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ABSTRACT: To address the challenge of high prediction difficulty caused by the random volatility of photovoltaic (PV) power output,
this paper proposes a hybrid forecasting model that deeply integrates multi-scale feature analysis with an intelligent optimization algo-
rithm. First, the spearman correlation coefficient (SCC) is used to select influencing factors as model inputs, and the complete ensemble
empirical mode decomposition with adaptive noise (CEEMDAN) is applied to extract multi-scale features from the power data across
four seasons. Second, the hippopotamus optimization (HO) algorithm is introduced in order to overcome the randomness and ineffi-
ciency of manual hyperparameter tuning and to optimize the hyperparameters of the bidirectional long short-term memory (BiLSTM)
network. Through multi-seasonal case studies, the proposed SCC-CEEMDAN-HO-BiLSTM model outperforms conventional models.
Specifically, it shows significant improvements in both prediction accuracy and robustness compared to benchmark methods such as the
standalone BiLSTMmodel and the unoptimized CEEMDAN-BiLSTMmodel. The model effectively handles the multi-scale fluctuations
in PV power sequences and meets the requirements for short-term photovoltaic power forecasting.

1. INTRODUCTION

In recent years, the PV power industry has experienced rapid
growth, leading to a continuous expansion of installed capac-

ity. According to data from the National Energy Administra-
tion of China, as of December 2022, the cumulative installed
capacity of PV power in China had reached 55.76GW, with
a newly added installed capacity of 16.50GW. PV power has
now become a crucial component of the current power energy
structure [1]. However, PV energy is affected by a variety of
meteorological variables, resulting in volatility and nonlinear-
ity; therefore, the integration of large-scale PV energy into the
power grid may significantly impact the reliability and security
of the grid [2].
At present, PV power prediction methods are mainly cate-

gorized into three types: physical models, statistical models,
and hybrid models [3–5]. Physical models are based on the
mechanism of solar radiation transmission and the photoelec-
tric/thermodynamic characteristics of PV modules. They es-
tablish deterministic equations to predict power using numeri-
cal weather prediction (NWP) data and the physical parameters
of PV power plants. Statistical models typically employ tradi-
tional methods to process historical photovoltaic power gener-
ation data, such as Kalman filtering and Bayesian regression.
Due to their linear characteristics, statistical models are unsuit-
able for handling nonlinear and non-stationary data. In recent
years, hybrid models have gained increasing popularity, as in-
dividual methods can be integrated within them to deliver supe-
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rior performance in photovoltaic power forecasting compared
to any single method alone.
Hybrid models generally consist of two main components:

data preprocessing and forecasting. Ref. [6] utilized the SCC
to select factors with significant impacts on PV output power
as inputs for the prediction model, achieving favorable predic-
tion performance. To mitigate the uncertainty and stochasticity
inherent in photovoltaic power generation sequences, various
signal decomposition methods have been widely adopted [7].
Common signal decomposition techniques include empirical
mode decomposition (EMD) [8], ensemble empirical mode de-
composition (EEMD) [9], and variational mode decomposition
(VMD) [10]. In [8], a short-term PV power forecasting model
was proposed based on EMD and extreme learning machine
(ELM), which demonstrated high prediction accuracy. In [9],
photovoltaic power was decomposed into low-frequency, mid-
frequency, and high-frequency components. These compo-
nents were then separately predicted using a variable-weight
combined forecasting model, which further improved the fore-
casting accuracy. Similarly, in [10], the data were decomposed
via VMD, and a hybrid model that combined the grey wolf
optimizer (GWO) with long short-term memory (LSTM) net-
works was employed, leading to a significant enhancement in
prediction accuracy. In [11], a deep temporal convolutional net-
work (DeepTCN), complete ensemble empirical mode decom-
position with adaptive noise (CEEMDAN) decomposition, and
a multi-verse optimizer (MVO) were proposed for PV power
forecasting. A case study utilizing real-time PV data from Al-
ice Springs, Australia, demonstrated that the proposed method
outperformed benchmark approaches across four conventional
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performance metrics and two statistical tests, thereby validat-
ing its effectiveness for photovoltaic power generation predic-
tion. Therefore, signal decomposition serves as a crucial data
preprocessing step for enhancing forecasting performance. Al-
though EMD and EEMD can improve prediction accuracy, they
suffer from end-effects, which limit their performance. While
VMD decomposition can effectively address the end-effect is-
sue, it lacks adaptive capability. In contrast, CEEMDAN, as
an advanced noise-assisted adaptive decomposition method,
achieves significant improvements in the completeness of de-
composition and the purity of its components. Thus, this study
selects SCC and CEEMDAN for data preprocessing.
In [12], a combined analysis and forecasting model integrat-

