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ABSTRACT: This study addresses the challenge of detecting Autism Spectrum Disorder (ASD) in children, where clinical diagnostic scales
used in practice suffer from subjectivity and high costs. Eye tracking (ET), as a non-contact sensing technology, offers the potential for
objective ASD recognition. However, existing studies often use specially crafted visual stimuli, making them less reproducible, or rely
on the construction of handcrafted features. Deep learning methods allow us to build more efficient models, but only a few studies
simultaneously focused on visual behaviors of ASD in both temporal and spatial dimensions, and many studies compressed the temporal
dimension, potentially losing valuable information. To address these limitations, this study employed a more flexible visual-stimulus
selection criterion to collect ET data of ASD in social scenes, enabling analyses to be conducted both temporally and spatially. Findings
indicate that the spatial attention distribution of ASD is more dispersed, and gaze trajectories are more unstable in the temporal dimension.
We also observed that children with ASD exhibit slower responses in gaze-following scenarios. Additionally, data loss emerges as an
effective feature for ASD identification. We proposed an SP-Inception-Transformer network based on CNN and Transformer encoder
architecture, which can simultaneously learn temporal and spatial features. It utilized raw eye-tracking data to prevent information loss,
and employed Inception and Embedding to enhance the performance. Compared to benchmark methods, our model demonstrated superior
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results in accuracy (0.886), AUC (0.8972), recall (0.82), precision (0.95), and F1 score (0.8719).

1. INTRODUCTION

Autism Spectrum Disorder (ASD) is a common neurodevel-
opmental disorder in the pediatric population characterized
by social difficulties, restricted interests, and repetitive stereo-
typed behaviors [1]. According to a study in 2021, the world-
wide median prevalence of ASD is estimated to be 1% [2] and is
gradually increasing. The gold standard diagnostic instruments
are standardized validated assessments that measure the pres-
ence of autistic social disability through both behavioral obser-
vation and parent interview [3]. However, such approach is
subjective, expensive and time-consuming, running the risk of
causing patients to miss the optimal intervention period [3, 4].

The development of an objective ASD identification sys-
tem is crucial for improving the quality of life for individuals
with autism, as well as reducing societal and healthcare costs.
Recently, eye-tracking (ET) technology has been explored for
studying the visual attention characteristics of ASD [5] and de-
veloping objective diagnostic methods based on these findings.
As anon-invasive and convenient technique, ET can help avoid
diagnostic biases caused by information asymmetry between
physicians and patients [6]. Individuals with ASD (ASDIs)
usually show atypical visual attention on different kinds of vi-
sual stimuli [ 7], because eye movements can reflect information
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about individuals’ attention, eye control, and psychological fac-
tors [7]. A study suggests that ASDIs, when viewing images
that include people, tend to show less attention to the eyes and
faces compared to Typically Developing (TD) children [8, 9].
When observing dynamic visual content, ASDIs tend to look
more at the background rather than main subject [9]. Regarding
the pattern of visual attention distribution, studies have found
that ASDIs exhibit a more pronounced center bias [10]. The
unique visual attention characteristics observed in ASD, possi-
bly associated with their social impairments, offer a theoretical
foundation for utilizing ET to identify ASD.

A main category of ET-based ASD recognition research is
ROI (Region of Interest) analysis. This approach uses prior
knowledge to divide regions that can distinguish ASD and ex-
tracts spatial features for subsequent classification algorithms.
A recognition study based on ROI divided the visual attention
of ASDI on the human body into small areas such as the face,
eyes, and mouth. It was found that ASDI spent less time look-
ing at these regions [6]. Other studies have presented multiple
images simultaneously to ASDI, such as displaying both social
and non-social content, and extracted the duration of ASDIs’
gaze on both types of stimuli for classification [11,12]. Re-
cently, research indicates that the temporal distribution of vi-
sual attention in ASD differs from TD, and combining tempo-
ral information can enhance the accuracy of the algorithm [13].
However, studies based on ROI struggle to obtain rich temporal

Published by THE ELECTROMAGNETIC ACADEMY


https://doi.org/10.2528/PIERM25101403

Progress In Electromagnetics Research M, Vol. 135, 100-111, 2025

PIERM

features, and current research often requires carefully designed
visual stimuli, making them complex to use and may not reflect
the attention characteristics of ASD in real-life scenarios.

