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ABSTRACT: This paper proposes a composite control strategy integrating Adaptive Non-singular Terminal Sliding Mode Control
(ANTSMC) with a Non-singular Fast Terminal Double-Power Sliding Mode Observer (NFTDPSMO) to achieve the high-precision
control of PMSM system. The strategy combines an adaptive non-singular terminal sliding mode controller with a novel sliding mode
disturbance observer. The ANTSMC adaptively adjusts the convergence speed according to the distance between the system state and
sliding surface to suppress chattering, while the NFTDPSMO employs a triple-composite term with denominator modification to achieve
singularity-free operation and global fast convergence. Simulated and experimental results demonstrate that under complex operating con-
ditions including parameter perturbations, load variations, and external disturbances, the proposed composite controller achieves faster
dynamic response, reduced current and torque pulsations, lower harmonic distortion (THD of only 7.1%), and significantly enhanced
robustness and steady-state performance.

1. INTRODUCTION

Permanent Magnet Synchronous Motors (PMSMs) have at-
tracted considerable attention in recent years due to their

simple structure, high control accuracy, and excellent reliabil-
ity [1]. They have been widely adopted in fields with strin-
gent performance requirements such as electric vehicles, com-
puter numerical control (CNC) machine tools, medical devices,
aerospace systems, and precision instrumentation [2]. Fur-
thermore, with the continuous advancement of modern control
strategies, including Direct Torque Control (DTC) [3, 4] and
Vector Control (VC) [5], the dynamic and steady-state perfor-
mance of PMSMs has been significantly enhanced, offering
wide speed regulation range, high precision, and smooth op-
eration.
Despite the advantages of vector control, the conventional

proportional-integral (PI) control scheme suffers from draw-
backs such as integrator saturation and limited robustness
against parameter variations and external disturbance [6].
These factors often degrade control performance and hinder
the fulfillment of increasingly stringent industrial demands for
high-precision PMSM system [7]. Moreover, under complex
operational environment, PMSMs are inevitably subjected
to nonlinear friction, parameter perturbation, and various
uncertainties induced by temperature fluctuations and mechan-
ical characteristics [8]. The disturbance adversely affect the
steady-state behavior of stator currents and electromagnetic
torque, resulting in torque ripple that compromises motion
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accuracy and smoothness, ultimately reducing the overall
efficiency of PMSM system [9].
To achieve the precise control of a PMSM system, an im-

proved model-free nonsingular fast terminal sliding mode con-
trol (IMFNTSMC) scheme based on a super-twisting extended
sliding mode disturbance observer (STESMDO) was proposed
in [10], aiming to address performance degradation and fault
tolerance issues under complex operating conditions. To fur-
ther mitigate the adverse effects caused by system uncertainties,
Ref. [11] developed a novel sensorless nonsingular fast terminal
sliding mode controller (INFTSMC), enhanced by an improved
extended sliding mode disturbance observer (IESMDO). A
high-order square-root cubature Kalman filter (CKF)-based
adaptive estimator was integrated to enable accurate real-time
estimation of motor speed and rotor position. This composite
control strategy significantly improved the transient and steady-
state performance of PMSMs. In [12], a new nonsingular fast
terminal sliding mode surface was constructed to overcome the
limitations of conventional sliding mode controllers, which of-
ten fail to ensure fast convergence under harsh external con-
ditions. The finite-time extended state observer (FTESO) was
designed to estimate system disturbances and compensate them
within the speed control loop, effectively enhancing conver-
gence speed and overall system robustness in [13].
To enhance the dynamic response speed and control accu-

racy of PMSM control system, this paper proposes a composite
control algorithm integrating an Adaptive Non-singular Termi-
nal Sliding Mode Control (ANTSMC) with a nonsingular fast
terminal double power sliding mode observer (NFTDPSMO).
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In the composite control scheme of ANTSMC-NFTDPSMO,
the ANTSMC adaptively adjusts the convergence rate based
on the distance between the system state and sliding surface,
thereby effectively suppressing chattering. The NFTDPSMO
incorporates a coordinated design combining high-power, low-
power, and linear terms, along with a denominator modification
strategy, achieving singularity-free observation and global fast
convergence. Simulated and experimental results demonstrate
that the proposed ANTSMC-NFTDPSMO composite control
method significantly mitigates the impact of parameter uncer-
tainties, ensures finite-time convergence, and effectively im-
proves both transient and steady-state performances while en-
hancing overall disturbance rejection capability.

