistical
closely aligned with the measured values for all tested rain rates. models, such as lognormal (LogN) and ITU-R P.838-3 pre-
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FIGURE 3. Comparison of ML models versus statistical models for DSD prediction at: (a) 5.07 mm/h, (b) 46.53 mm/h, (¢) 59.94 mm/h, (d)

80.05 mm/h, (e) 98.02 mm/h.

diction models (horizontal and vertical) specified in [42]. For
this analysis, a frequency range of 2 GHz to 100 GHz has
been chosen, encompassing four distinct rainfall regimes:
drizzle, widespread rain, showers, and thunderstorms, each
characterized by different rainfall intensity rates.

For drizzle, with an average rainfall rate of R = 1.23 mm/h,
the measured specific attenuation at lower frequencies less than
10 GHz is relatively low, around 0.01 dB/km as depicted in Fig-
ure 4. The machine learning models (KNN, RF, and DT) align
closely with the observed values, with KNN showing a slight
deviation of 0.0002 dB/km from the measured values, while RF
and DT yields almost identical results. In contrast, the statis-
tical models show minor deviations, with the lognormal and
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ITU-R (vertical) models slightly underestimating the specific
attenuation at this low rainfall intensity. As the frequency in-
creases, the discrepancy between the machine learning models
and the statistical models becomes more evident. For exam-
ple, at 50 GHz, the KNN model yields a value of 0.33 dB/km,
closely aligning with the measured data, while the ITU-R mod-
els show increased discrepancies, indicating their reduced ac-
curacy at higher frequencies during drizzle events.

During a widespread rain event with an intensity of
8.54 mm/h, as shown in Figure 5, the specific attenuation in-
creases notably compared to the drizzle regime. For instance,
at 2 GHz, the measured attenuation is 0.0015 dB/km. KNN
delivered reliable results, predicting a value of 0.0013 dB/km,
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FIGURE 5. Compared specific attenuation estimated for widespread rainfall at a rain rate of 8.54 mm/h.

which is very close to the observed specific attenuation.
RF and DT also perform favorably, with RF showing slight
underestimation. In comparison, the statistical models display
a trend of underestimating attenuation values, particularly the
ITU-R models, which diverge more noticeably with increasing
frequency. At frequencies of 60 GHz and 100 GHz, the models
demonstrate a widening gap in their predictions, especially
between machine learning and statistical models. The RF
model predicts 9.39 dB/km at 100 GHz, whereas the ITU-R
(vertical) model predicts 11.28 dB/km, indicating a noticeable
overestimation by the ITU-R model.

For shower regime, where the rainfall intensity is
22.62mm/h as presented in Figure 6, the recorded atten-
uation reaches 0.019 dB/km at 2 GHz. The machine learning
models again demonstrate robust performance, with KNN
and RF predicting values closely matching the measured
attenuation. For instance, at 50 GHz, the KNN model esti-
mates an attenuation of 5.58 dB/km, while the RF model gives
5.24 dB/km.
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On the other hand, the statistical models — lognormal and
ITU-R — consistently overestimate the attenuation within this
frequency range. At 75 GHz, the specific attenuation for show-
ers reaches 7.72 dB/km. The ML models tend to provide bet-
ter estimates, with KNN and RF aligning more closely with the
measured attenuation compared to the statistical models, which
show a tendency to overpredict.

Thunderstorm events, with an average rainfall rate of
72.80 mm/h, produce the highest levels of rainfall, leading
to a significant increase in specific attenuation as seen in
Figure 7. At 2 GHz, the measured value of specific attenuation
is 0.0084 dB/km, which increases rapidly with frequency.
At higher frequencies, between 75 GHz and 100 GHz, the
ML models predict attenuation values that closely match the
observed data. For instance, at 100 GHz, KNN predicts a
value of 21.75dB/km, while the RF and DT models have
respectively estimated 22.08 dB/km and 21.07 dB/km, show-
ing close agreement with the actual measured value. ITU-R
models, particularly ITU-R (Horizontal), show a significant
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FIGURE 7. Compared specific attenuation estimated for thunderstorm events at 72.80 mm/h.

overestimation of attenuation at frequencies beyond 50 GHz.
For instance, at 100 GHz, the ITU-R (horizontal) model pre-
dicts 27.74 dB/km, much higher than the expected measured
value. This overestimation is especially pronounced at high
frequencies, demonstrating the limitations of the traditional
models under intense rainfall conditions.