Building upon existing research, the development of deep
learning technology has provided more powerful tools for ASD
identification based on eye-tracking. Deep learning algorithms
can handle more complex data and require less manual fea-
ture engineering to learn distribution patterns among samples.
Some work in this area is centered around the Saliency4ASD
competition [14], which used images close to natural scenes as
visual stimuli and provided participants’ fixation for classifica-
tion. SP-ASDNet employs CNN and LSTM to process infor-
mation in both spatial and temporal dimensions [15]. Another
CNN-based approach involves feeding both stimulus images
and sequences representing gaze positions into a CNN to obtain
prediction results [16]. A research based on prior knowledge
introduces a gaze-following prior map to assist the learning of
CNN-LSTM model [7], which leverages the fact that ASDIs ex-
hibit weaker gaze-following behavior. In a study using a differ-
ent dataset, fixation maps were used as inputs to a CNN, which
focuses solely on the spatial distribution of visual attention in
ASD [17]. Other studies extracted Scan Path images [18], rep-
resenting the temporal dynamics and spatial distribution of eye-
tracking trajectories [19-21], which have shown promising re-
sults on their dataset. However, a key limitation of these ap-
proaches is that fixation points are compressed in the tempo-
ral dimension, and scan path images ignore visual information
from raw stimuli, thus current methods are making insufficient
use of the eye-tracking data.

The aim of this study is therefore twofold: to analyze the
characteristics of ASD gaze behavior in both temporal and spa-
tial dimensions, and to develop a deep network using popular
Transformer architecture [22] that can better utilize temporal
features for ASD identification. Our main innovation lies in:

* Unlike some previous studies that leveraged much medical
prior knowledge, we employed a relatively lenient stimu-
lus selection criterion during the ET data acquisition, only
using the fact that ASD exhibit different visual attention
patterns compared to TD in social scenes [7, 14];

 In the data processing stage, we allowed for data loss
rather than excluding these samples, as this might be re-
lated to ASD’s inherent characteristics [23];

* Qualitative and quantitative analyses were conducted si-
multaneously and differences between visual behaviors of
ASD and TD were observed. We found that ASDIs’ at-
tention was more dispersed, lacking a consistent template,
and they showed a slower response in gaze-following pro-
cesses;

* We constructed a deep learning network based on raw
ET data, which has not been fully investigated in ASD
research yet, and incorporated visual information from
the original stimuli. We utilized the Inception [24] CNN
structure to model spatial attention and employed a Trans-
former encoder to study temporal attention over longer
time sequences, realizing more effective identification of
ASD. The proposed model could be used in other ET re-
searches if raw data is provided.
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2. DATA ACQUISITION AND PROCESSING

2.1. Data Acquisition Experiment

We recruited a total of 60 children with ASD and 63 typi-
cally developing (TD) children as participants. Five ASD and
one TD were excluded due to incomplete calibration processes,
while five ASD and six TD were excluded during subsequent
data analysis procedure due to low quality data. Therefore, the
effective sample size for this study was 50 ASD and 56 TD.
Participants in the ASD group were recruited from two local
autism rehabilitation institutions (namely, Youai Autism Reha-
bilitation Institution and Xingyu Autism Rehabilitation Institu-
tion in the county of Wenling) through the help of the Children’s
Rehabilitation Department of Taizhou Rehabilitation Hospital.
Inclusion criteria were:

+ Age between 4 and 10 years;

* Normal or corrected-to-normal vision;

* A professionally issued diagnosis of ASD;

* The absence of other neurodevelopmental disorders
such as mental retardation, cerebral palsy, no history of
epilepsy, and no chronic illnesses.

Due to the unavailability (license issue) of the Autism Di-
agnostic Observation Schedule (ADOS) [25] in China, all chil-
dren in the ASD group were diagnosed by professional physi-
cians using the Diagnostic and Statistical Manual of Mental
Disorders, Fifth Edition (DSM-5) [26]. The TD group con-
sisted of children recruited from the community as controls,
sharing the same criteria as the ASD group except for the ab-
sence of autism. The statistical characteristics of the partici-
pants are as shown in Table 1. Both groups of participants are
relatively close in terms of age and gender distribution.

TABLE 1. Statistical characteristics of the valid participants.

Group Count Age(mean &+ SD) Gender(boys/girls)
ASD 50 7.21+1.47 39/11
TD 56 7.08 +1.36 42/14

To enhance the practical applicability of our approach, un-
like some previous ET-based autism studies that used specially
filmed or created visual stimuli, our research has loose criteria
for the stimuli selection. We opted for screenshots from pub-
licly available film clips (www.iqiyi.com) to reduce the acces-
sibility challenges of recognition method. Specifically, images
contained social stimuli with characters (single or multiple) in-
teracting with environment or objects (such as looking at bill-
boards, eating, taking photos) or engaging in communication
with others. This approach ensured that these images include
complex scenes that are closer to real-life situations and exclude
any content that could cause dis-comfort for children.

