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ABSTRACT: An original computational framework is developed to simulate the propagation of ultrashort laser pulses with arbitrary
temporal and spectral profiles through uniform linear dielectric materials. The study investigates how spectral phase sampling during
propagation affects computational efficiency and accuracy. The proposed approach enables a comprehensive analysis of ultrashort pulse
evolution in both the time and frequency domains. To demonstrate its effectiveness, the algorithm is applied to various propagation
phenomena, such as temporal and spectral shifts, pulse broadening, asymmetric distortions, and chirping in dispersive media, using a
wavelet-based time-frequency decomposition.

1. INTRODUCTION

The propagation of ultrashort optical pulses through linear
media has been extensively investigated using analytical

approaches applied to systems such as free space [1–5], dis-
persive materials [6, 7], diffractive optics [8, 9], focusing com-
ponents [10–12], and apertures [13–16].
However, only a limited number of numerical simulations

have been reported. Most existing studies rely on analytical for-
mulations based on simplified pulsemodels, typically assuming
plane-wave or TEM00 Gaussian spatial distributions combined
with Gaussian temporal profiles. For example, Sheppard and
Gan [3] analyzed spectral transformations in Gaussian pulsed
beams, while Agrawal [4] examined spatial broadening effects
in diffracted pulses with Gaussian spatial and temporal shapes.
Although these analytical approaches provide useful insight,

they cannot easily accommodate arbitrary pulse shapes, and
closed-form solutions often require significant approximations.
To overcome these limitations, numerical simulation methods
have emerged as powerful alternatives for studying pulse prop-
agation dynamics. A major step was achieved by Kaplan [5],
who introduced a fast Fourier transform (FFT)-based model al-
lowing detailed temporal analysis of arbitrarily profiled pulses.
Recent breakthroughs in ultrashort pulse propagation re-

search have highlighted critical limitations in classical analyti-
cal techniques and underscored the need for a robust numerical
framework capable of modeling the full complexity of pulse
evolution. In addition, recent studies have demonstrated the
relevance of advanced wavelet-based signal processing tools to
characterize broadband ultrashort pulses with improved time-
frequency localization, enabling a deeper understanding of
spectral distortions, chirp evolution, and phase-induced shap-
ing mechanisms during propagation [24–27]. These develop-
ments further confirm the need for efficient computational tech-
niques capable of capturing both temporal and spectral dynam-
ics in dispersive media.

* Corresponding author: Mounir Khelladi (mo.khelladi@gmail.com).

In this context, we present a comprehensive computational
approach for simulating ultrashort pulse propagation in linear,
homogeneous media. Building upon wave-optical field rep-
resentation theory [17], our method offers three major advan-
tages: (1) simplified computation of pulsed field merit func-
tions, (2) joint time-frequency domain analysis at arbitrary
propagation planes, and (3) efficient tracking of spectral and
temporal evolution over any distance. The proposed frame-
work models propagation through its spectral equivalent, intro-
ducing optimized phase-sampling rules that ensure numerical
accuracy while reducing the number of required spectral com-
ponents. These criteria significantly enhance computational ef-
ficiency, making the method suitable for broadband ultrashort
pulse analysis.

2. FEMTOSECOND-SCALE TEMPORAL RESOLUTION
This relationship becomes particularly significant for few-cycle
pulses, where the Fourier transform limitation defines the short-
est achievable duration for a given spectral width. Mathemat-
ically, this can be expressed as τ · ∆w ≥ K, where K is a
numerical constant depending on the pulse shape and the defi-
nitions used for duration and bandwidth.

τ ·∆w ≥ 2 · π · cB
The parameter cB represents a pulse-shape-dependent con-

stant, while w denotes the angular frequency. This relationship
is fundamentally connected to both temporal frequency (f) and
wavelength (λ) through the following expressions:

w = 2 · π · f =
2 · π · c

λ
(1)

Equation (1) reveals two fundamental principles of ultrashort
pulse generation: First, the pulse duration is fundamentally lim-
ited by the available spectral bandwidth, requiring extremely
broad spectra for shorter pulses. Second, the transform-limited
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condition represents the theoretical minimum duration achiev-
able for a given spectrum, where all frequency components re-
main perfectly phase-aligned in time.
The time-bandwidth relationship in Equation (1) establishes

an inequality (τ · ∆w ≥ 2πcB), where equality indicates
a transform-limited pulse, and higher values correspond to
chirped pulses with temporally dispersed frequency compo-
nents.
This chirping phenomenon arises when the spectral phase be-

comes nonuniform, introducing a frequency modulation across
the pulse envelope. In practice, ultrashort pulse systems of-
ten operate beyond the transform limit due to intentional chirp-
ing for amplification or unavoidable dispersion effects during
propagation.