2. MATHEMATICAL MODE OF PMSM
Under ideal conditions, the mathematical model of the PMSM
in the d-q rotating reference frame can be expressed as fol-
lows [14]:

ud = Rsid + Ld
did
dt

− Lqωeiq

uq = Rsiq + Lq
diq
dt

+ Ldωeid + ωeψf

Te =
3

2
pn [ψf iq + (Ld − Lq) idiq]

Te − TL =
J

pn

dωe

dt
+
B

pn
ωe

(1)

where ud and uq are the d-axis and q-axis stator voltages, re-
spectively; id and iq are the d-axis and q-axis stator currents;
Ld and Lq denote the d-axis and q-axis stator inductances; Rs

is the stator phase resistance; ψf represents the rotor permanent
magnet flux linkage; ωe is the electrical angular velocity of the
rotor; Te is the electromagnetic torque; pn is the number of pole
pairs; TL is the load torque; J is the moment of inertia; ωe is the
mechanical angular velocity of the rotor; and B is the damping
coefficient.
In practical engineering applications, parameter variations in

the PMSM are inevitable due to the influence of temperature,
mechanical stress, and other environmental factors [14]. Fig. 1
shows the current component of the d-q axis of PMSM in a ro-
tating coordinate system. Accordingly, Eq. (1) can be rewritten
as: 

ud = Rsid +
dψd

dt
− ωeψq +∆ud

uq = Rsiq +
dψq

dt
+ ωeψd +∆uq

Te =
3
2np [ψf + (Ld − Lq)id] iq +∆Te

ω̇e =
3n2p
2J

ψf iq + F

(2)

3. DESIGN OF ANTSMC-NFTDPSMO COMPOSITE
CONTROLLER

3.1. Design of ANTSMC Controller
The speed-loop sliding mode controller is designed based on
Eq. (2) as follows:

ω̇e = εiq + F (3)

FIGURE 1. The current component of the d-q axis of PMSM in a rotat-
ing coordinate system.

where ε = 3 pn
2 (1/2J)ψf is the gain of the stator q-axis cur-

rent, and F represents the system’s unknown part.
Based on the equation, the speed loop slidingmode controller

is designed as follows:

i∗q =
−F + ω̇∗

e + u

ε
(4)

where ω̇∗
e represents the reference speed of the motor, and u

denotes the control input from the feedback controller.
Letting the error between the motor’s reference angular ve-

locity and actual angular velocity be the state variable e =
ω∗
e − ωe, wheree1 =

∫
e, e2 = e, and the nonsingular terminal

sliding mode surface s is chosen as [17]:

s = e1 + βea2 (5)

where β is a design parameter satisfying β > 0 and 1 < a =
p/q < 2.
Taking the derivative of Eq. (5), Eq. (6) can be expressed as:

ṡ = ė1 + βaea−1
2 ė2 (6)

To balance convergence speed and chattering suppression,
the following novel adaptive exponential reaching law is intro-
duced [15]:

ṡ =
−ksgn (s)

λ+ (1− λ) e−m|s| − k2s (7)

In this expression, 0 < λ < 1, and k, λ, m, k2 are posi-
tive constants to be designed. When |s| increases, indicating
that the system state is far from the sliding surface, the vari-
able power term−ksgn (s)

[
λ+ (1− λ) e−m|s|] and exponen-

tial term−k2s drive the system state toward the sliding surface.
Conversely, as |s| decreases, the exponential term gradually
approaches zero, and the variable power term becomes domi-
nant. Under the action of the sliding mode control law, the sys-
tem state |s| converges to zero, which demonstrates that as the
system trajectory approaches the sliding surface, the variable-
speed reaching term converges to zero gradually, thereby sup-
pressing chattering.