ing graph convolutional networks (GCN) and LSTM networks
was proposed and demonstrated robust performance. However,
LSTM only considers unidirectional data information, neglect-
ing the influence of reverse temporal dependencies. To address
this, Ref. [13] employed a forecasting model based on fuzzy C-
Means (FCM) and bidirectional long short-term memory (BiL-
STM) networks, achieving improved prediction results. Al-
though BiLSTM captures sequential patterns from both for-
ward and backward directions, its prediction outcomes are rel-
atively sensitive to parameter settings. The use of optimiza-
tion algorithms can mitigate this sensitivity in BiLSTM pa-
rameter selection. It is noteworthy that different optimization
algorithms may impact the final performance of photovoltaic
power forecasting. Ref. [14] employed the sparrow search al-
gorithm (SSA) to improve convergence speed, and Ref. [15]
used the particle swarm optimization (PSO) algorithm to avoid
the problem of premature convergence by leveraging its inher-
ent advantages. While these algorithms have achieved certain
results, they still suffer from issues such as easy trapping in lo-
cal optima, slow convergence speed with the increase of search
space dimension, and insufficient optimization accuracy. The
HO algorithm is an emerging intelligent algorithm that exhibits
the advantages of fast convergence speed and high optimization
accuracy in addressing optimization problems.
Based on the above analysis, this study proposes a short-term

PV power prediction model based on SCC-CEEMDAN-HO-
BiLSTM, with the specific steps as follows: First, the SCC is
used to screen the input features of the prediction model; sec-
ond, CEEMDAN is applied to decompose the PV power data;
next, the HO algorithm is used to optimize the hyperparame-
ters of the BiLSTM neural network; finally, the HO-BiLSTM
model is adopted to predict each subsequence individually, and
the prediction results are superimposed to obtain the final PV
power prediction value.

2. RESEARCH METHODOLOGY

2.1. Spearman Correlation Coefficient
In PV power prediction, including excessive non-critical fac-
tors increases model training time and compromises conver-
gence speed and accuracy. Feature selection is therefore em-
ployed to reduce input variables, lowering computational load
and enhancing prediction performance [16]. This study em-
ploys the spearman correlation coefficient (SCC) to identify the

key factors influencing PV power, with the formula expressed
as follows:

R =

N∑
i

(Ri −R)(Si − S)

N∑
i

(Ri −R)2
N∑
i

(Si − S)2
(1)

whereRi and Si represent the ranks of the i-th observed values
for two sorted variables; R and S denote the average ranks of
the two variables; and N indicates the number of observations
for each variable.

2.2. CEEMDAN
The decomposition process of CEEMDAN involves a series of
iterative steps. First, specific Gaussian white noise is added
to the original signal multiple times. Next, EMD is performed
on each noise-augmented signal to obtain its first component,
and all these components are ensemble-averaged to generate
the first-order intrinsic mode function (IMF). This IMF is then
subtracted from the original signal to produce the first-order
residual. The process is iteratively repeated: during each iter-
ation, new adaptive white noise is added to the current resid-
ual, and the next-order IMF is extracted via the steps described
above while the residual is updated. Iterations continue until
the residual can no longer be decomposed. Consequently, the
original signal is decomposed into a series of IMFs and a final
residual component [17].

