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ABSTRACT: This paper presents a novel high-resolution brain source reconstruction method for Brain-Computer Interface (BCI) appli-
cations using a deep learning-based direct inversion approach. The proposed framework integrates electroencephalography (EEG) data
simulated via the FieldTrip toolbox and leverages a modified U-Net architecture trained to directly estimate the active and inactive cor-
tical source regions. Unlike traditional inverse methods such as Minimum Norm Estimation (MNE), LORETA, and Lasso, the proposed
method bypasses the computational complexity of analytical solutions and offers faster inference times once trained. Experimental results
using a database of 50,000 synthetic models demonstrate a reconstruction accuracy of up to 61.66% under optimized conditions, with a
validation loss of 0.6372 and an F1 score of 61.12%. The method shows improved detection of active brain regions in central cortical
areas and delivers robust spatial reconstructions compared to conventional numerical techniques. Although the performance on certain
edge cases remains limited, the proposed framework offers a promising direction for scalable, real-time source localization in diagnostic
and neuro-rehabilitation applications.

1. INTRODUCTION

Brain-Computer Interfaces (BCIs) have emerged as a pow-
erful tool for interpreting neural activity and enabling in-

teraction between the brain and external devices. They have
shown promising applications in diagnosing and monitoring
neurological disorders such as epilepsy, Parkinson’s disease,
and stroke [1–3]. Most existing BCI systems rely on machine
learning algorithms that output binary classifications, such as
the presence or absence of a neurological event. However, in
more advanced applications, particularly post-stroke rehabili-
tation using neurofeedback, there is a need for high-resolution
functional brain imaging to evaluate changes in neural connec-
tivity. Such imaging allows clinicians to assess neuroplasticity,
the brain’s ability to reorganize and form new connections, pro-
viding objective insights into the rehabilitation process [4].
A major challenge in achieving high-resolution brain imag-

ing through noninvasive modalities like EEG lies in solving the
inverse problem of source reconstruction, which is inherently
ill-posed and computationally intensive. Several conventional
methods have been developed to address this. The Bayesian
approach combines prior knowledge with the likelihood of the
observed data to estimate source parameters, but its accuracy
depends heavily on prior knowledge, and it demands substantial
computational resources [5]. The Equivalent Current Dipole
(ECD) model assumes a small number of focal sources and
uses nonlinear optimization to minimize the error between pre-
dicted and observed signals; however, its performance degrades
with multiple or distributed sources [6–8]. MinimumNorm Es-
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timation (MNE) provides a regularized least-squares solution
by minimizing the total source power, but it suffers from poor
spatial resolution and over-smoothing [9, 10]. Beamforming
techniques use spatial filters to isolate activity in specific re-
gions, but they are vulnerable to noise and source correlation,
often leading to localization errors in complex source configu-
rations [1, 5].
A growing body of work has investigated hybrid frameworks

that combine physical modeling and deep learning to mitigate
the ill-posedness of EEG/MEG inverse problems. Physics-
Informed Neural Networks (PINNs) embed the governing par-
tial differential equations of neuro-electromagnetic propaga-
tion directly into the network loss, improving source estima-
tion by enforcing biophysical consistency and reducing depen-
dence on large labeled datasets [13]. Complementary Bayesian
field-based techniques from Information Field Theory (IFT)
treat cortical activation as a continuous stochastic field and
provide principled tools for prior-informed regularization and
uncertainty quantification, which improve robustness in un-
derdetermined inverse reconstructions [14]. In addition, opti-
mization methods grounded in information geometry model the
parameter space with a Riemannian structure rather than Eu-
clidean assumptions, stabilizing convergence and enhancing in-
terpretability of estimated source distributions [15]. Together,
these physics-regularized and geometrically informed learning
strategies offer a promising avenue to improve spatial fidelity
and computational efficiency beyond conventional analytical
and purely data-driven approaches.
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FIGURE 1. Schematic of full neuroelectromagnetic source reconstruction including forward and inverse approaches [11].