By setting Eq. (6) to zero, one obtains u1 =
e2−a
2

βa . Similarly,

setting Eq. (7) to zero yields u2 = ksgn(s)
λ+(1−λ)e−m|s| + k2s. Thus,

it follows that:
u = u1 + u2 (8)
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When k
(
λ+ (1− λ) e−m|s|)−1 ≥

∥∥∥F̃∥∥∥+ ρ(ρ > 0), it fol-

lows that V̇ ≤ 0 [18]. The detailed stability proof of ANTSMC
controller is shown in Appendix A. Proof 1. The detailed proof
of the stability of ANTSMC controller is shown in Proof 1 in
the appendix. Substituting Eq. (8) into Eq. (4), i∗q is obtained
as:

i∗q =
1

ε

[
ω̇∗
e +

e2−a
2

βa
+

ksgn (s)
λ+ (1− λ) e−m|s| + k2s− F

]
(9)

3.2. Design of NFTDPSMO Observer
Selecting the motor speed observation error as the state vari-
able, it can be expressed as eb = ωe − ω̂e. Choosing the error
sliding surface as s1 = eb, the sliding mode observer is de-
signed as shown in the equation to estimate it:

dω̂e

dt
= εiq + usmo (10)

where ω̂e represents the estimated speed; usmo is the sliding
mode control function to be designed
By subtracting Eq. (3) from Eq. (10), it can be concluded

that:
ėb = F − usmo (11)

The traditional dual-power reaching law exhibits slow
dynamic performance, while the conventional terminal dual-
power reaching law suffers from singularities and relies solely
on power parameters, resulting in sluggish dynamics; both
are suitable only for general control scenarios. Therefore,
this section designs a non-singular fast terminal dual-power
reaching law (NFTDP), as shown in Eq. (12). By introducing
a denominator correction term, the NFTDP reaching law
overcomes the singularity problem of traditional terminal
sliding mode control, making it suitable for high-precision
control systems [16].

ṡ1 = −ρ1
|s1|∂ sgn(s1)
1 + δ |s1|∂−1

− ρ2
|s1|b sgn(s1)
1 + δ |s1|b−1

− η3s1

= −η1 |s1|∂ sgn(s1)− η2 |s1|b sgn(s1)− η3s1 (12)

where η1 = ρ1

1+δ|s1|∂−1 , η2 = ρ2

1+δ|s1|b−1 , and δ > 0 are used to

eliminate singularities; ∂ = 1 + r, b = 1− r, and 0 < r < 1

According to finite-time stability theory [17], the
system state will converge to s1 = 0 within time

T ≤ |s1(0)|1−b
/ [ρ2 (1− b)].

When ∥F∥ < η1 |s1|∂ + η2 |s1|b + η3 ∥s1∥ and V̇1 ≤ 0 are
satisfied, the designed observer is asymptotically stable [19].
The detailed proof of the stability of NFTDPSMO Observer is
shown in Proof 2 and Proof 3 in the appendix.
From Eq. (11) and Eq. (12), designing usmo =

η1 |s1|∂ sgn(s1) + η2 |s1|b sgn(s1) + η3s1, ėb = 0, F = usmo.
According to the sliding mode equivalent principle,

F̂ = η1 |s1|∂ sgn(s1) + η2 |s1|b sgn(s1) + η3s1. By sub-
stituting the estimated value F̂ into Eq. (9), the designed i∗q
can be obtained as:

i∗q =
1

ε

[
ω̇∗
e +

e2−a
2

βa + ksgn(s)
λ+(1−λ)e−m|s| + k2s

−η1 |s1|∂ sgn(s1)− η2 |s1|b sgn(s1)− η3s1

]
(13)

The saturation function T (s) [20] is adopted to replace
sgn(s):

T (s) =

{
s
Λ ; |s| < Λ
sgn(s); |s| ≥ Λ

(14)

whereΛ denotes the boundary layer thickness. Fig. 2 illustrates
the control block diagram of the system.

4. ANALYSIS OF SIMULATION RESULTS
To verify the control performance of the ANTSMC-
NFTDPSMO composite controller, a simulation model is
established using the MATLAB platform. The parameters of
the PMSM are listed in Table 1. Table 2 shows the control
parameters for three algorithms.

TABLE 1. The parameters of the PMSM.

