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ABSTRACT: In modern wireless systems, such as radar, satellite communication, and 5G communication, planar antenna arrays can
achieve high-performance radiation characteristics. The synthesis of these arrays that can produce patterns with low peak sidelobe levels
(PSLL) is critical for improving the performance of the antenna system. However, the synthesis of large-scale planar arrays presents a
complex nonlinear optimization challenge because of the vast number of variables which leads to high design complexity. To address
these issues, an improved hybrid optimization method which is called ICOK-Hybrid Algorithm is proposed. The hybrid algorithm
integrates Invasive Weed Optimization (IWO), Convex Optimization (CO), and K-means clustering. The convex optimization is used to
efficiently optimize the excitation amplitudes and phases while the IWO algorithm is used to refine the positions of the array elements.
Furthermore, an innovative subarray partitioning strategy based on an improved K-means algorithm was introduced to group elements
with similar excitations which significantly reduces the design complexity and hardware costs. Numerical results demonstrate that the
proposed algorithm achieves a significantly lower PSLL compared with the results obtained by other methods. The practical feasibility
and reliability of the proposed approach are further verified by full-wave electromagnetic simulation software CST.

1. INTRODUCTION

Array antennas have been widely employed in radar and
wireless communication systems [1]. Several important

applications include beam forming [2], broadcasting [3], and
radio-frequency identification (RFID) [4]. Array antennas usu-
ally have numerous optimization parameters. Therefore, the
synthesis of antenna arrays becomes a high-dimensional opti-
mization problem.
Compared with optimization algorithms such as Taylor syn-

thesis method [5] and Chebyshev synthesis method [6], swarm
intelligent optimization algorithms exhibit faster convergence,
enhanced global convergence properties, and improved robust-
ness. Therefore, these algorithms have been widely used in the
synthesis of antenna arrays [7]. However, population-based
intelligent optimization algorithms can fall into a local op-
timum, especially when addressing complex, non-convex or
multimodal optimization problems [8]. To achieve a balance
between global exploration and efficient convergence, many
algorithms have integrated population-based intelligent opti-
mization methods with convex optimization techniques. This
type of hybrid optimization algorithm was initially proposed
by Isernia et al. in 2004 [9]. In 2019, a novel method combin-
ing Cuckoo Optimization Algorithm (COA) with Convex Opti-
mization (CO) was proposed to optimize the amplitude, phase
and position of array elements while controlling the sidelobe
level, beamwidth, and null placement [10]. The method in [11]
is based on a combination of differential evolution (DE) op-
timization and convex optimization. During the optimization
process, this hybrid strategy is also employed to optimize the
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element positions and excitations. Subarray division has been
widely used to reduce the design complexity of antenna arrays.
Subarray division is to divide a full array into several subar-
rays, and each subarray has the same excitation amplitude. This
approach reduces the number of feed units and further low-
ers the design complexity and production cost of the array an-
tenna [12]. In [13], a hybrid method integrating K-means clus-
tering and Convex Optimization (CO) was proposed to design
subarrays capable of producing multiple arbitrary functional
beams. In [14], a weighted matrix was employed to improve
K-means clustering, which fulfills the sidelobe suppression in
rectangular uniform phased arrays.
Planar microstrip antennas have found widespread use in this

field due to their low cost, broad bandwidth, and attractive pro-
file [15]. In [16], a new band-notched printed monopole an-
tenna with variable frequency band-notch characteristics is pre-
sented. The proposed antenna has a T-shaped parasitic element
designed on the bottom of the substrate and a narrow circu-
lar slot etched on the patch to generate a high value VSWR
notch band behavior. Ref. [17] presents an innovative and con-
densed blueprint for a UWB printed monopole antenna, aiming
to augment bandwidth and achieve dual band-stop capabilities,
all while accounting for the impact of the human bodymodel on
stop bands. In [18], a compact UWB monopole antenna with
tunable multiband rejection is presented, with human-body ef-
fects incorporated to refine the stop-band response and improve
bandwidth performance.
In this study, a novel hybrid optimization algorithm that inte-

grates the Invasive Weed Optimization (IWO) algorithm, Con-
vex Optimization (CO) techniques, and K-means clustering op-
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timization is proposed. Additionally, the IWO algorithm is em-
ployed to optimize the initial cluster centers of the K-means al-
gorithm, which can improve the clustering performance. This
approach achieves lower PSLL in the synthesis of planar array
antenna patterns and significantly reduces the complexity and
cost associated with the design of planar array antennas. Sec-
tion 2 presents the optimization model. Section 3 details the
optimization procedures of the proposed hybrid algorithm. Ex-
tensive numerical examples and comparative analyses are dis-
cussed in Section 4. In Section 5, full-wave simulations are
conducted to demonstrate the reliability and effectiveness of
the proposed hybrid optimization algorithm. Finally, Section 6
concludes this paper.