We prepared a total of 60 different social images (RGB,
1920 x 1080) as visual stimuli for this study. The data collec-
tion experiment took place in a quiet room, where participating
children sat approximately 60 cm away from a 24-inch monitor
with a resolution of 1920 x 1080, as shown in Figure 1.
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FIGURE 1. Data acquisition environment. A Tobii eye-tracker was
fixed on the bottom of the screen to detect the gaze positions of par-
ticipants. A zoomed-in view of the Tobii Pro X3-120 eye-tracker is
provided in the inset. The device uses near-infrared illumination to
create reflection patterns on the corneas of both eyes, which are cap-
tured by image sensors. These patterns are used to compute the gaze
point on the screen based on calibration data.

The Tobii Pro X3-120 eye-tracking equipment was used to
collect eye movement data at a frequency of 120 Hz. Before
the experiment began, all participants completed a 5-point eye
tracker calibration, followed by a validation process. An ani-
mation of a small cat appeared successively at different posi-
tions on the screen, and participants were instructed to focus
on it to calibrate the eye tracker. This process was repeated
necessarily until the calibration results met the requirements.
To prevent the children from losing patience, we divided the
60 images into three sets and presented them sequentially to
the participants. Each image was displayed on the screen for
3 seconds, with a 3-second gray background between consec-
utive ones. We used Tobii Pro Lab (www.tobii.com) software
for data collection and exported raw data for subsequent pro-
cessing.

All children in this study were accompanied by their parents
or teachers, and written informed consent was obtained before
the experiment. The study was approved by the Ethics Commit-
tee of the Affiliated Hospital of Hangzhou Normal University
(2023 (E2) -KS- 128).

2.2. Qualitative Analysis on Visual Attention

We aggregated the data from all participants, obtaining visual
attention distribution maps for each group across different stim-
uli, as shown in Figure 2. We marked the locations of faces in
the stimuli with white ellipses and important objects being used
or observed by characters with white triangles.

We observed that, for most stimuli, ASDIs’ visual attention
distribution was more dispersed, while TDIs’ attention tended
to be more focused with a few noticeable attention areas. This
indicates that TD children exhibit stronger spatial attention con-
sistency when observing social scenes, while ASD children
have more diverse attention, which is similar to the point made
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in previous research that ASD adults exhibit within-group het-
erogeneity [27]. In Figure 2, TDIs’ visual focus is on faces and
corresponding objects, while ASDIs, although looking at these
areas as well, also directs attention to regions outside. This phe-
nomenon becomes more pronounced when the stimulus con-
tains a complex background as interference or includes many
characters, as shown in Figure 2(b). When the main charac-
ter is positioned to one side of the image, such as Figure 2(c),
ASD not only looks at the characters but also has a consider-
able amount of attention distributed in the center which lacks
actual semantic information, therefore ASD may exhibit a more
pronounced center bias in certain scenes.

However, spatial distribution information alone may be not
sufficient for identifying ASD when the stimulus is relatively
simple. As shown in Figure 2(d), the stimulus includes a char-
acter looking at an object in his hand, resembling a joint atten-
tion scenario. Research suggests that ASD exhibits behaviors
distinct from TD when observing such scenes, such as reduced
attention to the character’s eyes [7]. Some studies even indicate
differences in brain activity during joint attention tasks for in-
dividuals with ASD [28]. The spatial attention distribution for
ASD is quite similar to that for TD in Figure 2(d), focusing on
the face and the object. The previously mentioned characteris-
tic of ASD having more dispersed attention is not evident here.
However, when we unfold the data across the time dimension
and analyze participants’ viewing behavior within 0 ~ 1's, sig-
nificant differences emerge during gaze following actions, as
depicted in Figure 3.

In the initial (0.0, 0.25s) phase, participants from both
groups exhibited relatively random attention. In the (0.25,
0.5s) phase, almost all participants from both groups noticed
the face and directed their attention towards it. In the (0.5,
0.75s) phase, TD children identified the gaze of the character
and follow it to focus on the corresponding object, making it the
center of attention, with less focus on the face. Atthe meantime,
ASD children have not effectively completed the gaze follow-
ing action, and the majority of their attention remained on the
face. In the (0.75, 1.0 s) phase, TD children started to re-focus
on the face, resulting in a more evenly distributed pattern. In
contrast, ASD children exhibited behaviors similar to TD’s pre-
vious phase. This suggests that ASDIs’ gaze following proce-
dure is slower than TD group, possibly related to their social
challenges in real life.

In summary, there are spatial differences in visual attention
distribution between ASD and TD. However, sometimes rely-
ing solely on spatial differences may not be sufficient to dis-
tinguish ASD, and introducing the time dimension is essen-
tial. Therefore, building algorithms that simultaneously con-
sider spatial and temporal information is necessary for ASD
identification.