2.1. Theoretical Framework for Ultrashort Pulse Characteriza-
tion
Ultrashort laser pulses are coherent electromagnetic wave pack-
ets characterized by their temporal coherence, spatial coherence
(beam quality and focusing properties), temporal contrast, and
peak power. While these pulses exhibit complex spatiotem-
poral characteristics, this work focuses specifically on their
temporal-domain behavior.

2.1.1. Time-Resolved Analysis of Pulse Envelope and Phase

This study focuses exclusively on the temporal evolution of the
electric field, adopting a spatially homogeneous model where
E(x, y, z, t) ≡ E(t). Although the physical electric field is
strictly real-valued, we employ a complex analytic representa-
tion E(t) for mathematical convenience.
This approach: Simplifies analysis by enabling phase-

amplitude decomposition (E(t) = A(t)eiϕ(t)); Preserves
physical meaning since measurable fields correspond to
Re[E(t)]; Facilitates spectral-domain transformations via
Fourier methods.

Ẽ (t) = Ã (t) · e−iw0t (2)

The complex envelope Ã(t) is conventionally defined such
that the physical electric field corresponds to twice the real part
of this complex representation, with ω0 representing the central
carrier frequency (typically chosen as the spectral midpoint).
This formulation separates the rapidly oscillating carrier (at fre-
quency ω0) from the slowly varying envelope A(t).

Ẽ (t) =
∣∣∣Ẽ (t)

∣∣∣·eiφ0 ·e−iφ(t) =
∣∣∣Ẽ (t)

∣∣∣·eiφ0 ·e−i(∅(t)−w0) (3)

The term φ(t) represents the temporal phase of the pulse,
whereas φ0 represents the absolute phase, which defines the
alignment between the carrier wave and pulse envelope (see
Figure 1). Note that ∅(t) excludes the dominant linear term
wt associated with the carrier frequency. The absolute phase
φ0 becomes critically important for few-cycle pulses, influenc-
ing processes such as high-harmonic generation and carrier-
envelope phase effects.
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FIGURE 1. The time-dependent electric field E(t) of an ultrashort op-
tical pulse comprising just a few oscillation cycles.

The instantaneous frequencyw(t) of a pulse is defined as the
time derivative of its temporal phase φ(t), given by:

w (t) =
dφ(t)

dt
=

d∅(t)
dt

− w0 (4)

Consequently, any nonlinearity in the temporal phase φ(t)
produces a time-dependent frequency modulation ω(t). This
phase-to-frequency conversion characterizes chirped pulses,
where the instantaneous frequency varies across the pulse en-
velope (as illustrated in Figure 2).
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FIGURE 2. Electric field of an ultrashort laser pulse exhibiting strong
positive chirp. The temporal variation in frequency is evident, with
longer wavelengths (lower frequencies) at the leading edge (left) and
shorter wavelengths (higher frequencies) at the trailing edge.

2.1.2. Frequency Domain Description

For most analytical purposes, the frequency-domain represen-
tation of the pulse is more convenient than its time-domain
counterpart. This spectral form is derived from the temporal
electric field using the complex Fourier transform, expressed
mathematically as:

E (w) =
1√
2π

∫ +∞

−∞
E (t) · eiwt · dt (5)

Similar to the time domain, Ẽ(w) can be expressed as:

Ẽ (w) =
∣∣∣Ẽ (w)

∣∣∣ eiφ(w) (6)
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whereφ(w) represents the spectral phase. Applying the inverse
Fourier transform returns the field to the time domain:

Ẽ (t) =
1√
2π

∫ +∞

−∞
Ẽ (t) · eiwt · dw (7)

Equation (8) shows that the electric field Ẽ(t) can be in-
terpreted as a coherent superposition of monochromatic wave
components. The measurable spectrum S(ω) ≡ |Ẽ(ω)|2 pro-
vides the spectral energy distribution but does not contain phase
information.
The spectral phase ∅(w) can be expanded as a Taylor series

around the central frequency ω0:

∅ (w) = ∅0 +
∞∑

n=1

1

n!
an(w − w0)

n (8)

with an = dnφ
dwn

∣∣∣
w=w0

.