2. MATHEMATICAL MODEL

2.1. Mathematical Model of the Symmetrical Rectangular Array
Antenna
The structure of a symmetrical rectangular sparse array antenna
in the first quadrant is illustrated in Fig. 1. The array elements
are located on the xoy plane and are symmetrically distributed
with respect to both the x-axis and y-axis. The aperture size of
the array is 2L× 2H , and the total number of elements is 4N .
The corresponding array factor is given by

AF (θ, ϕ) =

4N∑
n=1

wn exp (jkxn sin θ cosϕ+ jkyn sin θ sinϕ)

(1)
wherewn and (xn, yn) denote the excitation coefficient and the
position of the nth array element, and k = 2π/λ is the wave
number, where λ is the operating wavelength; θ ∈ [0, π/2] and
ϕ ∈ [0, 2π] represent the elevation angle and the azimuth an-
gle, respectively. Due to the symmetry of the array element
positions, Equation (1) can be rewritten by

AF (u, v) =

4N∑
n=1

wn exp (jkxnu+ jkynv)

FIGURE 1. Symmetrical planar array antenna structure.

= 4

N∑
n=1

wn cos (kxnu) cos(kynv) (2)

where u = sin θ cosϕ, v = sin θ sinϕ are the angular coordi-
nates. The peak sidelobe level of the radiation pattern can be
given by

PSLL (dB) = max

{
20.0× lg

∣∣∣∣AF (u, v)

AFmax

∣∣∣∣
(u,v)∈ps

}
(3)

where ps denotes the sidelobe region, and AFmax is the maxi-
mum value of the main lobe level.
In this study, the optimization objective is to minimize the

peak sidelobe level (PSLL) of the radiation pattern. A mini-
mum spacing constraint of de is imposed between the adjacent
array elements. Accordingly, the mathematical optimization
model can be formulated as follows

find. h = (x, y,w)
min. f (h) = PSLL

s.t.

√
(xm − xn)

2
+ (ym − yn)

2 ≥ de

1 ≤ m, n ≤ N, m ̸= n

(xN , yN ) = (L,H)

0 ≤ wn ≤ 1, n = 1, 2, ..., N

(4)

where the fitness f(h) can be defined as the peak sidelobe
level (PSLL), and h = (x, y,w) represents the optimal ele-
ment positions and excitation coefficients that minimize the
PSLL, where x = (x1, ..., xN−1)

T , y = (y1, ..., yN−1)
T and

w = [w1, w2, ..., wn]
T . The final constraint defines the allow-

able range for the normalized excitation weights assigned to
each antenna element.

2.2. Mathematical Model of Convex Optimization
In Equation (2), variables u and v are sampled at G discrete
points, where u = [u1, · · · , uG]

T , v = [v1, · · · , vG]T . The
array factor matrix A can be defined by

A =
cos(kx1u1) cos (ky1v1) cos(kx2u1) cos (ky2v1) · · · cos(kxNu1) cos

(
kyNv1

)
cos(kx1u2) cos (ky1v2) cos(kx2u2) cos (ky2v2) · · · cos(kxNu2) cos

(
kyNv2

)
.
.
.

.

.

.
. . .

.

.

.

cos(kx1uG) cos
(
ky1vG

)
cos(kx2uG) cos

(
ky2vG

)
· · · cos(kxNuG) cos

(
kyNvG

)


(5)

Let w = [w1, w2, ..., wN ]
T , so A · w is the far-field power

pattern of the antenna array.
For nonuniform planar antenna arrays, the mathematical

model of the proposed CO algorithm is formulated as follows

min
w

∥A(ps)w∥1
s.t.A(u0, v0)w = 1

|A(p)w| ≤ 1

|A(ps)w| ≤ b

0 ≤ wn ≤ 1, n = 1, 2, ..., N

(6)
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where (u0, v0) is the beam direction. ps and pm are the side
lobe region and the main lobe region, respectively. b is the peak
side lobe level.