2.3. Data Preprocessing

The raw eye-tracking data we collected cannot be directly
used for classification because it contains some missing values
(Null). Missing values may occur when participants experience
significant head movements during the experiment, leading to
the failure of the eye tracker. Alternatively, they may result
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FIGURE 2. Accumulated visual attention distribution from eye-tracking (ET) for a child with Autism Spectrum Disorder (ASD) and a typically
developing (TD) child in response to a scene from the movie Mr. Bean s Holiday (Universal Studios, 2007). The original stimulus image has been
intentionally blurred in this article to mitigate copyright concerns, and its use falls under fair use for academic research and critique. The gaze
trajectories over time (0—1s) reveal differences in the temporal dynamics of attention to the card held by the character. Color indicates fixation
density, with warmer colors (e.g., red) representing higher density and cooler colors (e.g., blue) representing lower density. For (a)—(d), the left
column represents ASD, and the right column represents TD. The white ellipse in the image indicates the presence of a face in this area, while the
white triangle indicates an object interacting with the character. Fixation density is color-coded, with warmer colors (e.g., red) representing higher
density and cooler colors (e.g., blue) representing lower density. Each row corresponds to the stimulus content as follows: (a) single character with
a complex background, (b) single character with a simple background, (c) multiple characters, (d) single character looking at an object in his hand.

from blinking or occasionally looking outside the screen, caus-
ing the eye tracker to miss capturing valid gaze positions. The
first type of technical data loss should be discarded, while the
second type of data loss is allowed in our study as it may be
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a crucial feature in distinguishing between ASD and TD [23].
The first step in data preprocessing is to fill null values with
zeros, and the overall preprocessing flowchart is shown in Fig-
ure 4.
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0.5~0.75s 0.75~1.0s

FIGURE 3. The temporal evolution of visual attention distribution of ASD and TD on the same stimulus. The top row represents ASD, and the bottom
row represents TD. From left to right, each column corresponds to a 0.25 s time window. The white ellipse in the image indicates the presence of a
face while the white triangle indicates an object interacting with the character.

Raw ET data Fill null values

Exclude samples
with technical
data loss

Classification

Dl methods

FIGURE 4. Flowchart of data preprocessing step.

To eliminate samples with severe technical data loss, which
is typically characterized by the alternating occurrence of valid
coordinates and null data, our approach is as follows: We define
a segment of data as abnormal when its effective length is less
than 5. We then count the occurrences of abnormal data seg-
ments for all participants, considering participants with more
than 2000 abnormal segments to have severe technical loss, and
we remove these samples (5 ASD and 6 TD) from the dataset.

To reduce the data volume for easier processing and train-
ing, we down-sampled the data to 60 Hz, which is sufficient
for studying ASD eye gaze behavior. For each participant, the
length of the down-sampled data is 3 s * 60 stimuli * 60 Hz =
10800 data points, with each data point representing an (z, )
coordinate, where both = and y are floating point numbers be-
tween 0 and 1. The down-sampling operation is done as:

Data@’o@ =

Datalgo’i if Datauo,i or Datauo_yiﬂ =0
Dataj20,;+Datai20,i 41 (1)
2

else

The shape of the entire eye-tracking dataset is (106, 60, 180,
2). Differing from previous studies, we will use the ET se-
quences to build the classification network, rather than fixa-
tions. Extracting fixations can aggregate eye-tracking data into
several gaze points, reducing the length in temporal dimension,
but may result in the loss of valuable information. Suitable deep
learning algorithms allow us to input raw time-series data and
extract useful features directly.

3. CLASSIFICATION METHODS

To validate the validity of our data and demonstrate the supe-
riority of the proposed model, we selected two existing deep

learning-based methods and several traditional machine learn-
ing methods as benchmarks.

3.1. Benchmark 1: Scan Path Method

The Scan Path method [18] is a data processing technique
widely used in ASD Eye-Tracking research recently. It in-
volves converting raw ET data into RGB images, which can
represent the movement trajectory of gaze points and provide
information about the speed of gaze movement over time. The
steps to obtain Scan Path images are as follows:

* Calculate the speed, acceleration, and jerk (rate of change
of acceleration) between every two data points and scale
them by dividing one-fourth of the diagonal length of the
stimulus image;

FIGURE 5. An example of Scan Path images generated from our
dataset.
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FIGURE 6. The overall framework of SP-Inception-Transformer network.

» Draw a line between two data points, and the color (R, G,
B) of the line is determined by the corresponding speed,
acceleration, and jerk values.

An example of extracted Scan Path image is shown in Fig-
ure 5.