These traditional methods, while foundational, are limited by
their dependence on prior assumptions, sensitivity to noise, and
reliance on iterative optimization or matrix inversion, which
hinder their scalability and real-time applicability. In response,
we propose a deep learning-based direct inversion approach
that learns the nonlinear mapping from EEG measurements
to source activations using a U-Net architecture. By gen-
erating a synthetic dataset of over 50,000 paired EEG and
source models through the FieldTrip toolbox and Finite Ele-
ment Method (FEM), the model is trained to reconstruct dis-
tributed cortical activity with high spatial fidelity. This frame-
work eliminates the need for iterative inverse solvers, offer-
ing rapid, noise-resilient, and high-resolution source recon-
structions, ideally suited for real-time BCI applications such
as neurofeedback and stroke rehabilitation monitoring. In con-
trast to standard U-Net implementations, the proposed model
incorporates several architectural innovations tailored specifi-
cally for EEG inversemodeling, including attention-augmented
skip connections, residual encoder-decoder blocks, and a multi-
stage dimension-correction mechanism that expands the 447-
element sensor input to a 15,684-node cortical mesh. This cus-
tomized design enables direct inversion without spatial priors
or regularization terms, distinguishing the method from exist-
ing deep-learning-based source imaging approaches and allow-
ing it to handle complex distributed activations with improved
stability and scalability.

2. SOURCE RECONSTRUCTION IN NEURO-
ELECTROMAGNETIC

At the core of neuro-electromagnetic imaging lies the analyt-
ical solution of the neuro-electromagnetic problem, structured
around two key components: the Forward Problem Path and
the Inverse Problem Path [9, 10]. Figure 1 illustrates the struc-
ture of the neuro-electromagnetic source reconstruction [11].
Neural activity is described physiologically as originating from
networks of interacting neurons or neural populations, often
modeled as interconnected neural masses [12]. These models

predict the current source density (CSD), reflecting the activity
at a biophysical level. The CSD is then translated into mea-
surements using a volume conductor model, which accounts
for the conductive properties of head tissues and sensor con-
figurations [2, 4]. Inverse methods aim to reverse these for-
ward models to reconstruct the CSD or neural sources [5, 12].
The Forward Problem involves modeling how neural activity
generates EEG or MEG signals. Given the source configura-
tion — such as the location and orientation of neuronal cur-
rents — the forward problem predicts the resulting signals at
the electrodes or sensors [2, 9]. The central challenge in neuro-
electromagnetic imaging lies in solving the Inverse Problem:
given measurements of electrical or magnetic fields on the
scalp, how we can accurately localize the neuronal sources that
generated them [1, 5]. The inverse problem is inherently ill-
posed, as different source configurations may produce similar
measured signals. This requires the use of advanced computa-
tional and mathematical techniques to estimate the most plau-
sible source distributions based on the observed data [5, 6].

2.1. Forward Model
The forward problem fundamentally computes how neural cur-
rents within the brain generate measurable electromagnetic sig-
nals on the scalp. This involves: Volumetric Current Re-
construction: Mapping the distribution of electrical activity
throughout the brain’s volume; Impedance Inversion: Estimat-
ing the electrical conductivity of different brain tissues, which
is essential for precise modeling; Surface Voltage Computation:
Relating internal neural activity to the measurable EEG/MEG
signals on the scalp. The forward path relies heavily on sophis-
ticated numerical techniques, such as Finite Element Method
and Finite Difference Time Domain [11]. The forward model
starts with head modeling. As shown in Figure 2, this model
consists of three types of information: geometrical, anatomi-
cal, and electrical features. To extract the geometrical informa-
tion, we first created a 3D model of the individual using MRI
images. Then, the geometrical data is reconstructed. To relate
this data to the anatomy of the realistic head, segmentation is
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(c)

FIGURE 2. The hierarchical process of head model neuroelectromagnetic source reconstruction, including forward and inverse approaches. (a)
Geometrical Features, (b) Anatomical Features, and (c) Electrical Features [2].

applied, which helps to separate the relevant segments of hu-
man head tissues, such as the scalp, skull, and the white and
gray matter of the brain. In the next step, each segment will be
meshed. In Figure 2, the results of this step are shown by using
the field trip software. The third type of information that needs
to be inserted into the head model is the electrical features. In
neural activity analysis, the head model is considered a volume
conductor, which makes it possible for the currents generated
by the brain to propagate through the head. For the electrical
modeling of the head at low frequency, a crucial parameter for
the forward model is the conductivity of the head tissues. In the
table of Figure 2(c), the relevant electrical features for different
head tissues at 50Hz are shown [11].