Results from our study demonstrate that machine learning
models (KNN, RF, and DT) outperform traditional statistical
models (lognormal and ITU-R) across the four rainfall regimes.
These models excel at capturing the increase in specific attenu-
ation at higher frequencies, particularly in the widespread rain
and thunderstorm regimes. KNN stands out with the best over-
all performance, providing accurate predictions that closely
match observed data across various rainfall intensities and fre-
quencies. While RF and DT also produce good results, the
ability of KNN to adapt to different rainfall conditions, espe-
cially at higher frequencies, highlights its superiority. In con-
trast, statistical models show limited effectiveness, performing
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better in the drizzle and widespread rain regimes but exhibiting
greater discrepancies as rainfall intensity and frequency rise.
The ITU-R models tend to overestimate specific attenuation in
Durban, particularly within the thunderstorm regime at higher
frequencies, revealing their decreasing accuracy under extreme
rainfall conditions. Overall, the results emphasize that machine
learning models, especially KNN, are more adaptable to vary-
ing rainfall intensities and frequencies, delivering more accu-
rate and reliable predictions of specific attenuation. This sug-
gests that KNN is a suitable ML tool for regions with variable
rainfall patterns, such as subtropical climates, enabling more
efficient radio link design and maintenance.

Comparing the results of this study with previous studies in
[2], [17], and [19] reveals a persistent issue: ITU-R models
overestimate specific attenuation due to rainfall at the measure-
ment site. Although path attenuation is not computed, as rain
cell estimation needs to be considered, it is evident that machine
learning models in subtropical regions offer more accurate esti-
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mations than the widely used lognormal DSD model. As wire-
less systems approach the global implementation of 6G/7G,
where millimeter-wave bands are increasingly important, ac-
curate link budget estimation for outdoor radio planning in tur-
bulent wireless media, such as rainfall, could benefit from ML
DSD models. As results have shown across various rainfall
regimes, rainfall attenuation estimation from ML models will
lead to improved power management for frequency-selective
fade mitigation across the radio spectrum, particularly where
ITU-R inadvertently overestimates the link margin.

6. CONCLUSION

This study has demonstrated that machine learning models, par-
ticularly KNN, offer a more accurate and adaptable approach to
predicting rainfall attenuation than traditional empirical mod-
els, with RF as a strong alternative. While ITU-R and lognor-
mal models provide baseline estimations, their reliance on sim-
plified assumptions limits their applicability, especially in re-
gions with complex and highly variable rainfall patterns such
as Durban. The adoption of data-driven models in radio propa-
gation planning can enhance network resilience, optimize per-
formance, and ensure reliable communication under diverse
rainfall conditions. With the continuous expansion of high-
frequency communication systems (5G, 6G, and beyond), the
integration of ML-based attenuation models will be essential
in developing robust, efficient, and weather-resilient wireless
networks. This study has significantly improved the accuracy
of DSD modelling and attenuation predictions, contributing to
better link budgeting and enhanced network reliability.

While the study introduced an adaptive k-selection method
to enhance the performance of KNN model, the random for-
est (RF) and decision tree (DT) models were used with fixed
hyperparameters. Future research will focus on implement-
ing an adaptive parameter tuning method for these models, en-
abling them to automatically adjust hyperparameters based on
dataset characteristics to improve their predictive accuracy, re-
duce overfitting, and increase their flexibility across different
rainfall regimes.
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