2.3. HO
HO algorithm is a novel nature-inspired optimization algorithm
proposed in 2024 [18]. By randomly generating initial can-
didate solutions and adaptively adjusting the resolution of the
search space as well as the search speed, it can quickly and ac-
curately find the optimal solution, featuring fast convergence
speed and high solution accuracy. The main steps of HO are as
follows:
(1) Initialization. Random initial solutions are generated,

where each “hippopotamus” represents a candidate solution and
is denoted by a vector. In this step, the following formula is
used to generate the vector of decision variables:

Xi : xij = lbj + r (ubj − lbj)
i = 1, 2, . . . , N, j = 1, 2, . . . ,m

(2)

where the vectorXi represents the i-th candidate solution, i.e.,
the position of the i-th hippopotamus; xij is the position value
of the i-th hippopotamus in the j-th decision variable; r is a ran-
dom number within the range of [0, 1]; lbj , ubj denote the lower
and upper bounds of the j-th variable to be optimized, respec-
tively; N represents the number of hippopotamus individuals
in the population; andm represents the number of variables to
be optimized in the problem.
(2) The first phase (exploration phase). The positions of hip-

popotamuses in the river are updated. This phase ensures that
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the solutions effectively explore the search space, as shown be-
low:

XMH
i : xMH

ij = xij + r1(Dhippo − I1xij)

i = 1, 2, . . . ,
[
N
2

]
, j = 1, 2, . . . ,m

(3)

where XMH
i represents the position of the male hippopotamus;

xMH
ij is the component of the male hippopotamus vector i in the

j-th dimension; Dhippo is the hippopotamus with the optimal
function value in the current iteration; and I1 is equal to 1 or 2.

h =


I2
−→r1 + (∼ Q1)

2−→r2 − 1
−→r3
I1
−→r4 + (∼ Q2)

r5

(4)

T = exp
(
− t

T

)
(5)

E =

{
xij + h2 (MGi −Dhippo) , r6 > 0.5
lbj + r7 (ubj − lbj) , else

(6)

XFH
i : xFH

ij =

{
xij+h1 (Dhippo−I2MGi) , T > 0.6
E, else

(7)

where −→r1 ∼ −→r4 are random vectors within [0, 1]; r5 ∼ r7 are
random numbers within [0, 1]; Q1 and Q2 are integer random
numbers taking 1 or 0; t represents the current iteration num-
ber; T denotes the maximum number of iterations;XFH

i is the
position of a female or immature hippopotamus; MGi is the
average value of hippopotamuses randomly selected from the
group; and h1 and h2 are randomly selected from h.
The position update involves male, female, or immature hip-

popotamuses, where Fi represents the fitness function value, as
shown in Equations (15)–(16).

Xi =

{
XMH

i , FMH
i < Fi

Xi, else
(8)

Xi =

{
XFH

k , F FH
i < Fi

Xk, else
(9)

(3) The second phase (exploration phase): Hippopotamuses de-
fend against predators. In this phase, the algorithm utilizes a de-
fense strategy inspired by the protective behavior of hippopota-
muses to prevent premature convergence and enhance robust-
ness in optimization.

D⃗ = |Pj − xij |
i =

[
N
2

]
+ 1,

[
N
2

]
+ 2, . . . , N, j = 1, 2, . . . ,m

(10)

XR
i : xR

ij =


−→
RL⊕ Pj+K ·

(
1−→D

)
, FPrj <Fi

−→
RL⊕ Pj+K ·

(
1

2×
−→
D+−→r9

)
, FPrj ≥Fi

(11)

Xi =

{
XR

i , F
R
i < Fi

XR
i , F

R
i ≥ Fi

(12)

where XR
i represents the position of the hippopotamus facing

the predator; Pj is the position of the predator in the solution

space generated by the parameters to be optimized; −→D is the
distance between the hippopotamus and the predator; −→r9 is an

m-dimensional random vector; and
−→
RL is a random vector with

a Levy distribution.
(4) The third phase (exploitation phase): It simulates the

behavior of hippopotamuses escaping from predators. In this
phase, when hippopotamuses evade threats, the algorithm
adopts an escape strategy. When encountering a suboptimal
region, it dynamically adjusts its position, explores other
regions, and promotes global exploration.