After creating the head model, where geometrical, anatom-
ical, and electrical features are integrated, the next step is de-
veloping the source model, with source locations constrained
to the gray matter compartment. This localization is linked to
the segmentation process, which includes creating the triangu-
lar surface meshes and hexahedral volumetric meshes, allow-
ing for precise source localization within the gray matter based
on mesh nodes. Since the sources are placed in the gray mat-
ter, the accuracy of the source model is directly dependent on
the accuracy of the head model. For this, a list of 3D positions
and orientations must be defined and incorporated into the head
model. The final step in the modeling process before solving
the forward problem is sensor localization, which ensures that
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EEGmeasurements accurately reflect the underlying neural ac-
tivity. The typical sensor arrangements for EEG are the 10–20
system on the scalp. The Fieldtrip toolbox is used for coordinat-
ing matching and sensor localization, aligning sensor positions
with the head model to ensure accurate data representation.

2.2. Inverse Model
The inverse problem, on the other hand, reconstructs the un-
derlying neural sources based on measured EEG/MEG data.
This is inherently more challenging, as it is an ill-posed prob-
lem where small changes in the data can result in vastly dif-
ferent solutions. To tackle this, two primary modeling ap-
proaches are employed: Distributed Models: They provide a
comprehensive map of neural activity across broader brain re-
gions; Dipole Models: They offer detailed localization of spe-
cific neural sources. At the biophysical level, the inverse path
estimates current source densities, while at the physiological
level, it models the interactions between neural populations us-
ing frameworks like neural mass models. To ensure accuracy
and stability, the optimization framework integrates a data fi-
delity term, which minimizes the error between modeled and
observed signals, and a regularization term, which constrains
the solution space. Together, the forward and inverse problem
paths form the backbone of neuro-electromagnetic imaging, en-
abling precise and interpretable reconstructions of brain activ-
ity.
In the context of the inverse neuro-electromagnetic problem,

the core challenge is to estimate the brain’s neural sources (e.g.,
current dipoles) that produce the observed signals in EEG or
MEG data. Mathematically, the problem is typically framed
as:

y = L · θ + ϵ (1)
where y represents the observed EEG data (measurements at
the sensors); L is the Leadfield matrix (or forward model) that
describes how each potential source contributes to the signal
observed at each sensor; θ is the source configuration vector
representing the strengths and orientations of the sources; and
ϵ is the noise or error term accounting for measurement noise
and modeling inaccuracies. The inverse neuro-electromagnetic
problem involves solving for θ, given y and L. This is chal-
lenging because L is typically ill-conditioned, leading to mul-
tiple possible solutions for θ. Due to the ill-conditioned nature
of L, there are generally multiple possible solutions for θ. It
makes the problem ill-posed, meaning that small errors in y or
L can lead to large errors in the estimate of θ. To overcome the
ill-posedness, regularization techniques or constraints are often
applied.
From this point of view, methods to solve the inverse neuro-

electromagnetic problem can be generally categorized into
dipole models and distributed models based on how they con-
ceptualize the neural sources, as illustrated in the schematic.
Dipole model-based methods assume that the brain’s neural ac-
tivity can be represented by a small number of discrete dipoles,
each with a specific location, orientation, and strength. In con-
trast, distributed model-based methods assume that neural ac-
tivity is spread out across a large region of the brain, with the
goal of estimating the continuous distribution of sources. Var-

ious methods, including Bayesian analysis, ECD, MNE, and
Beamforming, offer different ways to solve θ, each with unique
strengths suited to different scenarios [11]. The choice of meth-
ods in practice depends on the nature of the data, the assump-
tions about the sources, and the desired properties of the solu-
tion. Each method may yield different estimates of the neural
sources, so selecting an appropriate approach is crucial and of-
ten informed by the specific research or clinical context. Clas-
sic dipole models like ECD and Multiple Signal Classification
(MUSIC) are designed for scenarios involving a small number
of discrete, well-defined neural sources, while distributed mod-
els likeMNE andBeamforming focus on continuous source dis-
tributions [11].