Motor Parameters Value
Permanent Magnet Flux Linkage ψf 0.171Wb

Stator Inductance Ls 0.00334H
Stator Resistance Rs 1.9Ω

Pole Pairs np 4 pairs
Moment of Inertia J 0.001469 kg ·m2

Damping coefficientB 0.001N ·m · s/rad

TABLE 2. The control parameters for three algorithms.

PI NTSMC-DPSMO ANTSMC-NFTDPSMO
Kp = 12 a1 = 5/3 a = 5/3

KI = 198 β1 = 189 β = 200

/ k3 = 30 λ = 0.6

/ k4 = 150 m = 0.5

/ γ1 = 210 k2 = 210

/ γ2 = 210 r = 0.6

Remark 1: ε = 3n2pψe/2J . PI parameters are tuned by Type
I system and typical Type II system. In the NTSMC-DPSMO
algorithm, the sliding mode surface is s = e1 + β1e

a1
2 ; the

exponential convergence law is ṡ = −k3sgn (s)− k4s; and the
DPSMO is designed to estimate the total system perturbation
in real time, ṡ1 = −γ1 |s1|l sgn(s1)− γ2s1.
Remark 2: To highlight advantages of the proposed compos-

ite controller, simulations of three control methods were con-
ducted under identical conditions inMATLAB to compare their
control performances. The simulation scenarios are set as fol-
lows: at 0.2 s, ψf changes from 0.171Wb to 0.150Wb; at 0.3 s,
speed n changes from 1000 r/min to 2000 r/min; at 0.5 s, θe
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FIGURE 2. The block diagram of the PMSM system.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIGURE 3. Comparative simulation results of three algorithms. (a) Simulation comparison of n for PI/ANTSMC-NFTDPSMO. (b) Simulation
comparison of n for NTSMC-DPSMO/ANTSMC-NFTDPSMO. (c) Simulation comparison of iq for PI/ANTSMC-NFTDPSMO. (d) Simulation
comparison of iq for NTSMC-DPSMO/ANTSMC-NFTDPSMO. (e) Simulation comparison of Te for PI /ANTSMC-NFTDPSMO. (f) Simulation
comparison of Te for NTSMC-DPSMO/ANTSMC-NFTDPSMO. (g) The speed tracking error for DPSMO/NFTDPSMO. (h) The disturbance esti-
mation F̂ for DPSMO/NFTDPSMO.
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FIGURE 4. The THD analysis of Phase A stator current.

changes from 0 to π/6; at 0.6 s, resistance changes from 1.9Ω
to 3.0Ω; at 0.7 s, stator inductance Ls changes from 0.00334H
to 0.00467H; and at 0.8 s, load torque TL changes from 5N·m
to 8N·m. The simulation results are shown in Fig. 2.
The simulation results clearly illustrate the differences in

control performance among the three algorithms. As shown
in the speed response curves in Fig. 3(a) and Fig. 3(b), after
motor startup, the PI and NTSMC-DPSMO controllers reach
steady state at approximately 0.06 s and 0.03 s, respectively,
whereas the ANTSMC-NFTDPSMO controller achieves
steady state within 0.016 s with negligible overshoot. Under
permanent magnet flux perturbations, the speed response of
PI and NTSMC-DPSMO controllers is significantly affected
and requires some time to recover to the desired speed, while
the ANTSMC-NFTDPSMO controller promptly restores the
speed to the set value. When the reference speed changes
from 1000 r/min to 2000 r/min, the PI and NTSMC-DPSMO
controllers take 0.06 s and 0.03 s to stabilize, respectively,
whereas the ANTSMC-NFTDPSMO controller stabilizes in
just 0.018 s. Furthermore, when rotor flux deviation angle,
load torque, resistance, and inductance vary, the ANTSMC-
NFTDPSMO method exhibits smaller speed errors and
faster convergence than PI and NTSMC-DPSMO methods,
demonstrating superior robustness.
As shown in Figs. 3(c)–3(f), compared to the PI and