XE
i : xE

ij = xij + r10 ·
(

lbj
t + s1

(
ubj
t − lbj

t

))
i = 1, 2, . . . , N, j = 1, 2, . . . ,m

(13)

s =

 2×−→r11 − 1
r12
r13

(14)

Xi =

{
XE

i , F
E
i < Fi

XE
i , F

E
i ≥ Fi

(15)

whereXE
i is the position of the hippopotamus searching for the

nearest safe location, and si is randomly selected from s.

2.4. BiLSTM
LSTM can effectively model the long-term dependencies of se-
quential data, but its unidirectional structure only enables learn-
ing of historical context. However, information from future
time steps is crucial for decision-making regarding the current
state. To address this, the BiLSTM network was proposed. Its
structure is shown in the Fig. 1. By combining two LSTM lay-
ers (one forward and one backward), BiLSTM achieves global
context encoding of the sequence, thus exhibiting better perfor-
mance in photovoltaic prediction tasks. The calculation process
is as follows:

h
(1)
t = LSTM

(
xt, h

(1)
t−1

)
h
(2)
t = LSTM

(
xt, h

(2)
t+1

)
pt = σ

(
Wy ·

[
h
(1)
t , h

(2)
t

]
+ by

) (16)
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FIGURE 1. Structure of BiLSTM.
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FIGURE 2. Flowchart of the HO-BiLSTM model.

where LSTM(·) denotes the computational process of a unidi-
rectional LSTM; h(1)

t and h(2)
t represent the forward and back-

ward hidden states at time step t, respectively; Wy and by cor-
respond to the weight term and bias term, respectively.

2.5. HO-BiLSTM
The HO-BiLSTM hybrid model constructed in this paper com-
bines HO and BiLSTM. Numerous studies have shown that al-
though BiLSTM neural networks exhibit good fitting perfor-
mance for time-series data, their convergence speed and gen-

eralization ability are still constrained by network hyperparam-
eters such as the maximum number of iterations, the number
of hidden layer neurons, and the learning rate [19]. Therefore,
by utilizing the HO algorithm to perform global iterative op-
timization on key hyperparameters of the BiLSTM neural net-
work (including themaximum number of iterations, the number
of hidden layer neurons, and the learning rate), the fitting ac-
curacy and prediction performance of the hybrid model can be
effectively improved. The complete construction process of the
HO-BiLSTM hybrid model is shown in Fig. 2.
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FIGURE 3. Prediction flow of PV power generation based on SCC-
CEEMDAN-HO-BiLSTM.

3. SHORT-TERM PV POWER PREDICTION BASED ON
SCC-CEEMDAN-HO-BILSTM
The flowchart of the short-term PV power prediction based on
SCC-CEEMDAN-HO-BiLSTM is shown in Fig. 3.
First, missing values and outliers in photovoltaic-related data

are processed to provide a high-quality data foundation for sub-
sequent analysis and modeling.
Next, SCC is conducted to explore the degree of association

between various influencing factors and PV output, and factors
that have a significant impact on PV prediction are screened
out.
Then, time is divided into four seasons (spring, summer, au-

tumn, and winter) to account for the differential impacts of fac-
tors such as climate on photovoltaics across different seasons.
CEEMDAN is applied to the PV data of each season, decom-
posing the data into several intrinsic mode functions (IMFs) and
a residual component.
The decomposed data are divided into a training set (70%), a

validation set (20%), and a test set (10%) in proportion, which

are used for model training, parameter adjustment, and perfor-
mance testing, respectively.
HO algorithm is employed to optimize the hyperparameters

of the BiLSTM network, including the maximum number of
iterations, the number of hidden layer neurons, and the learning
rate. Subsequently, the model is trained and used for prediction
on the training set, validation set, and test set, respectively.
Finally, the prediction results of each IMF and the residual

component are superimposed and reconstructed to obtain the
complete PV power prediction results.

