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ABSTRACT: Aircraft target detection in synthetic aperture radar (SAR) images faces numerous challenges, primarily including weak
contrast, diverse morphologies, and faint signals, which are even more pronounced in complex backgrounds. Meanwhile, practical
deployment environments are constrained by limited computational resources and energy consumption, making it essential to balance
detection accuracy with model lightweight design. To address this, this paper proposes a lightweight detection network that integrates
multi-branch feature enhancement. First, a Parallel Aggregation and Calibration (PAC) module is designed to achieve collaborative
modeling of local and global information through multi-scale dilated convolutions; second, a Moment Channel Attention (MCA) module
based on higher-order statistical features is introduced to enhance the model’s sensitivity to weak signals and target boundaries; finally,
during the network fusion stage, the branch calibration connections in the PAC module are removed, and a frequency-domain-driven
Efficient Discriminative Frequency domain-based FFN (EDFFN) module is incorporated to improve the detailed representation of low-
contrast and blurred targets. Experimental results on the SAR-Aircraft-1.0 dataset demonstrate that the proposedmethod achieves 93.94%
mAP, while reducing model parameters by 56% and computational complexity by 36% compared to YOLOv12s, effectively balancing
performance and lightweight requirements.

1. INTRODUCTION

Synthetic Aperture Radar (SAR), as an active microwave re-
mote sensing technology, offers the fundamental advantage

of all-weather and all-day imaging capabilities [1]. By over-
coming the limitations imposed by weather conditions and il-
lumination in optical imaging [2], SAR has been widely ap-
plied in military reconnaissance, natural disaster monitoring,
and maritime observation [3], serving as a key component in
modern information acquisition systems. In civil aviation, SAR
imagery provides essential technical support for airspace [4]
surveillance and aviation safety management, particularly serv-
ing an irreplaceable role [5] in aircraft target detection.
With the advancement of techniques and the increasing com-

plexity of application scenarios, deep learning has become a
primary approach for improving the performance of target de-
tection [6] in SAR imagery. Research in this direction has pro-
ceeded step by step. In earlier studies, in order to address chal-
lenges posed by speckle noise and target scattering characteris-
tics in SAR images [7], many efforts focused on accuracy im-
provement by designing deep network architectures to enhance
the extraction and representation of complex features [8]. For
example, Xiao et al. [9] enhanced the representation of scatter-
ing features in SAR images for aircraft detection by incorpo-
rating spatial feature fusion and deformable convolution struc-
tures. Kang et al. [10] introduced Scattering Topology Mod-
ule (STM) to enhance the spatial relationships and semantic in-
formation interaction of scattering points, addressing the chal-
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lenges posed by imaging variability. Zhao et al. [11] employed
Graph Convolutional Networks (GCN) to extract structural and
semantic features and combined them with an improved VG-
GNet to extract image domain features, aiming to enhance air-
craft recognition performance in SAR images. Zhou et al. [12]
proposed a method based on a bounding box denoising diffu-
sion process that removes anchor size selection and introduced
a scattering feature enhancement module to reduce clutter in-
terference, thereby improving target detection performance.
Although deeper networks have improved feature rep-

resentation capabilities [13], their large parameter counts
and high computational demands limit their applicability
in resource-constrained environments [14], such as satellite
platforms, where efficiency and power consumption are key
considerations. These constraints have led to a shift in focus
from accuracy-oriented strategies to solutions that balance
accuracy and computational efficiency. Compared with post
hoc compression and pruning methods, direct architectural
optimization has become a more effective and widely adopted
approach [15]. In this context, lightweight network designs
have shown greater practical suitability for SAR-based aircraft
target detection and are receiving increasing attention in
related research [16]. For example, Luo et al. [17] proposed
a lightweight detection network that integrates Involution-
Enhanced Path Aggregation (IEPA) module and Efficient
Residual Shuffle Attention (ERSA) module to address chal-
lenges in multi-scale feature extraction and background
interference. Luo et al. [18] proposed a detection model
incorporating a lightweight recurrent gated spatial interaction
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FIGURE 1. Overall structure diagram.