2.3. Optimization of the Element Positions
To improve the global search capability of the algorithm and
reduce its computational complexity, the position optimization
problem of the two-dimensional planar array is transformed
into an equivalent one-dimensional linear array optimization
problem in this section. As illustrated in Fig. 2, the aperture to
be optimized within the first quadrant of the symmetric planar
array has a size of L×H . It is assumed that all elements in this
region are arranged along a series of lines parallel to the x-axis,
with the vertical coordinates of the lines denoted as Ym, where
m = 1, 2, · · · ,M . The minimum element spacing constraint is
denoted as de. To maintain the array structure, the positions of
two elements are fixed as{

(x1, y1) = (l0, h0)

(xN , yN ) = (L,H)
(7)

where l0 = h0 = 0.5de. If each row is uniformly arranged with
the minimum allowable spacing, the total length occupied by
theM rows is (M−1)de, and the remaining distance available
for optimization along the y-axis is given by

SPy = H − h0 − (M − 1)de = H − (M − 0.5)de (8)

FIGURE 2. Schematic diagram of element position optimization.

Since the positions of Y1 and YM are fixed, the number of
rows that require optimization is M − 2. A (M − 2) × 1 ma-
trixCy is generated, with each element being a random number
uniformly distributed in the interval [0, SPy].

Cy =
[
Cy

1 , C
y
2 , · · · , C

y
M−2

]
(9)

The elements of the matrix Cy are sorted in ascending or-
der to form a newmatrixCy′

=
[
Cy′

1 , Cy′

2 , · · · , Cy′

M−2

]
, where

Cy′

1 ≤ Cy′

2 ≤ · · · ≤ Cy′

M−2. Consequently, the y-coordinates
of the array elements on each row can be determined as

Y1 = h0, YM = H (10a)
Y2

Y3

· · ·
YM−1

 = Y1 + Cy′
+


de
2de
· · ·

(M − 1)de



= Y1 +


Cy′

1 + de

Cy′

2 + 2de
· · ·

Cy′

M−2 + (M − 2)de

 (10b)

Once the y-coordinates of the elements on each row are deter-
mined, the available element arrangement length for each row,
denoted as lm, and the total available arrangement length of the
array, denoted as LT , can be expressed as

lm = L− l0 = L− 0.5de, m = 1, 2, · · · ,M

LT =
M∑

m=1
lm

(11)

A new coordinate system is formed by connecting the ends
of each line with a uniform spacing de between adjacent rows,
as shown in Fig. 3. Its total length is

LR = LT + (M − 1)de (12)

In the newly defined coordinate system, the coordinates of
each node can be expressed as:

xL1 = 0

xLm
=

m−1∑
i=1

li + (m− 1)de, m = 2, 3, · · · ,M

xHm
=

m∑
i=1

li + (m− 1)de, m = 1, 2, · · · ,M

(13)

IfN array elements are uniformly placed with the minimum
distance de, the occupied length is (N−1)de. Accordingly, the
remaining length that can be optimized is:

SPx = LR − (N − 1)de (14)

Similarly, since the positions of two elements are fixed, the
remaining (N − 2) × 1 element positions must be optimized.
A (N − 2) × 1 matrix Cx is generated, with its elements be-
ing random numbers uniformly distributed within the interval
[0, SPx].

Cx =
[
Cx

1 , C
x
2 , · · · , Cx

N−2

]
(15)

Similarly, the elements in the matrix Cx

are sorted in ascending order to obtain a new
matrix Cx′

=
[
Cx′

1 , Cx′

2 , · · · , Cx′

N−2

]
, where

Cx′

1 ≤ Cx′

2 ≤ · · · ≤ Cx′

N−2. The corresponding positions
of the array elements in the new coordinate system are thus
determined by

xx1 = 0, xxN = LR (16a)
xx2

xx3

· · ·
xxN−1

 = Cx′
+


de
2de
· · ·

(N − 1)de



=


Cx′

1 + de
Cx′

2 + 2de
· · ·

Cx′

N−2 + (N − 1)de

 (16b)
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FIGURE 3. New one-dimensional coordinate system.

FIGURE 4. The structure of the subarray partition.