4. CASE SIMULATION AND ANALYSIS

4.1. Data Set Source
The experimental data in this paper are the power generation
data of a PV power station in Xinjiang, China, from January 1
to December 31, 2019. Each record includes module tempera-
ture, temperature, air pressure, humidity, global horizontal irra-
diance (GHI), direct normal irradiance (DNI), and diffuse hor-
izontal irradiance (DHI), where the data from March 1 to 31,
June 1 to 30, September 1 to 30, and December 1 to 31 are se-
lected to represent spring, summer, autumn, and winter, respec-
tively. The sampling interval is 15 minutes. All experimental
simulations are conducted on MATLAB R2024.

4.2. Feature Selection
Meteorological conditions are key factors affecting PV power
generation, and it is essential to identify the primary meteoro-
logical factors that influence the power output of PV systems.
In this study, SCC was conducted between meteorological data
and historical power data, with the results presented in the Ta-
ble 1.

TABLE 1. Correlation coefficients between PV power generation and
environmental factors.

Weather characteristics R

Module temperature 0.69
Temperature 0.29

Atmospheric pressure −0.23

Humidity −0.29

GHI 0.87
DNI 0.86
DHI 0.61

The spearman correlation coefficientR ranges from [−1, 1],
where a negative value indicates a negative correlation between
two variables, while a positive value indicates a positive corre-
lation; the absolute value of the coefficient is used to measure
the strength of the correlation between variables. The com-
monly accepted criteria in the industry are as follows: an abso-
lute value in the range of 0.8–1.0 indicates an extremely strong
correlation between variables; a range of 0.6–0.8 indicates a
strong correlation; a range of 0.4–0.6 indicates a moderate cor-
relation; a range of 0.2–0.4 indicates a weak correlation; and a
range of 0.0–0.2 indicates an extremely weak or almost no cor-
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TABLE 2. Hyperparameter optimization results of HO for spring components.

Decomposition results Epoch Learning rate Hidden dim Decomposition results Epoch Learning rate Hidden dim
IMF1 344 0.0014 33 IMF7 198 0.0018 20
IMF2 321 0.0068 26 IMF8 350 0.00053 94
IMF3 314 0.0064 81 IMF9 244 0.00015 80
IMF4 251 0.01 74 IMF10 227 0.0001 100
IMF5 350 0.0014 23 Res 314 0.00082 62
IMF6 345 0.00029 53

relation between variables [20, 21]. Considering both calcula-
tion speed and prediction accuracy, the remaining input features
after screening are module temperature, GHI, DNI, and DHI.

4.3. Evaluation Indexes
Model performance is evaluated using three key metrics, in-
cluding root mean square error (RMSE), mean absolute error
(MAE), and coefficient of determination (R2) as defined below.

RMSE =

√√√√ n∑
i=1

[y1(i)− y2(i)]
2

n
(17)

MAE =

n∑
i=1

|y1(i)− y2(i)|

n
(18)

R2 = 1−

n∑
i=1

[y2(i)− y1(i)]
2

n∑
i=1

[y1(i)− y1(i)]2
(19)

where y1(i) represents the actual power of the i-th sampling
instance; y2(i) represents the predicted power of the i-th sam-
pling instance; y1(i) represents the mean value of the actual
power; and n represents the total number of samples in the test
set.