We adopted a Convolutional Neural Network (CNN) struc-
ture proposed in a previous study [19] that demonstrated high
classification performance for classification. Concretely, it is
a simple four-layer CNN where the feature map’s scale is re-
duced by half, and the channel count is doubled in each layer.
The output of the final convolutional layer is flattened and fed
into a fully connected network for classification. Additionally,
this method preprocesses the input Scan Path image by convert-
ing it to Grayscale and resizing it to 100 x 100 shape.

3.2. Benchmark 2: SP-ASDNet

SP-ASDNet (SA) [15] is a CNN-LSTM model that considers
both spatial and temporal dimensions, although the temporal
dimension is compressed.

In the spatial feature extraction part, this method initially
employs a pre-trained Saliency prediction model to extract a
saliency map from the original stimuli images, describing the
degree of attraction for each pixel to the observer. Recently,
saliency prediction models based on deep neural networks have
seen rapid development, demonstrating superior performance
compared to traditional methods [29]. In the temporal dimen-
sion, the raw data undergoes filtering and compression to obtain
a series of fixation coordinates along with the duration. Based
on fixations, patches are cropped from the saliency map and
we followed the original study’s setup to set the patch size as
225. Patches are then input into a CNN to extract 1-D spatial
features. The paper did not specify the activation function used
after the Convolutional layers and we chose the commonly used
ReLU (Rectified Linear Unit). As the used LSTM (Long Short-
Term Memory) [30] network only accepts fixed-length inputs,
the next step involves concatenating all features for each stim-
ulus and padding them with zeros to a uniform length L. The
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duration is concatenated with spatial features to ensure that the
data input to LSTM includes both spatial and temporal infor-
mation.

3.3. Traditional Machine Learning Methods

To quantitatively compare the differences in gaze behavior be-
tween ASD and TD, we extracted a series of features from raw
data and performed classification tasks using traditional ML
methods. Feature extraction is conducted on a stimulus-by-
stimulus basis, and the total features for each participant are
the averages or sums of the data on each stimulus. Specifically,
the features extracted were:

* Mean gaze position (on x and y direction).

Distance of gaze positions to the screen center (Center
Bias).

Standard deviation of gaze coordinates (on = and y direc-
tion).

Longest fixation duration.

Number of fixations.

Amount of data loss.

Average eye movement speed.

Average eye movement acceleration.

Average eye movement jerk.

Distance of gaze positions to the screen center reflects the
participants’ tendency of center bias, while Standard deviation
of gaze coordinates describes the dispersion of visual attention.
Amount of data loss encompassing the quantity of zero data
resulting from participants blinking or not looking at the screen.
All mentioned features are extracted from the down-sampled
60 Hz data, so the unit of duration is 1/60s. Traditional ML
methods used for classification were:

+ Support Vector Machine (SVM).
* Random Forest (RF).

* Logistic Regression (LR).

+ K-nearest neighbors (KNN).
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FIGURE 7. The structure of an Inception block. Batch Normalization and ReLU are not shown in this picture but are added after convolution in our

model.

3.4. SP-Inception-Transformer Network

We proposed a deep network called SP-Inception-Transformer
(SIT), which combined a CNN using Inception blocks and a
Transformer encoder structure. A pretrained deep saliency pre-
diction model SALICON was included to extract spatial infor-
mation from the raw stimuli. The overall framework is shown
in Figure 6. As mentioned above, the input raw coordinates
data has shape (IV, T, 2), where N denotes batch size, and T’
represents the number of frames, which in our case is 180 after
down-sampling.

3.4.1. Generating Saliency Maps and Heatmaps

We utilized the well-established SALICON model [31] to gen-
erate saliency maps, which has been pre-trained on a large
dataset and is relatively easy to use. Saliency map can be
viewed as highlighting the visual interest information in the
original image while reducing interference from other details.

To compare participants’ spatial visual attention distribution
with saliency map, we extracted heatmaps from ET data as the
following procedure:

* Initialize an array of zeros with the same size (h, w) as the
original stimulus.

* Iterate through the ET data. For each fixation point (z, y),
increment the pixel values within a radius » = 0.05 * h
around that point by 1.

* Scale all pixel values to the range (0, 255):

Pixel

Pixelg255 = 255
1X€lp~255 X 180

2

In heatmaps, higher pixel values indicate stronger attention
from participants to the corresponding positions.

3.4.2. Spatial Modeling with Inception CNN

The saliency map and the heatmap obtained in the previous step
were concatenated channel-wise and fed into the CNN, ulti-
mately producing a 1D spatial feature.