As shown in Fig. 3, to avoid the placement of array elements
within the interval xxn ∈

(
xHm

, xLm+1

)
,m = 1, 2, · · · ,M −

1, elements located in this region are repositioned. Let dl =
xLm+1 − xxn. The updated positions of these elements are
accordingly determined as

xxn = xxn + dl (17)

To ensure a minimum spacing of de, if xxn+1 − xxn < de,
the position is corrected by setting xxn+1 = xxn + de. The
final element positions in the actual coordinate system are then
given by


xn = 0.5de + xxn − xLm

yn = Ym

n = 1, 2, · · · , N, m = 1, 2, · · · ,M
(18)

2.4. Mathematical Model of Subarray Partition
To reduce the design cost and computational complexity of ar-
ray antennas, subarray division techniques can be used to divide
an entire antenna array into several subarrays. This approach
effectively decreases the complexity of the array antenna sys-
tems [19].
In Fig. 4, the entire antenna array is divided into Q sub-

arrays. In each subarray, the excitations of the elements are
the same. The excitation coefficient of the qth subarray is Iq ,
q = 1, 2, ..., Q. Therefore, Eq. (2) can be written as

AF (u, v) = 4

Q∑
q=1

Iq

N∑
n=1

δcn,q cos(kxnu) cos(kynv) (19)

where cn ∈ [1, Q] indicates that the nth element belongs to the
qth subarray. δcn,q denotes the Dirac delta function, which can

be defined as follows

δcn,q =

{
1, cn = q

0, otherwise
(20)

After the subarray division, the relationship between the ex-
citation of the subarray and the excitation of each element can
be expressed as

wn =

Q∑
q=1

δcn,qIq, n = 1, 2, 3, · · · , N (21)

Therefore, the optimization model in Eq. (4) can be ex-
pressed as

find. h = (x, y, I1, ..., IQ)
min. f(h) = PSLL

s.t.

√
(xm − xn)

2
+ (ym − yn)

2 ≥ de

1 ≤ m,n ≤ N, m ̸= n

(xN , yN ) = (L,H)

0 < Iq ≤ 1, q = 1, 2, ..., Q

(22)

3. OPTIMIZATION ALGORITHM

3.1. Improved K-Means Clustering Optimization Algorithm
K-means clustering optimization algorithm is a widely used un-
supervised learning algorithm that partitions data into Q clus-
ters by minimizing the sum of squared distances between data
points and their respective cluster centers. In Fig. 5(a), wn,
n = 1, 2, ..., N , are the original element excitation coeffi-
cients. Iq , q = 1, 2, ..., Q, represents the cluster centers which
are also the excitation coefficients of each subarray. Fig. 5(b)
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(a) (b)

FIGURE 5. (a) Original array element excitation distribution in a rectangular array antenna. (b) Optimized element excitation distribution.

presents the excitation distribution after subarray partitioning.
In Fig. 5(b), each element excitation is assigned to the subarray
excitation by grouping the element excitations that are closest
to the initial cluster centers through the K-means clustering al-
gorithm.
If the initial cluster centers in the K-means clustering algo-

rithm are selected randomly, the optimization performance can
be affected. To overcome this limitation, the cluster centers are
treated as optimization parameters and are updated through the
process of IWO. Since the fitness function is designed to mini-
mize the PSLL, the optimization of the cluster centers can make
the PSLL much lower. The steps of the K-means clustering op-
timization algorithm are as follows.
Step 1: Let the iteration number of the K-means optimiza-

tion algorithm iteration = 0 and the maximum value of the
iteration number be denoted by iteration_max = 20. Give
the initial clustering center I(0)q , q = 1, 2, ..., Q by the method
introduced above.
Step 2: Calculate the distance between each data element and

all cluster centers in sequence, and assign it to the nearest center.

Specifically, compute the distance dnq =

√∣∣∣wn − I
(iteration)
q

∣∣∣2
between the element excitation amplitude wn and the subarray
excitation amplitude I(iteration)q .
Step 3: If dnq is the minimum value in the vector

d = [d1q, d1q, · · · , dNq]
T , then cn = q, indicating that the nth

array element belongs to the qth subarray. The total number
of elements in the first q subarrays is Nq . Prior to contiguous
subarray division, the excitation coefficients must be sorted in
descending order before proceeding with the division process.
And I(iteration+1)

q can be expressed as

I(iteration+1)
q =

N∑
n=1

wnδcn,q

kq
(23)

where kq denotes the element number of the qth subarray, which
is illustrated in Fig. 4.
Step 4: Let iteration = iteration + 1. If iteration <

iteration_max, return to Step 2. Otherwise, the output exci-
tation coefficients Iq , q = 1, 2, ..., Q.