3. THE PROPOSED DEEP LEARNING-BASED DIRECT
INVERSION APPROACH
The origins of EEG and MEG signals lie in the synchronous
activity of large populations of neurons, particularly pyramidal
cells in the cerebral cortex. These neurons generate transmem-
brane currents during synaptic transmission, producing electric
potentials and magnetic fields that propagate through the brain
to the scalp. To decode these complex signals effectively, the
framework employs Convolutional Neural Networks (CNNs),
which excel at extracting spatiotemporal patterns from high-
dimensional data. The advantages of CNNs include Parameter
Sharing: Learning shared filters across the input reduces com-
putational complexity, making the approach scalable; Sparsity:
This principle captures localized patterns in the data, which are
essential for understanding neural activity; Invariance to Lo-
cal Translations: Ensures robustness to small shifts in input
data, making the model reliable under varying conditions. The
CNN pipeline involves several stages: Problem Formulation:
Structuring the EEG/MEG data for neural network processing;
Data Acquisition and Preprocessing: Cleaning and preparing
the data for feature extraction; Feature Extraction: Using con-
volutional layers to identify meaningful patterns in the data;
Model Design and Evaluation: Designing a neural network ar-
chitecture optimized for accuracy and efficiency. By linking
decoding outputs to biological mechanisms, CNNs bridge the
gap between traditional black-box approaches and interpretable
neural dynamics models. The relationship between the forward
simulation and inverse reconstruction processes within this di-
rect inversion framework is illustrated in Figure 3.
The database is created by simulating a head model using

the Fieldtrip toolbox, which includes an array of active and in-
active sources, each represented by 15,684 nodes. Each node
could take on a value of zero (inactive) or one (active). In our
simulation framework, cortical activity is modeled using quasi-
static current dipoles, consistent with the FieldTrip forward
module. Rather than generating time-dependent or frequency-
specific neural waveforms, each dipole is assigned a binary ac-
tivation state (0 or 1), forming a static activation map that indi-
cates which cortical locations are active in a given model. To
solve the forward problem, the finite element method (FEM)
was applied to compute the electric fields at all nodes by solv-
ing the Poisson equations. Because neural activity below ap-
proximately 100Hz is well-approximated under electrostatic
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FIGURE 3. The forward and inverse model in the proposed direct inversion.

FIGURE 4. The architecture of the proposed U-net, including the transposed convolution layers to ensure dimension compatibility.

assumptions, the FEM solver produces spatial electric field dis-
tributions corresponding to each binary activation map. Given
the low-frequency nature of neural activity (below 100Hz),
these equations are treated within an electrostatic framework.
After solving the forward problem, Leadfield matrices for each
source model were computed and stored. This process was
repeated for approximately 50,000 different source models to
generate a comprehensive database that would serve as a foun-
dation for training a neural network. Subsequently, a U-Net

neural network is employed to address the inverse problem,
where EEG signals (representing conductivity fields) were in-
put into the network to predict the corresponding source model.
The goal is for the neural network to estimate each source
node’s states, which are represented as active and inactive re-
gions of the brain. The training dataset consisted of the Lead-
field matrices and their corresponding source models, and the
network is trained on this data to enable it to reconstruct or pre-
dict the source model based on the EEG signals.
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FIGURE 5. The proposed model performance analysis, (top) Model accuracy and loss, and (bottom) the final model evaluation metrics.

The architecture of the proposed U-Net is presented in Fig-
ure 4. To perform inverse source reconstruction, Leadfield
data extracted from FieldTrip is used as input to the network.
Each of the 149 electrodes provides a three-dimensional elec-
tric field vector (Ex, Ey, Ez), resulting in an input vector of
size 447 × 1 (3 components ×149 electrodes). The network’s
output consists of binary activation states across 15,684 source
locations on the cortical surface, where each value indicates the
state of a current dipole (0: inactive, 1: active). This formu-
lation corresponds to a voxel-wise binary classification prob-
lem across the cortex. The proposed U-Net model is imple-
mented inMATLAB. The network employed the rectified linear
unit (ReLU) activation function and is configured in regression
mode, which was suboptimal for this binary classification task.
Consequently, the model struggled to converge effectively: the
root mean square error (RMSE) remained above 60, and the
training loss did not decrease below 2,000 throughout training.
Optimization was performed using the Adam optimizer with
backpropagation. Early stopping was triggered at epoch 31,
with the best model performance recorded at epoch 26. The
final validation loss reached 0.6372 at iteration 31, after ap-
proximately four hours of training.
The mismatch between the relatively small input dimension