Substituting this expansion into Equation (8) reveals that
the constant and linear phase terms leave the pulse shape un-
changed: the constant term only affects the absolute phase,
while the linear term introduces a temporal shift. The higher-
order terms, however, cause pulse reshaping by altering the
relative timing of spectral components. Any nonlinear phase
variation modifies the frequency-dependent timing, leading to
pulse reshaping.

3. FEMTOSECOND PULSE PROPAGATION THROUGH
TRANSPARENT OPTICAL MEDIA
In practical optical systems, all components introduce tempo-
ral broadening of ultrashort pulses due to group-velocity dis-
persion (GVD) acting over their broad spectra. Dispersion
management is therefore essential for maintaining pulse in-
tegrity [18]. For Gaussian pulses, the spectral shape remains
Gaussian under Fourier transformation, and the spectral repre-
sentation can be written as:

E (w) = E0 exp
(
−(w − w0)

2

4 · Γ

)
(9)

where Γ determines the spectral width of the Gaussian pulse.
Upon propagating through distance x, the pulse acquires amod-
ified spectral profile given by:

E (w, z) = E (w) exp [±ik (w) z] (10)

with k (w) = n(w)·w
c .

The frequency-dependent propagation factor k(ω) is now ex-
panded as a Taylor series about the central frequency ω0. This
approximation, valid when the bandwidth satisfies ∆ω ≪ ω0,
enables semi-analytical solutions for pulse propagation effects.
While this condition becomes marginal for few-cycle pulses,
substituting the Taylor expansion into Equation (11) yields the
following spectral representation:

k (w) = k (w0) + k
′
(w − w0) +

1

2
k

′′
(w − w0)

2
+ · · · (11)

where k′
=
(

dk(w)
dw

)
w0

and k′′
=
(

d2k(w)
dw2

)
w0

.

E (w, z) = exp
[
−ik (w0) z − ik

′
z (w − w0)

−
(

1

4Γ
+

i

2
k

′′
)
(w − w0)

2

]
(12)

We reconstruct the propagated pulse E(x, t) by applying the
inverse Fourier transform to the modified spectrum Ẽ(x, ω)
from Equation (13).

e (t, z) =

∫ +∞

−∞
E (w, z) · e−iwtdw (13)

so that:

e (t, z) =

√
Γ(z)

π
· exp

[
iw0

(
t− z

V∅(w0)

)]

× exp

[
−Γ (z)

(
t− z

Vg (w0)

)2
]

(14)

where:

V∅ (w0) = (w/k)w0
,

Vg (w0) =

(
dw

dk

)
w0

,

1/Γ (z) =
1

Γ
+ 2ik

′′
z

(15)

The first exponential term in Equation (15) indicates that the
central frequency component ω0 accumulates a phase delay of
z
V∅

during propagation. Although this phase shift affects the
complex field representation, it has no physical consequences
since:

1. The absolute phase is not experimentally observable.
2. The phase velocity V∅(w0) describes the propagation of:

Infinite plane wave components, Monochromatic solu-
tions (ω = ω0), and Non-informational wavefronts, which
extend infinitely in time and therefore carry no localized
physical information.

Equation (15) reveals through its second term that the pulse
maintains a Gaussian envelope during propagation. This enve-
lope experiences a temporal delay of z/Vg , where Vg represents
the group velocity of the pulse.
Analysis of the second term in Equation (15) reveals that

pulse propagation causes envelope distortion characterized by
the form factor Γ(z), where:

1

Γ (z)
=

1

Γ0
+ 2ik

′′
z (16)

where Γ0 is the initial spectral width parameter, and k
′′ is the

second derivative of the propagation constant with respect to
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angular frequency. This relation describes how the pulse enve-
lope becomes distorted and temporally broadened during prop-
agation through a dispersive medium.
The form factorΓ(z) exhibits frequency dependence through

its angular frequency (ω) relationship, expressed as k′′
(w).

k
′′
=
(
d2k/dw2

)
w0

=
d

dw

(
1

Vg

)
w0

(17)

The quantity β2 ≡ ∂2k/∂ω2, known as Group Velocity Dis-
persion (GVD), characterizes how the medium’s group velocity
of a medium varies with frequency across its spectral compo-
nents. Expressed in fs2/mm, this parameter determines the tem-
poral broadening of the pulse envelope as it propagates, defin-
ing the pulse width τ(z) at a distance z along the propagation
axis.