3.2. Optimization Steps of the ICOK-Hybrid Algorithm
The optimization procedure of the ICOK-Hybrid Algorithm for
the rectangular array antenna is described as follows.
Step 1: A random P ×R dimensional matrix s is generated

as the initial population. So the initial matrix s can be expressed
as:

s =


s11 s12 ... s1R
s21 s22 ... s2R
... ... ... ...

sP1 sP2 ... sPR

 (24)

where P is the initial population size of the IWO algorithm,
and R = N +M +Q− 5 is the dimension of the optimization
parameters.
The matrix s can also be expressed as s =

[
s1, s2, ..., sP

]T .
In every sp, p = 1, 2, ..., P , the first N +M − 4 elements are
used to optimize the element positions. The lastQ−1 elements
are used to optimize the initial cluster centers.
Step 2: Define the array configuration, including the total

number of elements 4N , the aperture of each element 2H ×
2L, the number of subarrays 4Q. Give the parameters of the
Invasive Weed Optimization (IWO) algorithm and let iter = 1.
Step 3: Taking the first N +M − 4 elements of sp as opti-

mization parameters, the element positions of the array antenna
are updated using Eq. (18).
Step 4: The optimized positions are put into the CO model

as formulated in Eq. (6) to calculate the element excitations of
the antenna array.
Step 5: Taking the last Q − 1 elements of sp as the initial

cluster centers, the excitation amplitude of each subarray can
be calculated by the optimization procedure introduced in Sec-
tion 3.1.
Step 6: The optimized excitations of each subarray and the

element positions of the antenna arrays are put into Eq. (22) to
calculate the fitness value. The optimization parameters that
can produce the lowest PSLL are saved as the ultimate results.
Step 7: The optimization parameters are optimized by IWO.
Step 8: Let iter = iter + 1, if iter < itermax, return Step 3.

Otherwise, terminate the iteration and output the best result.
The flowchart of the hybrid algorithm is shown in Fig. 6.
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FIGURE 6. Optimization process of the hybrid optimization algorithm.

4. NUMERICAL RESULT
To validate the reliability and effectiveness of the proposed
hybrid optimization algorithm, three examples of nonuniform
symmetric rectangular arrays with varying numbers of elements
are presented. Each calculation runs 20 times independently.
The best, worst, and average results are preserved. Detailed
IWO parameters are provided in Table 1. All computations
were performed in MATLAB R2023b on a system with 16GB
RAM and an Intel Core i7-9750H processor.

TABLE 1. The parameters of IWO.

P Pmax σini σfin seedmax seedmin nseed

10 30 0.1 0.0001 12 1 3

In Table 1, P is the initial population size while Pmax repre-
sents the maximum population size. σini and σfin are the initial
and final standard deviations, respectively. seedmax and seedmin
are the maximum and minimum numbers of seeds that can be
produced by a single weed. nseed is the nonlinear modulation
factor.

4.1. Example 1: Synthesis of Planar Array Antenna with 100-
Element
In the first example, a rectangular plane array with 4N = 100
array elements is synthesized. The aperture size is 2L× 2H =
9.5λ× 4.5λ. And the minimum element spacing de is set to be
0.5λ. The beam direction is (u0, v0) = (0◦, 0◦) and the side
lobe region is ps ∈ [0.34, 1]. The number of element rows after
position optimization is set toM = 4. To ensure a fair compar-
ison, the iteration of the IWO algorithm is set to itermax = 300.
As shown in Fig. 7, the radiation pattern corresponding to the

best result obtained from 20 independent runs withQ = 5 sub-
arrays is given. Fig. 8 presents the iteration curves of the PSLL
obtained by the three optimization algorithms. The proposed
method achieves a final PSLL of−31.57 dB while the PSO and
DE algorithms converge to−26.60 dB and −25.05 dB, respec-
tively. Fig. 9 provides a depiction of the spatial distribution of
array elements along with their excitation magnitudes. Fig. 10
presents the optimized element position distributions. Since the
study focuses on optimizing a symmetric rectangular planar ar-
ray, only the element distribution in the first quadrant is dis-
played. Table 2 summarizes the runtime and the optimal results
obtained by the three algorithms when the number of array el-
ements is 2N = 100 and the number of subarrays is Q = 5.
As shown in Table 2, the IWO algorithm requires less time per
iteration and simultaneously achieves a lower PSLL. Tables 3
and 4 list the detailed optimized positions and the correspond-
ing excitation amplitudes, respectively.