module to enhance feature modeling in panoramic SAR
imagery. Zhu et al. [19] combined a lightweight SdE-Resblock
structure with an improved ssppf-CSP module to enhance
feature representation while reducing computational com-
plexity. Yang et al. proposed a lightweight pseudo-Siamese
feature extraction module and a random mask reconstruction
mechanism to efficiently extract heterogeneous image features
and enhance noise robustness [20].
Although existing studies have advanced lightweight design

for SAR target detection from various perspectives such as fea-
ture modeling, attention mechanisms, and structural compres-
sion, these methods primarily focus on isolated optimizations
of local modules, lacking systematic integration of hierarchi-
cal structural coordination and perceptual modeling capabili-
ties. When facing typical SAR imaging challenges such as low
contrast, small-scale targets, blurred boundaries, and complex
background interference, current approaches still struggle to
balance detection accuracy and computational efficiency, mak-
ing the trade-off between lightweight design and high perfor-
mance a critical challenge. To address this, this paper proposes
an efficient detection framework with hierarchical structural
optimization and enhanced perceptual capability. Specifically,
a Parallel Aggregation and Calibration (PAC) module integrat-
ing multi-scale dilated convolutions is designed to improve col-
laborative modeling of local and global information; Moment
Channel Attention (MCA) module [21] based on higher-order
statistical features is introduced to increase the model’s sensi-
tivity to weak signals and boundary targets. An Efficient Dis-
criminative Frequency domain-based FFN (EDFFN) [22] is in-
corporated into the neck and integrated with the PAC module
to form a new component, Multi-scale Aggregation and En-
hancement (MSAE), which improves multi-scale feature ag-
gregation and enhances the model’s perceptual capacity. In the
neck stage, PAC branch connections are decoupled, reducing

computational complexity while maintaining detection perfor-
mance.

2. MATERIALS AND METHODS

2.1. Network Structure Overview
Figure 1 illustrates the overall architecture of the proposed net-
work. The entire process consists of three stages: First, the
input SAR image is fed into the backbone network to extract
multi-level features. Next, these features are transmitted to
the neck network for cross-scale information fusion and se-
mantic enhancement. Finally, the fused multi-scale features
are used for classification and localization in the target detec-
tion task. The backbone is constructed using Parallel Aggrega-
tion and Calibration (PAC) module as its fundamental building
block. This module employs a multi-branch structure to per-
form differentiated modeling of input features, taking into ac-
count the cluttered background and varied target scales in SAR
images. The outputs from each branch are concatenated and
passed through a Moment Channel Attention (MCA) module,
which performs cross-branch feature weighting and channel-
wise calibration to improve the representation of discriminative
features.
The neck incorporates Multi-scale Aggregation and En-

hancement (MSAE) module to consolidate the multi-scale
feature maps output from the backbone. MSAE retains the
multi-branch design of PAC module to associate features
across different semantic levels, while omitting multiplicative
enhancement paths to reduce computational cost and structural
complexity. It also embeds a frequency domain feed-forward
submodule, named Efficient Discriminative Frequency
domain-based FFN (EDFFN), which models local correlations
in the frequency domain, complementing the representation of
scale features from both spatial and frequency perspectives.
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FIGURE 2. Moment Channel Attention (MCA) module.

The aggregated feature maps are then passed to the detection
head to generate bounding boxes and class labels of the targets.

2.2. Moment Channel Attention (MCA) Module
To capture more discriminative statistical characteristics along
the channel dimension, we introduce Moment Channel Atten-
tion (MCA) module into the network, as illustrated in Figure 2.
This module incorporates both mean and skewness information
of each channel in a lightweight manner, generating attention
weights that reflect channel-wise response differences to en-
hance the input feature map [20].
Structurally, MCA first computes the first-order moment

(mean) and third-order central moment (skewness) of the input
feature map X ∈ RB×C×H×W along the spatial dimensions,
formulated as:

M1(c) =
1

HW

H∑
i=1

W∑
j=1

Xc(i, j) (1)

M2(c) =
1

HW

H∑
i=1

W∑
j=1

(
Xc(i, j)−M1(c)

σc

)3

(2)

where σc is the standard deviation of channel C. These two
statistics represent the shape of the channel feature distribution
— the mean indicates basic intensity, while the skewness cap-
tures asymmetry in the distribution.
The concatenatedM1 andM2 vector of size 2C is then passed

through a 1D convolution followed by a Sigmoid activation to
generate the channel attention weight F :

F = σ (Conv1D(Concat(M1,M2))) (3)