∆τz = ∆τ0

√
1 + 4 · (Γ · k′′z)

2 (18)

with k′′
= λ3

2·π·c2
d2n
dλ2 , Γ = 2 log 2

∆2
0
.

3.1. Application in Silica
The index of SiO2 is represented by the following Equa-
tion (19):

n2 (w) = 1 +
∑m

i=1

Biw
2
i

w2
i − w2

(19)

with:

B1 = 0.6961663; λ1 = 0.0684043µm
B2 = 0.4079426; λ2 = 0.1162414µm
B3 = 0.8974794; λ3 = 9.896161µm

wherewi is the frequency of resonance, andBi is the amplitude
of resonance.
In optical fibers, parameters wi and Bi are experimentally

determined by fitting the measured dispersion data to Equa-
tion (19) withm = 3. These coefficients vary with the material
composition of the fiber core, thereby reflecting how the core
refractive index profile influences the fiber’s dispersive prop-
erties [20–21].

3.2. Comparative Analysis of Dispersion Parameters across
Different Media
The coefficientCD can be defined to quantify the magnitude of
frequency shifts in the system:

CD =
z

D
(20)

with D =
∆2

0
z·k′′ .

Parameter D, known as the dispersion parameter, indicates
how significantly chromatic dispersion affects light propaga-
tion, while z measures how far the laser pulse travels through
the material [19]:
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FIGURE 3. The wavelength dependence of group velocity dispersion
(k

′′
) and the dispersion parameterD (solid line) in SiO2.

- If z < D, second-order dispersion effects (β2 ≈ 0) are
insignificant for these propagation conditions.

- If z > D, the inclusion of dispersion terms is essential for
complete physical description.

Figure 3 reveals the characteristic zero-dispersion wave-
length (ZDW) near 1.27µm. While k

′′ governs phase-
matching in nonlinear processes, D is critical for predicting
pulse broadening telecommunication bands.
We analyze the effects of second-order dispersion on pulse

propagation. As the pulse advances through the medium, group
velocity dispersion (GVD) causes temporal broadening of its
envelope. In essence, when an ultrashort optical pulse propa-
gates through a transparent material, it undergoes three primary
modifications: a group delay, temporal stretching, and the im-
position of a frequency chirp.

3.3. Dispersive Pulse Broadening
Group Velocity Dispersion (GVD) describes the variation in
propagation speeds among the different frequency components
of a pulse traveling through a dispersive medium. This effect
arises from the wavelength dependence of the refractive index
of the material. While GVD modifies the temporal profile of
the laser pulse, causing it to spread and acquire chirp, it does
not alter its spectral amplitude.
A transform-limited pulse, often referred to as a short,

unchirped pulse, acquires a positive chirp (up-chirp) after
propagating through a normally dispersive medium such as
silica glass. In this regime, higher-frequency components (e.g.,
blue light) travel more slowly than lower-frequency compo-
nents (e.g., red light). Conversely, in anomalously dispersive
media, the pulse develops a negative chirp (down-chirp), where
higher frequencies propagate faster than their lower-frequency
counterparts.
In our initial analysis, we considered only the second-order

term in the Taylor expansion of the phase. It should be
noted, however, that Fourier analysis remains applicable solely
for pulse durations exceeding approximately 60 fs. Beyond
this, we incorporate all higher-order dispersion effects in the
medium to ensure a complete description of the physical mech-
anisms governing ultrashort-pulse propagation.
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When higher-order dispersion is taken into account, the pulse
not only undergoes temporal broadening but also develops
asymmetry, with the off-axis regions of the pulse exhibiting a
larger temporal width than the on-axis component [20].

∅(2)

∅(3)

∅(4)

∅(5)

∅(6)

 = (−1)
n
2 · π · z

[
λ

2 · π · c

]n


1 0 0 0 0

3 1 0 0 0

12 8 1 0 0

60 60 15 1 0

360 480 180 24 1

 (21)

We can encode the Taylor expansion up to order n in a matrix
[A], which compactly captures all the relevant terms Aij .