TABLE 2. Computational efficiency of different algorithms for a 4N =
100 element array (Q = 5).

Algorithm Best Value (dB) Runtime (s)
Proposed −31.57 80.95

DE −25.05 84.05
PSO −26.60 83.61

Table 5 presents a comparison between the proposed hybrid
optimization algorithm and results reported in related literature.
When the number of subarrays is set to Q = 5, the proposed
method achieves a peak sidelobe level (PSLL) of −31.57 dB.
When Q = 3, the PSLL is −28.85 dB. In 20 independent
optimization runs, the variance of the PSLL optimization re-
sults is 0.2882 when Q = 5, whereas the variance increases
to 0.4481 when Q = 3. Compared with existing methods, the
proposed algorithm demonstrates a notable advantage in sup-
pressing PSLL.
In the synthesis of the antenna array using the proposed

method, the parameter Pmax in the IWO algorithm has a great
influence on the optimization performance. To assess this ef-
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FIGURE 7. The far-field power pattern of the 100-element array (Q =
5).

FIGURE 8. Iterative convergence curve for the 100-element array (Q =
5).

FIGURE 9. Excitation amplitude distribution of 100 elements (Q = 5)
in the first quadrant.

FIGURE 10. Spatial distribution of 100 array elements (Q = 5) in the
first quadrant.

TABLE 3. Optimized element positions of the 100 array elements (Q = 5).

Number (x, y) Number (x, y) Number (x, y) Number (x, y) Number (x, y)
1 0.25, 0.25 6 3.456, 0.25 11 2.517, 0.85 16 1.561, 1.529 21 1.037, 2.25
2 0.812, 0.25 7 0.25, 0.85 12 3.3, 0.85 17 2.172, 1.529 22 1.793, 2.25
3 1.36, 0.25 8 0.822, 0.85 13 4.224, 0.85 18 2.726, 1.529 23 2.502, 2.25
4 1.909, 0.25 9 1.324, 0.85 14 0.266, 1.529 19 3.707, 1.529 24 3.238, 2.25
5 2.65, 0.25 10 1.882, 0.85 15 0.864, 1.529 20 0.25, 2.25 25 4.75, 2.25

fect, the algorithm runs 20 times when the antenna array has
4N = 100 array elements and Q = 5 subarrays. The results
are summarized in Table 6. As shown in Table 6, if Pmax in-
creases from 20 to 30, the best PSLL has an improvement of
more than 1 dB. However, when Pmax increases from 30 to 40,
the best PSLL has an improvement of less than 0.2 dB. Con-
sidering both optimization effectiveness and computational ef-
ficiency, Pmax is set to be 30 in this study.

4.2. Example 2: Synthesis of Planar Array Antenna with 264-
Element

In the second example, the number of array elements is 4N =
264. Its main lobe width is 20◦. So, the CO model, which
is introduced in Eq. (6), is used where (u0, v0) = (0◦, 0◦),
ps ∈ [0.34, 1]. The minimum array element spacing is set to be
0.5λ. The antenna array is configured with Q = 7 and Q = 5
subarrays. The number of element rows after position optimiza-
tion is set toM = 11. The aperture of this planar array antenna
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TABLE 4. Optimized excitation coefficients of the 100 array elements
(Q = 5).

Number Exact numerical values of the excitation coefficients
1∼5 1.0000 1.0000 0.6996 0.6996 0.4926
6∼10 0.2462 1.0000 1.0000 0.6996 0.6996
11∼15 0.4926 0.2462 0.1158 0.6996 0.6996
16∼20 0.6996 0.2462 0.2462 0.1158 0.2462
21∼25 0.2462 0.1158 0.1158 0.1158 0.1158

TABLE 5. Comparison with other literature.

Methods PSLL (dB) Gain (dBi)

Proposed method (Q = 5) −31.57 33.66

Proposed method (Q = 3) −28.85 33.06

The method in [20] −18.840 -

The method in [21] −20.384 -

The method in [22] −21.886 -

The method in [23] −22.195 -

TABLE 6. The influence of Pmax on the synthesis results.