We used a five-layer structure CNN, including three stan-
dard 2D convolution operations and two inception blocks. Each
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standard convolution had a kernel size of 3, a stride of 1, and
padding of 1, meaning the convolution did not change the size
of the feature map. After each convolution, we applied a max-
pool2d layer with a kernel size of 2, a stride of 2, reducing the
size of the feature map by half to extract dominant features. The
number of channels for each convolution layer is annotated in
Figure 8, being 64, 192, and 64, respectively. Additionally,
we added Batch Normalization after each convolution to sup-
press overfitting and enhance the stability of the network [32].
A dropout layer with rate 0.3 is added after each convolution
block.

To allow the network to consider spatial information at mul-
tiple scales simultaneously, we introduced inception blocks,
whose structure is shown in Figure 7. The original Incep-
tion structure included convolution kernels of sizes 1 x 1,
3 x 3, and 5 x 5, concatenating the features extracted by these
different-scale convolution kernels and returning them to the
next layer [24]. The 1 x 1 convolution in the figure serves to
reduce dimensionality along the channel dimension, reducing
model complexity. Inception V2 improved this structure by in-
troducing Batch Normalization and replacing the original 5 x 5
convolution with two 3 x 3 convolutions, thereby reducing the
number of parameters [33].

3.4.3. Temporal Modeling with Transformer Encoder

Since the introduction of the Transformer model, its derived
structures have shown excellent performance in both the NLP
and CV fields [34]. The original Transformer model consists of
two parts, Encoder and Decoder. Since our task was encoding
time series, we only used the Encoder part. The structure of
each layer is depicted in Figure 6 and mainly includes two op-
erations: Multi-head self-attention and feedforward (fully con-
nected), along with corresponding Layer Normalization. The
encoder includes several blocks of this type, and the number of
layers is 6 in our model.

Self-attention mechanism is the key part of Transformer, en-
abling it to handle longer sequences, while multi-head self-
attention allows the model to flexibly focus on information at
different timestamps. Specifically, given an input sequence
X € R A (n x d), where n is the sequence length, and d is
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FIGURE 8. Comparison of spatial and temporal statistical features between ASD and TD. Values were normalized to 0 ~ 1 for better visualization.

the dimensionality of each element, for the sth attention head,
multi-head self-attention first calculates corresponding queries
q; keys k;, and values v; for each element z; as:

Q= X-W? (3)
K, = X WK “4)
Vi=X-wY (5)

where WiQ, WK and W) are the linear transformation weight
matrixes associated with the ¢th attention head. For each posi-
tion j, the ith head’s attention score is calculated as:

KT
(Qi - K; )ij
Vdp
where (Q;-K[');; is the (i, j)th element of the matrix, and dJ, is

the dimension of attention heads. The attention weight at each
position is normalized attention score using softmax as:

(6)

Attention, (x;, ;) =

exp (Attention; (z;, z;))

%

- 7
ij > -, exp (Attention; (z;, 1)) M
And the output of the ith head is:
®)

n
_ % -
H; = E ;- Vi
J=1

The outputs of all heads are concatenated to obtain informa-
tion about all the elements in the input sequence. However,
there is no positional information included in self-attention
mechanism, so the distance between every two elements is al-
ways the same. Transformer addressed this issue by adding a
positional encoding operation, which is done as:

) pos

PEpos2i = sin (=P ) ©)
pos

PEjos,2i+1 = €08 (W) (10)
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where pos is the positional index in a sequence, and 2: indicates
the index of positional encoded vector, and dim is the dimension
of this vector. Following the original Transformer paper [22],
PE has the same dimension as input and is directly added on it.

In our case, the dimension of input is 2, which is relatively
small, limiting the Transformer model’s capability in represent-
ing the temporal dimension. To increase the dimension of our
input as well as the hidden size in Transformer encoder, an em-
bedding layer is added before positional encoding procedure,
which is a fully connected layer without activation that extends
the dimension to 32 while keep the original feature distribution.
Several different embedding sizes have been tested in the final
ablation experiment to find the best architecture.

The temporal output is flattened and concatenated with the
spatial feature. A fully connected network with 1 hidden layer
and dropout rate 0.3 is used for the final prediction. Batch size
was set to 64 to accelerate training process. We chose different
learning rate for spatial and temporal branch, because CNNs
tend to converge faster when training data is sufficient, while
Transformer models are usually difficult to train. Learning rate
was set to le-5 for spatial branch and 3e-4 for temporal branch,
which in our experiments got the best result.

4. RESULTS AND DISCUSSION

4.1. Comparison of Gaze Behavior between ASD and TD

To quantitatively validate our qualitative observations, we plot-
ted the mean and standard deviation of each manually extracted
feature in Section 3.3, along with the p-values between the two
groups. The comparison is shown in Figure 8.