∅ (w) = ∅ (w0) + (w − w0) ∅(1)

+

p∑
i=2

1

i!
(w − w0)

i ∅(i)
∣∣∣
w=w0

+ θ (w) (22)

∅(p) = (−1)
p · 2π · z

[
λ

2 · π · c

]p
p∑

j=2

λj−1A(p− 1, j − 1)n(j) (23)

with p > 2.
The propagation effects, including spectral shifts, pulse

broadening, and asymmetric distortion in dispersive media
(Figure 4 and Figure 5), observed both analytically and
experimentally, are accurately replicated in our numerical
simulations using the proposed formalism. Furthermore, this
method enables the analysis of pulses with arbitrary temporal
profiles without adding algorithmic complexity. Importantly,
unlike analytical approaches, our numerical framework readily
accounts for higher-order dispersion effects [22, 24].
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FIGURE 4. Dependence of pulse temporal broadening on propagation
distance x for transform-limited pulses.

3.4. Contextual Analysis
The Fourier theorem has traditionally served as the standard
approach for modeling electromagnetic signal propagation in
dispersive media. For signals exhibiting slowly varying tempo-
ral envelopes, the phase is commonly approximated by a Tay-
lor expansion about the pulse’s central frequency. However,
as pulse durations decrease, the concept of group velocity loses
its significance, and envelope distortion becomes dominated by
higher-order dispersion terms.
While ultrashort pulses with durations below 10 fs are now

achievable, their broad spectral bandwidth renders the phase
Taylor expansion less applicable. However, current analysis
still relies primarily on numerical evaluation of the Fourier in-
tegral, which offers limited physical insight into envelope prop-
agation and often obscures the role of group velocity dispersion
in pulse distortion. This limitation underscores the need for
an alternative decomposition method that explicitly accounts
for the joint time-frequency characteristics of pulse compo-
nents [25].
Numerous two-dimensional representations exist for analyz-

ing acoustic and electromagnetic signals. Within this frame-
work, we propose a Gabor-transform-based method to decom-
pose signals into an infinite set of elementary wavelets. Each
of these components has a uniform temporal duration, signif-
icantly longer than that of the original signal, and is centered
around a frequency Ω, corresponding to a specific element of
the signal’s Fourier spectrum [26].

4. ADAPTIVE TIME-FREQUENCY SIGNAL PROCESS-
ING TECHNIQUES

4.1. Mathematical Theory of Wavelets
Wavelet theory emerged in 1983 from JeanMorlet’s pioneering
work, providing a revolutionary approach to multiscale signal
analysis and synthesis. This approach enables the simultaneous
examination of signals across multiple scales, effectively com-
bining phenomena operating at vastly different resolutions [23].
Wavelets represent a special class of basis functions charac-

terized as:

- The most elementary and compact oscillations achievable,
- Localized in both time and frequency domains, and
- Capable of performing mathematical “zooming”, concen-
trating analysis on specific signal features at precise loca-
tions and scales.

4.2. Time-FrequencyWavelet Analysis for Ultrafast Pulse Char-
acterization
Starting with a signal e(t), in plane z = 0, we define wavelet
centered at Ω by:

θ (Ω) = E (w) · exp

[
− (w − Ω)

2

4γ

]
(24)

with E(w) = E0

2·π
√

π
Γ exp

[
(w−w0)

2

4·Γ

]
.
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FIGURE 5. (a) The pulse broadens during propagation due to group velocity dispersion (GVD). (b) Due to higher-order dispersions, the pulse shape
deviates from a Gaussian profile and becomes asymmetric.

The electric field corresponding to the wavelet component is
computed θ(Ω, z = 0).

θ (t, z = 0) = TF {θ(Ω, z = 0)} (25)

θ (t, z = 0) = E0

√
γ

γ + Γ
· a · b · c (26)

with a = exp
[
−(w0−Ω)2

4(γ+Γ)

]
, b = exp

[
− γΓ

γ+Γ t
2
]
,

c = exp
[
j γw0+ΓΩ

γ+Γ t
]
.