Pmax
The best
result (dB)

The average
result (dB)

The worst
result (dB)

20 −30.24 −30.14 −29.02

30 −31.57 −31.03 −30.07

40 −31.63 −31.12 −30.07

FIGURE 11. The far-field power pattern of the 264-element array (Q =
7).

is 2L × 2H = 16λ × 13λ and the max iteration itermax is set
to be 300.
Figure 11 shows the radiation pattern corresponding to the

best result among 20 independent runs with Q = 7. In 20
independent optimization runs, the variance of the PSLL op-
timization results is 0.2547 when Q = 7, whereas it increases
to 0.3256 when Q = 5. Fig. 12 illustrates the iteration trajec-
tories for the 264-element array antenna under the three opti-
mization algorithms. The IWO method achieves a final PSLL

FIGURE 12. Iterative convergence curve for the 264-element array
(Q = 7).

FIGURE 13. Excitation amplitude distribution of 264 elements (Q = 7)
in the first quadrant.

TABLE 7. Computational efficiency of different algorithms for a 4N =
264 element array (Q = 7).

Algorithm Best Value (dB) Runtime (s)
Proposed −27.19 285.89

DE −19.29 305.14
PSO −20.17 303.32

of −27.19 dB, while the PSO and DE approaches converge to
−20.17 dB and −19.29 dB, respectively. Fig. 13 and Fig. 14
present the optimized excitation amplitudes and the spatial dis-
tribution of the array elements, respectively. Table 7 presents a
comparison of the optimal results and the average runtime per
iteration of the three algorithms when the number of array el-
ements is 4N = 264 and the number of subarrays is Q = 7.
As shown in Table 7, the proposed ICOK hybrid optimization
algorithm not only demonstrates superior optimization capabil-
ity but also achieves a lower computational cost per iteration.
The detailed numerical results of the optimized element posi-
tions and excitations obtained using the hybrid optimization al-
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TABLE 8. Optimized element positions of the 264 array elements (Q = 7).

Element
number

(x, y)
Element
number

(x, y)
Element
number

(x, y)
Element
number

(x, y)
Element
number

(x, y)

1 0.25, 0.25 15 2.044, 0.75 29 0.358, 1.889 43 1.879, 3.032 57 1.098, 4.955
2 0.763, 0.25 16 3.041, 0.75 30 1.098, 1.889 44 4.581, 3.032 58 3.53, 4.955
3 1.332, 0.25 17 3.713, 0.75 31 1.627, 1.889 45 6.634, 3.032 59 5.192, 4.955
4 1.84, 0.25 18 5.154, 0.75 32 2.351, 1.889 46 0.25, 3.641 60 5.751, 4.955
5 2.537, 0.25 19 7.766, 0.75 33 2.885, 1.889 47 0.886, 3.641 61 0.383, 5.633
6 3.044, 0.25 20 0.25, 1.292 34 3.907, 1.889 48 2.58, 3.641 62 2.155, 5.633
7 3.586, 0.25 21 0.862, 1.292 35 4.672, 1.889 49 4.075, 3.641 63 3.263, 5.633
8 4.186, 0.25 22 1.658, 1.292 36 5.463, 1.889 50 5.005, 3.641 64 4.227, 5.633
9 4.753, 0.25 23 2.488, 1.292 37 1.64, 2.515 51 6.157, 3.641 65 6.445, 5.633
10 6.044, 0.25 24 3.354, 1.292 38 3.044, 2.515 52 0.445, 4.205 66 8,6.5
11 7.49, 0.25 25 4.402, 1.292 39 4.104, 2.515 53 0.959, 4.205
12 0.284, 0.75 26 5.078, 1.292 40 4.972, 2.515 54 3.321, 4.205
13 0.787, 0.75 27 5.836, 1.292 41 0.314, 3.032 55 6.862, 4.205
14 1.302, 0.75 28 7.812, 1.292 42 1.086, 3.032 56 0.25, 4.955

FIGURE 14. Spatial distribution of 264 array elements (Q = 7) in the
first quadrant.

gorithm are listed in Tables 8 and 9. In Table 10, the proposed
hybrid algorithm achieves the best PSLL of −27.19 dB when
the number of subarrays isQ = 7, and−26.60 dBwhenQ = 5,
demonstrating a clear advantage over the method reported in
Ref. [24].