This attention vector F is applied to the input feature X via
channel-wise multiplication to produce the output feature map
Y :

Y = X · F (4)

2.3. Parallel Aggregation and Calibration (PAC) Module
As illustrated in Figure 3, PAC module first applies pointwise
convolution to expand input feature channels to twice of the
original number. The expanded features are then evenly di-
vided into two parts along the channel dimension with each part
containing the same number of channels. One part is further
partitioned into three sub-branches. 5 × 5 and 7 × 7 branches
employ dilated convolutions, which enlarge the receptive field
and increase the complexity of structural representations; each

FIGURE 3. Parallel Aggregation and Calibration (PAC) module.

of these branches is therefore assigned 3/8C channels, provid-
ing additional capacity to represent broader contextual depen-
dencies while preserving structural details. The 3 × 3 branch,
in contrast, is specifically designed to capture fine-scale spatial
details that require high-resolution local information but rela-
tively lower representational capacity. Therefore, it is assigned
1/4C channels, which balances precise local feature extraction
with computational efficiency.
During the fusion stage, two connection strategies are em-

ployed: in one, each sub-branch retains a shortcut copy, which
is multiplied element-wise with the processed features to en-
hance intra-branch interaction, suitable for the backbone stage
to strengthen low-level feature representation; in the other, only
the processed features from each sub-branch are concatenated,
without shortcut connections, which is more compatible with
feature integration in the neck stage and subsequent frequency
domain enhancementmodules. These two structures differ only
in their fusion strategies, allowing adaptation to different task
requirements. The fused features obtained via channel-wise
multiplication are then activated [23] and further multiplied by
the other part of the features, which remain unprocessed, to cal-
ibrate the overall response intensity. Finally, Moment Channel
Attention module is introduced to enhance inter-channel dis-
criminability.
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2.4. Efficient Discriminative Frequency Domain-Based FFN
(EDFFN) Module
In complex environments, where high noise interference and
multi-scale features coexist, improving feature representation
and enhancing model adaptability are practical issues that re-
quire attention. EDFFNmodule [22] adopts a progressively en-
hanced feature extraction strategy, optimizing feature represen-
tation through multi-level processing, which effectively adapts
to the needs of subsequent tasks.
First, the module employs pointwise convolutions (PConv)

to expand the number of channels, thereby increasing feature
dimensions and laying the foundation for enhanced feature ex-
pression. Next, deep convolution (DConv) is applied to feature
extraction, successfully preserving key high-dimensional fea-
tures while reducing computation, thus improving feature ex-
traction capability without compromising efficiency. Specifi-
cally, the feature map is split into two parts: one is processed
through the TeLU activation function, and the other (unpro-
cessed part) is multiplied with it, followed by a channel-wise
operation (as shown in Figure 4). Unlike the commonly used
GeLU function TeLU [23] applies a controlled non-linearity
that amplifies subtle variations in feature values, particularly
for low-magnitude features that are often critical in complex
scenarios. This selective emphasis allows the network to pro-
cess weak or fine-grained features more distinctly, supporting
the preservation and discrimination of small or low-contrast in-
formation during feature extraction. After spatial feature ex-
traction, the module introduces a frequency-domain enhance-
ment strategy, combining reinforcement from both the spatial
and frequency domains. Using two-dimensional fast Fourier
analysis (FFT), the feature map is moved from spatial domain
to frequency domain, where frequency components are selec-
tively processed. The frequency components of the feature map
are multiplied by predefined parameters to amplify important
frequency components and suppress irrelevant noise, allowing
the model to focus on critical information. Finally, after inverse
fast Fourier analysis (IFFT), the feature map is returned to the
spatial domain, further refining spatial feature representation.

FIGURE 4. Efficient discriminative frequency domain-based FFN
(EDFFN) module.