NTSMC-DPSMO methods, the ANTSMC-NFTDPSMO
approach exhibits smaller current and torque ripples with
smoother waveforms, which indicates that ANTSMC-
NFTDPSMO method has a superior capability to suppress
current and torque fluctuations, thereby effectively enhancing
the performance of the PMSM control system.
In Fig. 3(g), the speed error of DPSMO fails to converge sta-

bly to zero, whereas the speed error of NFTDPSMO remains

stable around zero. Both DPSMO and NFTDPSMO exhibit
slight overshoot in speed error at the load change instant at 0.8 s,
but overall, NFTDPSMO demonstrates superior speed track-
ing performance. In Fig. 3(f), both DPSMO and NFTDPSMO
respond quickly to motor load variations and parameter per-
turbations, accurately estimating the unknown components in
the control system; however, the estimated disturbance F by
NFTDPSMO shows smaller oscillations than that of DPSMO,
indicating better performance.
The Total Harmonic Distortion (THD) analysis of the stator

current for the three methods is shown in Fig. 4. The THD of
PI is 11.2%, and NTSMC-DPSMO is 9.6%, while ANTSMC-
NFTDPSMO achieves a significantly lower THD of only 7.1%.
In summary, compared to PI and traditional NTSMC-DPSMO,
the proposed ANTSMC-NFTDPSMO composite controller can
effectively reduce current harmonic distortion, suppress current
and torque ripples, and enhance the system’s steady-state per-
formance. Moreover, during torque disturbances and parame-
ter perturbations, it rapidly converges to the set point, thereby
improving the system’s speed tracking capability.
Table 3 summarizes the performance comparison among PI,

FITSMC-STSMO, and NFITSMC-STITSMO.

TABLE 3. The comparison of the results for three algorithms.

Performances PI
NTSMC-
DPSMO

ANTSMC-
NFTDPSMO

Speed Response 0.14 s 0.04s 0.02 s
Torque Ripple 16.2% 12.1% 7.1%

THD 11.2% 9.6% 7.1%
Speed Error 44 r/min 8 r/min 5 r/min
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FIGURE 5. RT-LAB experimental platform.

(a) (b)

(c)

FIGURE 6. Comparison of RT-LAB experimental results. (a) Torque-Speed-Current of PI. (b) Torque-Speed-Current of NTSMC-DPSMO. (c)
Torque-Speed-Current of ANTSMC-NFTDPSMO.

FIGURE 7. Simplified flowchart of ANTSMC-NFTDPSMO.

5. ANALYSIS OF EXPERIMENTAL RESULTS
To further validate the control performance of ANTSMC-
NFTDPSMO composite controller, an RT-Lab experimental
platform was established as shown in Fig. 5. The platform
utilizes the TMS320F2812 DSP controller, while the PMSM
drive system is simulated using an OP5600 RT-Lab real-time
simulator.

Figure 6 demonstrates that under external disturbances and
parameter perturbations, the ANTSMC-NFTDPSMO con-
troller outperforms PI and NTSMC-DPSMO in terms of faster
response speed and reduced current and torque ripples. This su-
perior performance is attributed to the NFTDPSMO observer,
which estimates and compensates for the system’s unknown
dynamics. The NFTDP reaching law within NFTDPSMO
employs a synergistic design of three components (high-order
term, low-order term, and linear term) along with denominator
correction techniques, achieving: 1) non-singularity applicable
over the entire state space; 2) global rapid convergence with
optimized behavior both far from and near the sliding surface;
3) reduced chattering through smooth control signals, making
it well suited for practical systems. The comprehensive per-
formance significantly exceeds that of conventional DPSMO,
demonstrating indispensable advantages in high-dynamic and
high-precision control scenarios. This composite controller
effectively suppresses current and torque ripples, thereby
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enhancing the control accuracy of the PMSM system. Fig. 7 is
a simplified flowchart of ANTSMC-NFTDPSMO.

6. CONCLUSION
To meet the increasingly demanding requirements for control
precision in PMSM system, this paper proposes a compound
control strategy that integrates an adaptive nonsingular termi-
nal sliding mode control (ANTSMC) with a novel nonsingu-
lar fast terminal double-power sliding mode disturbance ob-
server (NFTDPSMO). Comparative simulations and experi-
ments against PI control and conventional NTSMC-DPSMO
methods lead to the following conclusions. The speed loop
controller, designed with an adaptive reaching law and a non-
singular terminal sliding mode surface, dynamically adjusts the
convergence rate based on system states. This design effec-
tively suppresses chattering while ensuring strong system ro-
bustness. To address the impact of external disturbances and
parameter uncertainties, the proposed NFTDPSMO incorpo-
rates a triple synergistic design and a denominator modifica-
tion technique. This enables singularity-free and precise esti-
mation of system disturbances, which not only attenuates chat-
tering but also guarantees global fast convergence. Both sim-
ulated and experimental results demonstrate that the proposed
compound controller significantly enhances the disturbance re-
jection capability and robustness of the PMSM drive system. It
achieves rapid transient response while maintaining excellent
anti-interference performance.
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APPENDIX A.
Proof 1: Stability Analysis of ANTSMC:
Selecting V = 1