4.4. CEEMDAN Decomposition Result Analysis
To deeply reveal the intrinsic multi-time-scale fluctuation char-
acteristics of the PV power sequence, this study employs the
CEEMDAN algorithm to analyze historical PV power data.
The algorithm parameters are set as follows: noise intensity
of 0.2, number of realizations of 100, and maximum number
of iterations of 200. Taking spring as an example, the de-
composition results are presented in Fig. 4, where the origi-
nal power signal is adaptively decomposed into 11 IMFs and
1 Res. These components are strictly arranged in descending
order of frequency, fully presenting the full-spectrum informa-
tion on PV power, ranging from instantaneous disturbances to
long-term trends. Through observation of the decomposition
results, IMF1–IMF4 exhibit high fluctuation frequencies and
strong randomness; IMF5–IMF7 show lower fluctuation fre-
quencies and significant periodicity; while IMF8–IMF10 and

TABLE 3. Comparison of model errors for different season types.

Season Model MAE RMSE R2

Spring

LSTM 2.579 3.497 0.934
BiLSTM 2.451 3.247 0.943

SSA-BiLSTM 2.167 3.005 0.951
HO-BiLSTM 2.111 2.860 0.956

SCC-HO-BiLSTM 1.683 2.726 0.960
CEEMDAN-BiLSTM 1.618 2.057 0.977

CEEMDAN-HO-BiLSTM 1.184 1.469 0.988
SCC-CEEMDAN-HO-BiLSTM 0.799 1.132 0.993

Summer

LSTM 3.429 4.653 0.867
BiLSTM 2.665 4.470 0.878

SSA-BiLSTM 2.458 4.410 0.881
HO-BiLSTM 2.287 4.294 0.887

SCC-HO-BiLSTM 2.196 4.239 0.890
CEEMDAN -BiLSTM 1.838 2.598 0.958

CEEMDAN-HO-BiLSTM 1.434 2.183 0.970
SCC-CEEMDAN-HO-BiLSTM 1.291 2.130 0.977

Autumn

LSTM 3.457 4.500 0.880
BiLSTM 2.846 3.967 0.907

SSA-BiLSTM 2.670 3.853 0.913
HO-BiLSTM 2.646 3.716 0.919

SCC-HO-BiLSTM 2.163 3.241 0.938
CEEMDAN -BiLSTM 2.070 2.920 0.949

CEEMDAN-HO-BiLSTM 1.521 2.169 0.972
SCC-CEEMDAN-HO-BiLSTM 1.006 1.391 0.991

Winter

LSTM 4.052 5.421 0.852
BiLSTM 3.818 5.255 0.860

SSA-BiLSTM 3.579 4.844 0.881
HO-BiLSTM 3.280 4.575 0.894

SCC-HO-BiLSTM 2.410 3.407 0.941
CEEMDAN -BiLSTM 2.293 3.007 0.954

CEEMDAN-HO-BiLSTM 1.475 1.871 0.982
SCC-CEEMDAN-HO-BiLSTM 1.171 1.427 0.991

Res have the smoothest fluctuations, reflecting the long-term
variation trend of the power sequence.
The core advantage of the components obtained by CEEM-

DAN decomposition lies in providing inputs with pure features
and clear physical meanings for subsequent modeling. This
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FIGURE 4. CEEMDAN decomposition of PV power generation signals under spring conditions.

inherent mode separation property enables the model to accu-
rately characterize the physical mechanisms dominated by dif-
ferent frequency components, thereby laying a solid foundation
for the construction of high-precision prediction models.

4.5. Hyperparameter Optimization Results
The HO algorithm mainly includes population size, maximum
number of iterations, and dimension, where the population size
and maximum number of iterations are set to 20, and the di-
mension is set to 3. In the process of using HO to optimize
the hyperparameters of the BiLSTM network, the range of the
maximum number of iterations (a hyperparameter of BiLSTM)
is set between 100 and 350, the range of the number of hidden
layer neurons set between 20 and 100, and the search range for
learning rate update set between 0.0001 and 0.01.
Hyperparameter optimization was performed separately for

the four seasons, and the optimization processes and results are
presented in Fig. 5 and Table 2, with spring taken as an example.