(447) and the high-resolution output dimension (15,684) in-
troduced significant architectural challenges. Additional ad-

justments are required in the transposed convolution layers to
ensure dimension compatibility, which necessitated the use of
cropping operations, shown in Figure 5.

4. RESULTS AND DISCUSSIONS
In this section, we demonstrate the performance evaluation of
the proposed method, such as loss function results and recon-
structed images results in two scenarios, including single code
evaluation scenario and comparing to the ground truth scenario.
For this purpose, first we train the proposed convolutional neu-
ral network, and then it is tested to extract its performance char-
acteristics. To address the time-consuming manual data gener-
ation process, a MATLAB script was developed to automate
the creation of new data. This script randomly altered source
models and computed the corresponding conductivity fields,
expanding the database to 5,000 samples. This increase in data
volume was expected to significantly enhance the neural net-
work’s performance. Figure 5 shows the extracted performance
characteristics. Training was performed overnight on a per-
sonal computer under limited hardware conditions. In Table 1,
the summary of the proposedmodel performance is shown [11].
The model was trained for 6 epochs using 3,000 patches per
epoch, reaching a validation accuracy of 68.21% — a mod-
est improvement over previous iterations. To further optimize
the model, a structured prompt was developed to design an im-

73 www.jpier.org



Ojaroudi, Nooshyar, and Ojaroudi

(a) (b)

FIGURE 6. The first evaluated case, (a) the ground truth, and (b) the reconstructed source image.

(a) (b)

FIGURE 7. The second evaluated case, (a) the ground truth and (b) the reconstructed source image.

TABLE 1. Summary of the proposed model performance.

Parametres Dataset Size Model/Method Accuracy Precision Loss Recall: F1 Score:

Extracted Value 50,000 Enhanced U-Net 61.66% 62.07% 0.6372 60.20% 61.12%

proved U-Net-based convolutional neural network. Following
successful debugging and implementation, the updated model
achieved an accuracy of 61.66%, indicating an improvement in
predictive performance.
The three test samples presented in Figures 6 through 8 offer

valuable insights into the strengths and limitations of the pro-
posed deep learning-based source reconstruction framework.
In the first evaluated case (Figure 6), the reconstructed source
image closely mirrors the ground truth with high spatial ac-
curacy. Active cortical regions are precisely localized, and
the reconstructed distribution retains the structural integrity of
the original source model. This case highlights the model’s
capacity for high-fidelity reconstruction when the input data
aligns well with the patterns learned during training. The sharp
boundaries and well-defined activation areas suggest that the
model performs the best when dealing with centralized, well-
separated source configurations. Artifact suppression is highly

effective in this instance, with no visible distortions or irreg-
ularities, pointing to the model’s potential in clinical applica-
tions where accurate localization of brain activity is critical. In
contrast, the second test case (Figure 7) demonstrates slightly
reduced performance. While the general structure and loca-
tion of active regions remain consistent with the ground truth,
subtle inaccuracies emerge, particularly in the peripheral ar-
eas. Some smearing is evident at the edges of activation zones,
and low-intensity regions are reconstructed with less precision.
This case suggests that the model, while still robust, becomes
slightly less accurate when dealing with more complex or dif-
fuse source patterns. Nonetheless, the preservation of primary
activation regions and the absence of significant artifacts con-
firm the method’s capacity for generalization and its resilience
to moderate variation in input conditions. The third evaluated
case (Figure 8) presents the most challenging scenario for the
reconstruction model. In this instance, the predicted activation
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(a) (b)

FIGURE 8. The third evaluated case, (a) the ground truth and (b) the reconstructed source image.