The peak amplitude of the wavelet θ(t, x = 0) depends on
Ω, the central analysis frequency, for a Gaussian defined by its
parameter γ + Γ [22].
In the time domain, the pulse is also Gaussian-shaped, with

its temporal profile determined by the parameter γΓ
γ+Γ . The op-

tical signal travels exclusively in the+x direction through a lin-
ear, dispersive, and lossless medium occupying the half-space
z > 0. Considering the frequency-dependent refractive index
n(ω), the wavelet component θ(Ω, x) takes the following form:

θ (Ω, z) =
E0

2 ·
√
πγ

E (w) · exp

[
− (w − Ω)

2

4γ

]
· exp [j∅(w)]

(27)
As demonstrated earlier, the wavelet duration τwavelet is cho-

sen large enough to ensure that the spectral support of the an-
alyzing function remains tightly concentrated around the fre-
quency Ω (see Figure 6).

∅(w) = ∅ (Ω) + (w − Ω)
d∅
dw

∣∣∣∣
w=Ω

+
1

2!
(w − Ω)

2 d2∅
dw2

∣∣∣∣
w=Ω

+ · · ·+ 1

n!
(w − Ω)

n dn∅
dwn

∣∣∣∣
w=Ω

+ θ (w) (28)

Truncating the equation by removing higher-order terms in
Equation (28):

∅ (w) = ∅ (Ω) + (w − Ω)
d∅
dw

∣∣∣∣
w=Ω

FIGURE 6. The Gaussian envelope is analyzed through a continuous
wavelet transform.

+
1

2!
(w − Ω)

2 d2∅
dw2

∣∣∣∣
w=Ω

+ · · ·+ θ (w) (29)

θ (Ω, z) =
E0

2 ·
√
πγ

√
π

Γ
exp

[
− (w − w0)

2

4Γ

]
· a (30)

with a = exp
[
− (w−Ω)2

4γ

]
· exp[j∅(0) + j (w − Ω) ∅(1) + 1

2j

(w − Ω)
2 · ∅(2)].

Using inverse Fourier transformation, we reconstruct the
time-domain electric field for each wavelet component θ(Ω, z).

θ (t, z) =
1

2π

+∞∫
−∞

θ (Ω, z) · exp (jwt) dw (31)

θ (t, z) =
1

2π

E0

2 ·
√
πγ

√
π

Γ
e

[
− (Ω−w0)2

4Γ

]
e(j∅

(0))

·e−[
1
4Γ+ 1

4γ − 1
2 j∅

(2)]Ω2

×
∫ +∞

−∞
e−[

1
4Γ+ 1

4γ − 1
2 j∅

(2)]w2

·e[
1
4Γ+ 1

4γ − 1
2 j∅

(2)]2Ωw × e

[
− (Ω−w0)2

2Γ −j∅(1)

]
ejwtdW

(32)
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FIGURE 7. (a) Initial pulse, (b) initial wavelet, (c) time-frequency wavelet, (d) the pulse profile after 5 cm of propagation in SiO2, (e) the wavelet
representation, and (f) time-frequency wavelet after propagation in 5 cm of SiO2.

From Equation (33), the amplitude of the incident wavelet at
frequency Ω is given by:

θ (t, z) =
E0

2 ·
√
πγ

√
Γ (z)

Γ
· exp

(
j∅(0)

)

exp

(
−Γ (z)×

[
t+

z

Vg (Ω)

]2)

exp

(
− (Ω− w0)

2

4Γ

[
1− Γ(z)

Γ

])

× exp
[
j

(
1− Γ(z)

Γ

)
Ω+

Γ(z)

Γ
w0

]
(
t+

z

Vg (Ω)

)
(33)

The wavelet is defined by a Gaussian temporal envelope of
the form. The decompositionmaintains accuracy strictly within
the parameter range where∆w is much larger than δw(∆w ≫
δw).
The wavelet’s group delay, given by

[
t+ z

Vg(Ω)

]
exhibits a

Gaussian temporal envelope with characteristic width.
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FIGURE 8. (a) Time-frequency wavelet. (b) Time-frequency wavelet after propagation of the 2 cm in the fused silica. (c) Time-frequency wavelet
after propagation of the 5 cm in the fused silica.

Measurements confirm the predicted relationship, demon-
strating undistorted envelope propagation for each wavelet
component [22, 27].