4.6. Analysis of Prediction Results
To verify the effectiveness of the SCC-CEEMDAN-HO-
BiLSTM photovoltaic power prediction model proposed in
this paper, this section compares the overall performance of
all models. Eight models, namely LSTM, BiLSTM, SSA-
BiLSTM, HO-BiLSTM, SCC-HO-BiLSTM, CEEMDAN-

BiLSTM, CEEMDAN-HO-BiLSTM, and the proposed
SCC-CEEMDAN-HO-BiLSTM, were respectively applied to
the four datasets corresponding to spring, summer, autumn,
and winter. The MAE, RMSE, and R2 of the models are
presented in Table 3.
Across the four seasons, the LSTM model exhibits the

worst prediction performance, while the CEEMDAN-HO-
BiLSTM model achieves relatively good performance —
but its prediction accuracy is still lower than that of the
proposed SCC-CEEMDAN-HO-BiLSTM model. For the
spring dataset: the LSTM model yields an MAE of 2.579,
an RMSE of 3.497, and R2 of 0.934; the CEEMDAN-HO-
BiLSTM model obtains an MAE of 1.184, an RMSE of 1.469,
and an R2 of 0.988. Compared with the LSTM model (the
worst-performing benchmark), the SCC-CEEMDAN-HO-
BiLSTM model reduces MAE and RMSE by 69% and 67.6%,
respectively, while increasing R2 by 6.3%. Compared with
the CEEMDAN-HO-BiLSTM model (a better-performing
benchmark), it decreases MAE and RMSE by 32.5% and
22.9%, respectively, and improves R2 by 0.5%. For the
summer dataset: Relative to the LSTM model, the SCC-
CEEMDAN-HO-BiLSTM model reduces MAE and RMSE by
62.3% and 54.2%, respectively, and increases R2 by 14.9%.
In contrast to the CEEMDAN-HO-BiLSTM model, it lowers
MAE and RMSE by 9.9% and 2.4%, respectively, and raises
R2 by 0.7%. For the autumn dataset: Compared with the
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FIGURE 5. IMF1-IMF10 and Res optimization process in spring days. (a) IMF1. (b) IMF2. (c) IMF3. (d) IMF4. (e) IMF5. (f). IMF6. (g) IMF7.
(h) IMF8. (i) IMF9. (j) IMF10. (k) Res.

LSTM model, the SCC-CEEMDAN-HO-BiLSTM model
achieves a 70.8% reduction in MAE, a 69% reduction in
RMSE, and a 12.6% increase in R2 . When compared with
the CEEMDAN-HO-BiLSTM model, it decreases MAE and
RMSE by 33.8% and 35.8%, respectively, and improves R2

by 1.9%. For the winter dataset: Relative to the LSTM model,
the SCC-CEEMDAN-HO-BiLSTM model reduces MAE and
RMSE by 71.1% and 73.6%, respectively, and increases R2

by 16.3%. In comparison with the CEEMDAN-HO-BiLSTM

model, it lowers MAE and RMSE by 20.6% and 23.7%,
respectively, and raises R2 by 0.9%.
The data in Table 3 fully confirm that hybrid models in-

tegrating optimization algorithms and feature engineering —
such as the proposed models — outperform single neural net-
works like LSTM and BiLSTM in non-stationary PV power
prediction, with better capture of volatile and seasonal features
and higher adaptability to random and nonlinear fluctuations.
HO-BiLSTM outperforms both BiLSTM and SSA-BiLSTM
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FIGURE 6. Comparison of prediction results of eight models. (a) Spring. (b) Summer. (c) Autumn. (d) Winter.