map shows a marked departure from the ground truth. The
key regions of activity are either poorly localized or entirely
missed, and the overall spatial correspondence is significantly
diminished. The output appears more diffuse, with a notice-
able loss of structural definition and increased smoothing ef-
fects. This failure to reconstruct accurate source patterns may
be attributed to the complexity of the underlying source model
or the presence of noise and overlapping activations that were
insufficiently represented in the training data. The model’s dif-
ficulty in this scenario highlights its current limitations in han-
dling edge cases and suggests a need for enhanced network ar-
chitecture or data augmentation strategies to improve robust-
ness across diverse brain activity patterns.
Overall, the comparison across these three test cases reveals

a clear performance gradient that reflects the interplay between
source complexity and model generalization. The proposed
U-Net-based approach excels in scenarios with well-defined,
centralized sources but faces challenges in accurately resolving
more intricate or irregular source distributions. These results
reinforce the importance of continued refinement, particularly
in terms of model training with more varied and representative
datasets, to enhance performance across a broader spectrum of
brain activation scenarios.

4.1. Spatial Accuracy Metrics: Localization Error and Active-
volume Error
To complement classical classification-based evaluation, two
spatial metrics are commonly used in electrophysiological
source imaging: Localization Error (LE) and Active-Volume
Error (AVE).
For the Localization Error (LE), the centroid of an activation

map is defined as:

c =
1

|A|
∑

i∈A
xi (2)

where A is the set of active nodes, and xi denotes the 3D coor-
dinates of node i.

The Localization Error between the predicted and ground-
truth activations is:

LE =∥ cgt − cpred ∥ (3)

reported in millimeters. As emphasized in the neurological lit-
erature, localization deviations greater than 10mm (1 cm) may
substantially change clinical interpretation.
For the Active-Volume Error (AVE), the cortical surface is

modeled using a tetrahedral finite-element mesh. The physical
volume associated with each node is computed from the sur-
rounding tetrahedra:

Vnode(i) =
1

ki

∑
t∈T (i)

Vt (4)

The mean node volume is then:

V̄node =
1

N

∑N

i=1
Vnode(i) (5)

The total predicted and ground-truth activation volumes are:

Vpred = |Apred|V̄node, Vgt = |Agt|V̄node (6)

The Active-Volume Error is:

AV E = |Vpred − Vgt| (7)

reported in cubic centimeters (cm3), enabling direct compari-
son with clinically meaningful thresholds such as 1 cm3.
To quantitatively assess the spatial accuracy of the recon-

structed activation maps, we computed the Localization Error
(LE) and Active-Volume Error (AVE) for the three representa-
tive examples shown in Figures 6–8. LE captures the centroid-
to-centroid mismatch between predicted and ground-truth ac-
tivations, while AVE measures the absolute difference in esti-
mated activation volume.

• Case 1 (Figure 6) exhibited the largest discrepancies (LE:
22mm ⟩, AVE: ⟨3 cm3⟩), matching the visibly diffuse and
mislocalized reconstruction.

• Case 2 (Figure 7) produced moderate spatial deviations
(12.5mm ⟩, and an AVE: ⟨1.2 cm3⟩), reflecting the slightly
blurred activation boundaries.
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FIGURE 9. The validation process for comparing the proposed deep learning direct inversion method with the conventional numerical FieldTrip
method.

• Case 3 (Figure 8) showed the highest spatial fidelity, with
an LE of ⟨6mm⟩ and an AVE of ⟨0.5 cm3⟩, consistent with
the visually accurate reconstruction.

These results confirm that the proposed deep-learning model
is most accurate for focal, centralized activations while show-
ing reduced precision for edge-case or spatially irregular source
configurations.

4.2. The Validation Process for Comparing the Proposed
Method with Conventional FieldTrip
In addition, to validate the performance of our proposed
method, we conducted a comparative evaluation against a
conventional inverse source reconstruction technique im-
plemented in the FieldTrip toolbox, specifically using the
analytical Minimum Norm Estimation (MNE) method. In ad-
dition to MNE, two additional inverse reconstruction families
were evaluated to provide a more comprehensive comparison.
First, we considered the classical smoothness-constrained
minimum-norm estimators implemented in FieldTrip, namely
LORETA, sLORETA, and eLORETA. These approaches
enforce spatial smoothness through Laplacian-based regular-
ization and represent widely used benchmarks for distributed
source localization. Second, we incorporated sparse ℓ1/Lasso-
style estimators, which promote focal activity patterns through
sparse regularization and have recently gained traction for
EEG inverse modeling. The validation process is illustrated in