The most notable finding is that the dispersion of gaze points
in both x and y directions for ASD is significantly higher than
TD group, which is consistent with our observations in Sec-
tion 2.2. We hypothesize that this occurs because individuals
with ASD are more likely to be attracted by background el-
ements when viewing social scenes and that stimuli we used
have complex elements with potentially more points of inter-
est in the background, suggesting that ASD individuals do not
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focus primarily on the characters. This may indicate that dif-
ferent ASD participants have distinct personal preferences for
specific objects in the background, which may be related to the
color, shape, semantic information of objects, and the individ-
ual’s upbringing environment.

We also found that ASD individuals have a stronger center
bias compared to TD (i.e., gaze points are closer to the cen-
ter), but with p = 0.08, indicating that this difference is not
significant. As observed in Section 2.2, a significantly stronger
center bias in ASD was evident when the character in the image
was on one side, but it was not apparent in other stimuli. Since
our statistical results were averaged across all stimuli without
weighting based on stimulus type, it led to a weaker center bias
feature.

Furthermore, our analysis revealed that data loss in ASD is
significantly higher than in TD, indicating that ASDIs blink
and look away from the screen more frequently. This suggests
that the attentional focus of ASD is poorer when viewing so-
cial scenes, possibly related to their social impairments, which
aligns with existing research [23]. Additionally, we observed
that fixation appearance in ASD is less than TD. This could be
attributed to the fact that ASDIs spend less time viewing stimuli
and may focus on only a few specific locations, thus not effec-
tively capturing the information contained in the entire image
within a 3-second time window. However, there were no signif-
icant differences in the longest fixation duration between two
groups.

Regarding the motion attributes of gaze, ASDIs showed sig-
nificantly higher speed, acceleration, and jerk compared to
TDIs. Combining this with the fixation feature and spatial fea-
tures mentioned earlier, we believe that the gaze behavior of
ASDIs has such characteristics: there are more possible points
of interest for ASDI in a social stimulus because of the complex
visual elements and background, but individual will only focus
on a few of them, and their gaze shifts between different posi-
tions faster and more unstable. This may be associated with the
muscle control ability for eye movements in ASDIs, as higher
acceleration and jerk values indicate greater variability in eye
movement.

4.2. Classification Experiment Setup and Evaluation Metrics

We attach more importance to the system’s recognition perfor-
mance on participants (each with 60 stimuli), therefore, during
the validation phase, we take the average of all outputs across
60 visual stimuli from the same participant to get the final pre-
diction.

To objectively compare the performance of different meth-
ods, we employ a 5-fold cross-validation strategy, calculating
the average performance to evaluate different methods. In ad-
dition, to prevent data leakage, we initially split the dataset into
training and validation sets according to participants, and fur-
ther divide these two parts based on visual stimulus, ensuring
that data belonging to the same participant does not simultane-
ously appear in both training and validation sets.

Evaluation metrics used in our study are Accuracy, AUC
(Area Under the Curve), Recall, Precision, and F1-score. The
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definitions are as follows:
TP + TN
A = 11
U = TP TN + FP + FN (D
TP
Recall = ——— 12
T TPrEN (12)
TP
Precision = —— (13)
TP + FP
Fl score — 2 x Precision x Recall (14)

Precision + Recall

where TP is true positive, TN the true negative, FP the false pos-
itive, and FN the false negative. In addition, AUC is the area
under the Receiver Operating Characteristic (ROC) curve, mea-
suring the model’s performance at different thresholds, ranging
from 0.5 to 1, where 1 indicates a perfect classifier, and 0.5
represents random classification.

All programs are implemented with Python 3.8 and PyTorch.
The deep learning algorithms are trained and validated with a
Nvidia GeForce RTX 2080Ti.

4.3. Comparison between Different Classification Methods

The validation results of all methods are shown in Table 2,
where the ranking is based on accuracy from highest to low-
est.

TABLE 2. Performance of classification models (averaged over 5-fold
cross-validation).