across all seasons, attributable to the HO algorithm’s supe-
rior convergence efficiency and global optimization capability
in hyperparameter tuning, which enhances feature extraction.
CEEMDAN-BiLSTM and CEEMDAN-HO-BiLSTM surpass
non-decomposition models including LSTM, BiLSTM, SSA-
BiLSTM, HO-BiLSTM, and SCC-HO-BiLSTM, as CEEM-
DAN reduces complexity and noise by decomposing non-
stationary data into stationary sub-sequences. Notably, SCC-
CEEMDAN-HO-BiLSTM outperforms the other seven mod-
els: SCC correlation analysis combined with CEEMDAN-
decomposed data optimizes input features by eliminating re-
dundancy, cuts computational complexity and noise, and boosts
prediction accuracy and stability. Comparisons of predicted vs.
actual values in Fig. 6 further show that the SCC-CEEMDAN-
HO-BiLSTM model has the curve closest to actual values, the
smallest error variation, and the highest fitting degree across
the three errors metrics, confirming its optimal performance.
To verify the generalizability of the method proposed in this

paper, data from a site in Zhejiang Province, China, for Oc-
tober 2019 were selected. The proposed SCC-CEEMDAN-
HO-BiLSTM model was compared with the CEEMDAN-HO-

TABLE 4. Calculation of evaluation indicators.

Model MAE RMSE R2

CEEMDAN-HO-BiLSTM 2.299 3.173 0.980
SCC-CEEMDAN-HO-BiLSTM 1.155 1.3928 0.995

BiLSTM model. The training, validation, and test sets were
divided in a ratio of 7 : 2 : 1, with data collected every
15minutes. The corresponding evaluation metrics are pre-
sented in Table 4.
Analysis of Table 4 shows that, based on one month of data

from another site, the prediction accuracy of the proposed SCC-
CEEMDAN-HO-BiLSTM model has been improved.

4.7. Performance and Complexity Evaluation of the Model
For the statistical verification of performance differences, a
quantitative analysis was conducted based on normalized er-
ror metrics using the Friedman test. The Friedman test is a
nonparametric statistical method for comparing multiple fore-
casting models. When the test rejects the null hypothesis (p <
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FIGURE 7. Ranking plot of model performance.

0.05), post hoc pairwise comparisons are typically performed to
identify the specific models responsible for the observed differ-
ences. In this study, the result of the Friedman test was statis-
tically significant, with p = 0.00026 < 0.05, indicating a no-
table performance difference among the evaluated models and
necessitating post hoc analysis to determine the specific pair-
wise differences. As shown in Fig. 7, the model proposed in
this study achieves the lowest average rank of 1, confirming
its superior performance among all models. Furthermore, the
proposed model exhibits an average RMSE of 1.591, demon-
strating its excellent predictive accuracy and validating that its
performance advantage is statistically significant.
Taking the spring data as an example, this study requires

decomposing the photovoltaic power generation signal using
CEEMDAN, which increases the training workload to 11 times
of a single BiLSTM model. Consequently, the total training
time increases to 166.09 seconds. Although the adoption of the
HO algorithm considerably extends the training duration, its ef-
ficient optimization capability leads to a marked improvement
in prediction accuracy. Finally, by utilizing feature selection
to identify and incorporate key factors as inputs, the proposed
model significantly reduces computational costs while enhanc-
ing prediction performance.

5. CONCLUSION
During the grid-connected operation of large-scale PV power
plants, the stochastic and intermittent nature of PV power gen-
eration can compromise grid security and stability. There-
fore, the accurate prediction of PV power output is of great
significance. This paper proposes a combined deep learning
model based on SCC-CEEMDAN-HO-BiLSTM for short-term
PV power prediction. Simulated and experimental results indi-
cate that, compared with traditional models lacking feature op-
timization, SCC correlation analysis enhances the quality of in-

put features by screening key features strongly correlated with
PV power and eliminating redundant information, which ef-
fectively reduces noise interference while lowering the com-
putational complexity of the model. Meanwhile, the CEEM-
DAN method thoroughly decomposes the PV power series,
thereby improving the prediction accuracy and stability of the
HO-BiLSTMmodel. By leveraging the complementary advan-
tages of different algorithmic components, the proposed hybrid
model outperforms other benchmark models in terms of pre-
diction accuracy and consistency, demonstrating considerable
practical value for research in the field of PV power forecasting.
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