Figure 9, while a detailed performance summary is presented
in Table 2. The comparison reveals a notable trade-off between
computational efficiency and reconstruction accuracy. The
FieldTrip method, while delivering a slightly higher accuracy
of 70%, operates using an analytical framework that lacks
explicit metrics for precision, recall, and F1 score. Moreover,
it requires 55 seconds of computation per reconstruction,
reflecting a considerable computational overhead that may
limit its applicability in real-time scenarios. In contrast, the
proposed deep learning-based direct inversion method, pow-
ered by an enhanced U-Net architecture and trained on a large
synthetic dataset, achieves reconstruction in just 6 seconds.
While its overall accuracy is slightly lower at 61.66%, it
offers balanced classification performance, as indicated by a
precision of 62.07%, a recall of 60.20%, and an F1 score of
61.12%. The quantitative results for all methods, including
accuracy, runtime, and available performance metrics — are
summarized in Table 2. LORETA-based methods achieved the
highest accuracy (72%) but required the longest computation
time (159 seconds per reconstruction). Sparse Lasso-type
estimators exhibited moderate performance (58% accuracy)
with reduced computational cost relative to LORETA. The
proposed deep learning method achieved balanced classi-
fication metrics with substantially lower inference time (6
seconds), demonstrating a favorable trade-off for real-time
BCI applications. These metrics demonstrate the method’s
capability to deliver consistent and generalizable results across
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TABLE 2. The composition summary of the proposed method with conventional method.

Inverse Source
Reconstruction

Methods
Loss Function

Optimization
Method

Running
Time

Accuracy Precision Recall
F1

Score

FieldTrip N/A (analytical) (MNE) 55 Sec. 70% N/A N/A N/A

FieldTrip —
LORETA/sLORETA

/eLORETA

Smoothness/
minimum-norm

+ spatial
smoothness
constraint

Minimum-norm
+ Laplacian/

spatial-smoothness
regularization

159 Sec 72% N/A N/A N/A

Sparse/Lasso-style
(e.g., group-Lasso)†

ℓ1/sparse Prior
Sparse-optimization/
regularized inversions

(sparse prior)
90 Sec 58% N/A N/A N/A

Proposed DL Method
(Enhanced U-Net)

Binary
Cross-Entropy

Adam Optimizer 6 Sec. 61.66% 62.07% 60.20% 61.12%

diverse activation patterns. The rapid inference and structured
classification performance underscore the model’s suitability
for real-time brain-computer interface (BCI) applications, such
as neurofeedback and rehabilitation monitoring. However,
the evaluation also highlights the need for further refinement
to improve predictive accuracy, particularly in complex or
low-contrast source configurations. Overall, this comparative
analysis confirms that the proposed deep learning approach is a
viable and scalable alternative to traditional methods, offering
substantial gains in computational speed without a prohibitive
loss in accuracy.

5. CONCLUSION
This work introduced a deep learning-based direct inversion
framework for EEG source reconstruction, aiming to improve
the spatial resolution and computational efficiency of brain
source imaging. The proposed U-Net architecture was trained
on a dataset of 50,000 synthetic source models and validated
using both global performance metrics and visual comparison
to ground truth activations. The model achieved an accuracy
of 61.66%, with a validation loss of 0.6372, and an F1 score
of 61.12%, outperforming earlier training attempts and demon-
strating the feasibility in reconstructing central cortical activa-
tions. Compared to conventional methods likeMNE LORETA,
and Lasso and in FieldTrip, our approach offered significantly
reduced inference times post-training and avoided the need for
iterative optimization during testing. However, performance
varied depending on the location of the active sources, and chal-
lenges remained with detecting activations in edge regions. Fu-
ture work will focus on refining the network architecture, ad-
dressing class imbalance, and utilizing GPU resources to train
on larger and more diverse datasets. With these improvements,
the proposed model holds strong potential for real-time BCI
systems, neurofeedback applications, and post-stroke rehabil-
itation monitoring.
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