4.3. Computational Modeling Results
Benchmark Parameters for Pulse Propagation Simulations

Initial pulse width: ∆τ0 = 5 fs
Wavelength: λ = 800 nm
Wavelet width: ∆τwavelet = 1000 fs
Distance of the propagation: z = 5 cm

Our pulse characterization methodology tracks the propaga-
tion dynamics through wavelet maxima trajectories in a three-
dimensional parameter space (time, frequency, and amplitude).
This section elucidates the operational principles and sim-

ulation results of the wavelet-based decomposition technique.
Figure 6 presents a conceptual schematic illustrating the funda-
mental mechanism of the wavelet technique. It depicts how an
optical pulse can be decomposed into its constituent wavelets,
thereby enabling a detailed time-frequency analysis of its evo-
lution during propagation. Figures 7(a)–(f) display the simu-
lation results of pulse propagation through a 5 cm silica fiber
over a duration of 1000 fs. Figure 7(a) shows the initial pulse,

while Figures 7(b) and 7(c) illustrate the corresponding wavelet
energy and time-frequency representation, respectively. After
propagation through the fiber, the output pulse is depicted in
Figure 7(d). The post-propagation wavelet energy and time-
frequency distributions are shown in Figures 7(e) and 7(f). No-
tably, the time-frequency profile in Figure 7(f) is consistent
with the Heisenberg uncertainty principle, reflecting the trade-
off between temporal and spectral resolutions. Figure 8 fur-
ther investigates the pulse dynamics by comparing the time-
frequency distributions obtained for different fiber lengths,
thereby highlighting the evolution of dispersion and nonlinear
effects as the propagation distance increases.

4.4. Comparison and Validation

Finally, Figure 9 presents a comparative analysis demonstrating
that the proposed wavelet-based method outperforms alterna-
tive techniques, including the widely used Frequency-Resolved
Optical Gating (FROG) method [28]. The results confirm that
the wavelet approach provides a more powerful and flexible
solution for the characterization and measurement of ultrashort
optical pulses.
This work validates a novel simulation for ultrashort pulse

characterization based on a wavelet technique by comparing its
performance against the established third-order FROGmethod.
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FIGURE 9. Comparison with (a) the third-order FROG technique and (b) our wavelet technique.

The results demonstrate that our wavelet-based approach yields
accurate and reliable characterizations. A key distinction be-
tween the methods lies in their underlying principles: while the
third-order FROG technique relies on an iterative algorithm to
retrieve the pulse profile from a spectrogram generated by a
nonlinear gating process, our proposed method utilizes a direct
transformation framework based on the Fourier and Wavelet
transforms, offering a computationally distinct pathway to the
solution.

5. CONCLUSION
In this work, we have developed and validated a wavelet-
based time-frequency analysis framework for modeling ultra-
short pulse propagation in transparent dispersive media. Unlike

conventional Fourier-based methods, which provide limited in-
sight into localized time-frequency behavior, the proposed ap-
proach enables a joint temporal and spectral analysis of pulse
evolution.
The study demonstrates that ultrashort optical pulses

can be accurately decomposed into an infinite series of
Fourier-transform-limited wavelets, each of which propagates
undistorted through a dispersive medium. This decomposition
provides a powerful visualization tool for tracking the three-
dimensional evolution of the pulse in terms of time, frequency,
and amplitude, while offering quantitative assessment of
phenomena such as temporal broadening, chirp generation,
and spectral shifting.
The results confirm excellent agreement between the

wavelet-based simulation and analytical or experimental data,
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validating the model’s ability to reproduce the main features
of ultrashort pulse propagation. Furthermore, the framework’s
mathematical generality makes it easily extendable to more
complex conditions, including absorbing or nonlinear media,
where refractive indices vary dynamically with time and
intensity.
Although the method provides superior resolution and in-

terpretability compared to purely Fourier-domain approaches,
it introduces certain computational and experimental chal-
lenges. They include the need for precise phase and amplitude
reconstruction, higher computational cost for full time-
frequency mapping, and increased experimental complexity in
high-resolution implementations.
Despite these challenges, the developed framework consti-

tutes a robust and versatile analytical tool for investigating ul-
trafast pulse dynamics. Its capacity to separate dispersive ef-
fects from intrinsic pulse properties opens new perspectives for
applications in ultrafast optics, optical communication, pulse
compression, and nonlinear photonics.
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