5. FULL-WAVE SIMULATION
To validate the reliability of the proposed hybrid optimization
algorithm, a full-wave simulation experiment is carried out us-
ing CST Microwave Studio software. This section presents a
full-wave simulation validation of the subarray configuration
with Q = 5 obtained in Example 1. The positions and excita-
tion amplitudes of the array elements are provided in Table 3
and 4, respectively.
In this experiment, the center frequency of the antenna is

set to 30GHz. The antenna elements adopt a rectangular mi-

FIGURE 15. Microstrip patch antenna.

FIGURE 16. Full-wave simulation model of a 100-element array.

crostrip patch configuration, as illustrated in Fig. 15. The width
wp of each patch is 3.6mm and the length Lp is 2.6mm. A
slit with a depth of 0.7mm (Ls) and a width of 1.5mm (ws) is
etched on the patch to achieve proper impedancematching. The
thickness of the metallic layer of the patch is 0.018mm. The
antenna elements are printed on a Rogers 4350B substrate with
a thickness of 0.254mm (relative dielectric constant of 3.48,
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FIGURE 17. 3D full-wave electromagnetic simulation of the rectangular array antenna.

TABLE 9. Optimized excitation coefficients of the 264 array elements (Q = 7).

Element number Precise excitation coefficients of the array elements
1∼6 1.0000 1.0000 0.7447 0.4753 0.2494 0.1039
7∼12 0.1039 0.1039 0.1039 0.1039 0.1039 1.0000
13∼18 0.7447 0.7447 0.4753 0.1039 0.1039 0.1039
19∼24 0.1039 0.7447 0.7447 0.4753 0.1039 0.1039
25∼30 0.1039 0.1039 0.1039 0.1039 0.4753 0.2494
31∼36 0.1039 0.1039 0.1039 0.1039 0.1039 0.1039
37∼42 0.1039 0.1039 0.1039 0.1039 0.1039 0.1039
43∼48 0.1039 0.1039 0.1039 0.1039 0.1039 0.1039
49∼54 0.1039 0.1039 0.1039 0.1039 0.1039 0.1039
55∼60 0.1039 0.1039 0.1039 0.1039 0.1039 0.1039
61∼66 0.1039 0.1039 0.1039 0.1039 0.1039 0.1039

FIGURE 18. Full-wave electromagnetic simulation of a 100-element
antenna array.

loss tangent of 0.0037). In addition, Fig. 16 presents the 100-
element array antenna model designed based on the proposed
hybrid optimization approach.
Figure 17 illustrates the 3D radiation pattern of the full array

composed of the proposed rectangular microstrip patch anten-
nas. Fig. 18 shows the radiation patterns of the simulated array
in three different directions, obtained from the CST full-wave
simulation. In particular, the full-wave simulation results show
that the proposed array model achieves a PSLL of −29.6 dB
at ϕ = 0◦, −30.7 dB at ϕ = 45◦, and −29.6 dB at ϕ = 90◦,
respectively.

TABLE 10. Comparison of relevant literature.

Method PSLL (dB) Gain (dBi)

Proposed method (Q = 7) −27.19 31.82

Proposed method (Q = 5) −26.60 31.78

The method in [24] under −20 -

6. CONCLUSION
In this study, the ICOK-Hybrid algorithm that combines the In-
vasive Weed Optimization (IWO) algorithm, convex optimiza-
tion, and the K-means clustering algorithm is employed to op-
timize rectangular planar antenna arrays. The primary objec-
tive is to reduce the peak sidelobe level (PSLL) by jointly op-
timizing the element excitations and positions. To further re-
duce the design complexity and cost of planar arrays, a sub-
array partitioning strategy is also incorporated. The proposed
hybrid algorithm enables simultaneous optimization of subar-
ray excitations, element positions, and the total number of ele-
ments. This study investigates array optimization under vary-
ing aperture sizes and the number of elements. Also, subarray
division is applied. Compared with existing methods in the lit-
erature, the proposed hybrid optimization algorithm achieves
significantly lower PSLL, which demonstrates its effectiveness
and superiority. Furthermore, full-wave electromagnetic sim-
ulation experiments were performed to verify the reliability of
the proposed hybrid optimization algorithm.
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