2.5. Multi-Scale Aggregation and Enhancement (MSAE) Mod-
ule
The neck of the network is located between the backbone and
detection head. Its primary role is to integrate features from

different levels and transmit them to subsequent stages. In
this process, both fine-grained spatial information and high-
level semantic representations need to be considered. This as-
pect is particularly important for SAR imagery. For example,
in airport scenes, aircraft targets are usually small in size and
densely distributed, and easily confused with complex struc-
tures such as runways and buildings, together with strong back-
ground noise. These characteristics make the integration and
selection of features in the neck more challenging. The output
feature maps of the neck cover multiple resolutions, providing a
foundation for handling such complexity across different scales
and making both detail preservation and semantic enhancement
necessary.
As shown in Figure 5, the design of MSAE module is de-

veloped around these requirements. Considering the role of
the neck in feature integration and transmission, the module
organizes different functional units into a continuous process-
ing path. The PAC module captures spatial patterns through
multi-scale convolutions, supplying structured information for
subsequent stages. Building on this, MCA module adjusts
channel-wise responses to emphasize potential key features.
Finally, EDFFN refines and supplements feature representa-
tions by combining spatial and frequency domain processing,
thereby improving adaptability to complex and variable envi-
ronments. In addition, normalization and residual connections
are introduced to maintain numerical stability during transmis-
sion and to alleviate gradient degradation caused by network
depth.

FIGURE 5. Multi-Scale Aggregation and Enhancement (MSAE) mod-
ule.

3. EXPERIMENTAL RESULTS AND ANALYSIS

3.1. Dataset
All experiments in this paper are conducted based on SAR-
AIRcraft-1.0 dataset [24]. This dataset was constructed by the
Aerospace Information Research Institute, Chinese Academy
of Sciences and is one of the representative publicly available
benchmarks in current research on high-resolution SAR-based
aircraft detection and recognition. The image data were col-
lected by the Gaofen-3 satellite, with a spatial resolution of 1
meter, covering multi-temporal observations of three civil air-
ports: Shanghai Hongqiao, Beijing Capital, and Taoyuan Air-
port in Taiwan.

178 www.jpier.org



Progress In Electromagnetics Research C, Vol. 160, 175–182, 2025

The dataset contains a total of 4368 image patches, with spa-
tial dimensions ranging from 800× 800 to 1500× 1500 pixels.
A total of 16463 aircraft instances are annotated and catego-
rized into seven fine-grained classes: A220 (3730), A320/321
(1771), A330 (309), ARJ21 (1187), Boeing737 (2557), Boe-
ing787 (2645), and Other (4264), where the “Other” class in-
cludes aircraft types not belonging to the six aforementioned
categories. In this study, the dataset is randomly divided
into training, validation, and test sets at a ratio of 8 : 1 : 1 to
evaluate the effectiveness and generalization capability of the
proposed model in multi-scale target representation and fine-
grained recognition tasks.

3.2. Experimental Environment and Details
All experiments were conducted on a high-performance work-
station equipped with an Intel Core i9-13900K processor and an
NVIDIA GeForce RTX 4090 GPU with 24GB of memory, ca-
pable of efficiently supporting large-scale deep learning model
training and inference tasks. The operating system used was
64-bit Ubuntu 22.04 LTS, ensuring system compatibility and
operational stability. Model development and training were
based on the PyTorch 2.0.1 framework, programmed in Python
3.9.23, with CUDA 11.8 employed to accelerate GPU compu-
tations and improve training efficiency.
During training, an Adam optimizer was used for parameter

updates. Its adaptive learning rate feature contributed to en-
hanced training stability and convergence speed. The initial
learning rate was set to 0.001, and a cosine annealing learning
rate scheduler was applied to gradually reduce the learning rate
to promote model convergence. Training was performed for a
total of 500 epochs with a batch size of 16, balancing training
efficiency and GPU memory utilization.
All experiments were carried out on a single GPU, with GPU

power consumption and temperature maintained within normal
operating ranges throughout training, ensuring hardware stabil-
ity during extended runtime.

3.3. Evaluation Criteria
To thoroughly evaluate the performance of the proposed model
in object detection, four widely used and representative metrics
are adopted: Recall, Precision, F1 Score, and mean Average
Precision at an Intersection over Union (IoU) threshold of 0.5
(mAP@0.5). These metrics evaluate different aspects of the
model’s behavior, including its ability to identify targets, avoid
false detections, and maintain overall balance.
Recall measures the model’s ability to correctly detect actual

targets, defined as:

Recall =
TP

TP + FN
(5)

where TP denotes the number of correctly detected targets, and
FN is the number of missed ground-truth targets.
Precision evaluates the proportion of correct predictions

among all predicted positive instances:

Precisin =
TP

TP + FP
(6)

with FP representing the number of false alarms, i.e., non-
targets incorrectly identified as targets.
F1 Score, defined as the harmonic mean of precision and re-

call, balances the trade-off between these two metrics:

F1 =
2× Precision× Recall
Precision+ Recall

(7)

It is particularly useful when both false positives and false
negatives need to be simultaneously minimized.
Average Precision (AP) summarizes the precision-recall re-

lationship for a single class. Without requiring curve plotting,
it can be approximated as the area under the precision-recall
curve and is defined as:

AP =

∫ 1

0

P (R)dR (8)

where P (R) is the precision as a function of recall R. In prac-
tice, this integral is estimated by numerical interpolation over
discrete recall levels.
Mean Average Precision (mAP@0.5) is the mean of AP val-

ues across all target classes under an IoU threshold of 0.5:

mAP =
1

N

N∑
i=1

APi (9)

where N is the total number of classes, and APi is the AP
for class i. This metric provides a comprehensive view of the
model’s detection performance in terms of both localization and
classification accuracy.
These metrics collectively provide a comprehensive basis for

measuringmodel effectiveness and enabling comparison across
different settings.

3.4. Ablation Experiment
To examine the roles of different modules in the SAR air-
craft detection task and to evaluate their behavior under vary-
ing combinations, we conducted an ablation study, with the
results summarized in Table 1. The investigation focused on
three modules: MCA module introduces channel-level atten-
tion guided by statistical features; PACmodule organizesmulti-
scale feature aggregation; and EDFFN module refines feature
representation through the joint use of spatial- and frequency-
domain operations.
When considering individual contributions, applying MCA

module alone (Number 1) improves responses to weak targets
while keeping the structure lightweight, which suggests that its
moment-driven attention offers useful cues for initial localiza-
tion. Extending this setting by adding EDFFN module (Num-
ber 5) leads to a notable gain in detection accuracy. The ad-
ditional frequency-domain enhancement helps delineate target
boundaries more reliably and stabilizes feature quality under
noisy conditions.
Interactions among modules provide further insights. Em-

bedding MCA module into the multi-branch structure of PAC
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TABLE 1. Ablation results of the proposed modules.

Number MCA PAC EDFFN mAP (%) Params (M) FLOPs (G)
1

√
89.63 2.3 9.8

2
√ √

92.12 2.9 11.2
3

√ √ √
93.94 4.1 13.7

4
√ √

93.40 3.8 13.5
5

√ √
92.56 3.6 12.4

module (Number 2) results in more coherent integration of fea-
tures across scales, showing advantages when processing low-
contrast targets and complex backgrounds. In contrast, remov-
ingMCA and retaining only PAC and EDFFN (Number 4) con-
tinues to improve accuracy, implying that the direct link be-
tween structural aggregation and frequency-domain refinement
can strengthen semantic modeling with relatively few modules.
The complete configuration (Number 3) integrates all three

modules: MCA refines channel selection; PAC reinforces
scale-aware organization; and EDFFN enriches feature repre-
sentations through spatial and frequency domain processing. In
this setting, detection performance remains stable across differ-
ent image resolutions and complex scenes, demonstrating the
capacity of these modules to operate in combination.
Taken together, the results indicate that the three modules

contribute from different perspectives. MCA emphasizes
channel-level attention with efficiency; PAC enhances
structural organization across scales; and EDFFN provides
additional descriptive capacity through frequency-domain
refinement. Their combinations produce complementary
effects, leading to better detection performance while keeping
the overall model complexity under control.

3.5. Proposed Model on SAR-AIRcraft-1.0
On the SAR-AIRcraft-1.0 dataset, the proposedmodel achieves
stable detection performance across all aircraft categories, with
AP values exceeding 91% in every case as shown in Table 2.
These results indicate that the model maintains strong gener-
alization ability under varying aircraft structures and imaging
conditions, particularly in the presence of the complex textures
and noise patterns typical of SAR imagery. For categories such
as A220, ARJ21, and Boeing737, the model demonstrates high
precision and recall, suggesting that it can provide reliable de-
tection even against challenging background interference.

TABLE 2. Proposed model on SAR-AIRcraft-1.0.