2s
2, and taking the derivative of V :

V̇=s · ṡ
=s
(
e2 + βaea−1

2 ė2
)

=sβaea−1
2

(
F̃ − −k

λ+ (1− λ) e−m|s| sgn(s)− k2s

)

≤βaea−1
2

[(∥∥∥F̃∥∥∥− −k
λ+(1− λ) e−m|s|

)
∥s∥−k2∥s∥2

]
(A1)

When k
(
λ+ (1− λ) e−m|s|)−1 ≥

∥∥∥F̃∥∥∥+ ρ(ρ > 0), it fol-

lows that V̇ ≤ 0 [18].
Proof 2: Stability Analysis of the NFTDPSMO:
Defining V1 = 1

2s
2
1, and taking the derivative of V1:

V̇1 = s1ṡ1

= s1

(
−ρ1

|s1|∂ sgn(s1)
1 + δ |s1|∂−1

− ρ2
|s1|b sgn(s1)
1 + δ |s1|b−1

− η3s1

)

= −ρ1
|s1|∂+1

1 + δ |s1|∂−1
− ρ2

|s1|b+1

1 + δ |s1|b−1
− η3s

2
1 (A2)

Since δ is very small, when |s1| ̸= 0, the denominator term

satisfies 1 + δ |s1|p−1 ≈ 1(p = ∂, b) therefore:

V̇1 ≈ −ρ1 |s1|∂+1 − ρ2 |s1|b+1 − η3s
2
1 (A3)

Since |s1|∂+1
=
(
s21
) ∂+1

2 , and similarly |s1|b+1
=
(
s21
) b+1

2 ,
therefore:

V̇1 ≤ −ρ2 (2V1)
b+1
2 = −ρ22

b+1
2 V

b+1
2

1 (A4)

where c = ρ22
b+1
2 , then V̇1 ≤ −cV

b+1
2

1 . According to finite-
time stability theory, if V̇1 ≤ −cV η

1 and 0 < η < 1, the conver-

gence time T satisfies T ≤ V1(0)
1−η

c(1−η) . Solving Eq. (A5) yields:

T ≤ V1(0)
1− b+1

2

c
(
1− b+1

2

)= V1(0)
1−b
2

ρ2 · 2
b+1
2 · 1−b

2

=
2V1(0)

1−b
2

ρ2 (1− b) 2
b+1
2

(A5)

Since V1(0) = 1
2s1(0)

2, Eq. (A6) simplifies to:

T ≤
2
(
1
2s1(0)

2
) 1−b

2

ρ2 (1− b) 2
b+1
2

=
2

b
2 |s1(0)|1−b

ρ2 (1− b) 2
b+1
2

≤ |s1(0)|1−b

ρ2 (1− b)

(A6)

According to finite-time stability theory [17], the system state

will converge to s1 = 0 within time T ≤ |s1(0)|1−b

ρ2(1−b) .

Proof 3: Defining V2 = 1/2s21 and taking the derivative of
V2:

V̇2 = s1ṡ1 = eb(F + usmo)

= eb(F − η1 |s1|∂ sgn(s1)− η2 |s1|b sgn(s1)− η3s1)

= ebF − η1 |s1|∂ ∥s1∥ − η2 |s1|b ∥s1∥ − η3 ∥s1∥2

≤ ∥eb∥ (∥F∥ − η1 |s1|∂ − η2 |s1|b − η3 ∥s1∥) (A7)

When ∥F∥ < η1 |s1|∂ + η2 |s1|b + η3 ∥s1∥ and V̇1 ≤ 0 are
satisfied, the designed observer is asymptotically stable [19].
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