Category AP (%) F1 Precision (%) Recall (%)
A220 93.73 0.87 84.55 90.22

A320_321 92.61 0.87 80.60 94.19
A330 91.91 0.86 77.50 96.88
ARJ21 94.28 0.90 86.32 94.39

Boeing737 94.68 0.90 89.68 91.30
Boeing787 97.60 0.92 91.84 92.83

other 92.76 0.86 83.87 88.78

For more demanding categories such as A330 and “other”,
the model also delivers consistent results. A330, character-
ized by a larger airframe and frequent overlap with background
clutter, presents higher detection difficulty, and yet the model
still achieves 91.91% AP and nearly 97% recall, reflecting its
ability to capture large-scale spatial patterns. The “other” cat-
egory, which aggregates a wide range of aircraft instances out-
side the six common types, involves substantial intra-class vari-
ation that typically complicates classification and localization.
Nonetheless, the model attains 92.76% AP and maintains a bal-
anced trade-off between precision and recall, suggesting that
the designed architecture adapts effectively to category diver-
sity and structural complexity.

3.6. Comparison with Other Aircraft Detection Models
As shown in Table 3, we compare the proposed model with sev-
eral mainstream detection methods on the SAR-AIRcraft-1.0
dataset. It can be observed that traditional approaches such as
Faster Region-based Convolutional Neural Network (RCNN)
and Single Shot MultiBox Detector (SSD) exhibit clear limita-
tions in either detection accuracy or inference efficiency. The
former has a parameter count of 139.1M and 370.2G Floating
Point (FLOP) operations, making it unsuitable for efficient de-
ployment; the latter, while more compact, achieves relatively
lower accuracy (86.52%), limiting its applicability in complex
target scenarios.

TABLE 3. Proposed model on SAR-AIRcraft-1.0.

Model mAP (%) Params (M) FLOPs (G)
Faster RCNN 82.69 139.1 370.2

SSD 86.52 26.3 62.8
YOLOv5s 92.87 7.2 16.5
YOLOv8s 93.05 11.2 28.6

RT-DETR-R18 93.26 20.0 60.0
YOLOv11s 93.31 9.4 21.5
YOLOv12s 93.40 9.3 21.4

ours 93.94 4.1 13.7

RT-DETR-R18 achieves a slightly higher mAP of 93.26%
than YOLOv8s, but its larger model size (20.0M parame-
ters and 60.0G FLOPs) makes it less suitable for resource-
constrained environments, where smaller architectures are pre-
ferred. YOLO-based models, including YOLOv5s, YOLOv8s,
YOLOv11s, and YOLOv12s, demonstrate a gradual progres-
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(a)

(b)

(c)

(d)

(e)

FIGURE 6. Comparison of detection results on the SARAircraft1.0
dataset. (a) Ground truth. (b) RT-DETR-R18. (c) YOLOv11s. (d)
YOLOv12s. (e) Ours.

sion in detection performance, with mAP values ranging from
92.87% to 93.40%. While these results reflect steady advances,
there remains room for further exploration in balancing detec-

tion accuracy and model efficiency, particularly in scenarios
that demand both high precision and lightweight design.
In contrast, our method achieves an mAP of 93.94% us-

ing only 4.1M parameters and 13.7G FLOPs, outperform-
ing all compared models. This result not only demonstrates
the model’s strong target recognition capability within an ex-
tremely compact structure but also emphasizes its suitability
for real-world scenarios with strict computational and storage
constraints, such as on-orbit satellites or unmanned aerial vehi-
cle (UAV)-based systems. The design strikes a well-balanced
trade-off between structural efficiency and detection perfor-
mance, demonstrating its effectiveness and application poten-
tial in aircraft target detection on SAR imagery. As shown in
Figure 6, compared to other advanced models, our model is the
only one that successfully detects and accurately identifies all
targets, further validating its superiority in detection complete-
ness.

4. CONCLUSION
This paper proposes a lightweight SAR aircraft target detection
network that combines multi-branch collaborative calibration
and frequency-domain feature enhancement. Experimental re-
sults show that the network achieves an mAP of 93.94% on a
SAR-AIRcraft-1.0 dataset, surpassing current leading detection
models such as YOLOv12s and RT-DETR-R18, demonstrating
the effectiveness and advanced nature of the designed archi-
tecture. The proposed model has only 4.1M parameters and
13.7G FLOPs, emphasizing its excellent lightweight character-
istics while maintaining high accuracy. This makes the model
highly suitable for the deployment on resource-constrained
platforms (such as satellites and drones) and provides a prac-
tical technical solution for SAR image target detection tasks.
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