Methods Accuracy AUC Recall Precision F1-score
SIT 0.887 0.8972  0.82 0.95 0.8719
Scan Path  0.8303  0.8812 0.74 0.9014 0.7959
SVM 0.7588  0.7474  0.64 0.7989 0.7054
SA 0.7541  0.8253  0.62 0.8833 0.6909
LR 0.7273  0.7539  0.64 0.7456 0.6822
RF 0.6701  0.7355  0.62 0.6638 0.6326
KNN 0.6619  0.6723  0.64 0.6514 0.6325

As summarized in Table 2, the SP-Inception-Transformer
model achieved the best performance in terms of accuracy,
AUC, recall, precision, and F1 score, indicating a better capac-
ity in modeling spatial and temporal information. Notably, the
second-ranking method is the Scan Path approach. We attribute
its lower performance to the fact that it did not utilize any infor-
mation from the stimuli when constructing the Scan Path map.
This limitation is significant because knowing which parts of
the stimuli are worth attention and observing whether ASDIs
focus on these theoretically interesting areas could aid identi-
fication. Additionally, the Scan Path image primarily focuses
on the movement trajectory information of gaze, such as speed
and acceleration, but cannot represent duration. This limitation
arises from the original construction of the Scan Path, where if
a participant stares at a point without moving, the RGB values
for that point should be very small, appearing close to black on
the graph. Duration’s length has almost no impact on the color.

WWwWw.jpier.org



Progress In Electromagnetics Research M, Vol. 135, 100-111, 2025

PIERM

SP-ASDNet showed lower score than the first two methods
on our dataset, achieving about 75% classification accuracy and
an AUC of 0.82. We attribute this to the fact that, although
SP-ASDNet considers both spatial and temporal dimensions,
extracting fixations from ET data is not an optimal choice for
our dataset. Since we allow for data loss, the total number of
fixations on a stimulus may be limited. Data loss may occur be-
tween two fixations, but the model can only infer loss based on
durations less than 3 seconds without knowing where the loss
occurred. The fixation extraction process itself ignores the mo-
tion details between two points, preventing the network from
knowing the participants’ eye movement speed and variabil-
ity. As discussed in Section 4.1, these properties are essential
for distinguishing ASD. Additionally, this model chose LSTM
to encode the temporal dimension, but LSTM requires a fixed
input length. Padding the input sequence with zeros is neces-
sary because each stimulus has a different number of fixations.
Since LSTM is based on recurrent neural network and needs
to propagate in the time dimension [30], too many zeros may
cause a loss of previously learned data, thereby disrupting the
model’s learning process and resulting in inferior result [35].

Among traditional machine learning methods, SVM
achieved the best performance with an accuracy of 0.75 and
an AUC of 0.74. This suggests that the selected features
can effectively distinguish between ASD and TD to some
extent. However, the AUC and precision of these methods are
significantly lower than three deep learning-based approaches,
indicating that current features may lead the model to more
frequently misclassify TD as ASD. We believe this could be
due to the insufficient richness in feature selection, where the
behavior of TD and ASD appears similar in some features.
However, constructing richer and more effective features
might depend on additional prior knowledge, potentially
involving the delineation of ROI to capture the gaze behavior
in specific subregions such as the face, which undoubtedly
requires substantial effort, while deep learning-based methods
do not necessitate such steps.

The confusion matrix for SP-Inception-Transformer model
is illustrated in Figure 9. A particularly important observa-
tion is that among the individuals predicted as ASD, only 2
out of 43 were TD. This indicates that our model exhibits a
relatively high precision, tending to be stringent in diagnosing
ASD. However, 9 out of 50 ASD samples were misclassified as
TD, resulting in a relatively lower recall. Examining the results

Truth
ASD

TD

Prediction

FIGURE 9. The confusion matrix of proposed network.
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in Table 2, it’s evident that the recall performance of all models
is not as ideal as precision. This pattern suggests that there are
instances in our dataset where the visual behavior of some AS-
DIs closely resembles that of TDIs. Given that ASD might be
an umbrella term for various subtypes, with some individuals
exhibiting behaviors like TD in certain aspects. For instance,
some high-functioning autistic children may possess unique tal-
ents in mathematics. To build a more advanced recognition
system, future research should consider categorizing ASD into
several subtypes in the medical field.

4.4. Ablation Experiment Results

To investigate the importance of utilizing both spatial and tem-
poral information and prove the reliability of proposed SP-
Inception-Transformer model, some ablation experiments were
conducted on 5-fold cross-validation. The results are listed in
Tables 3-5.

TABLE 3. Performance of branches (averaged over 5-fold cross-
validation.

Methods Accuracy AUC Recall Precision F1-score
Spatiotemporal ~ 0.887  0.8972  0.82 0.95 0.8719
Temporal 0.8493  0.9015 0.76  0.9096 0.82

Spatial 0.8301 0.8769 0.72  0.9228  0.8048

TABLE 4. Results with different embedding size (averaged over 5-
fold cross-validation).

Embedding Accuracy AUC Recall Precision F1-score

- 0.6995 0.7621 0.48  0.6667  0.5392
16 0.8112 0.8619 0.72  0.8814  0.7798
32 0.8493 09015 0.76  0.9096 0.82
64 0.8402 0.8948 0.76  0.8825  0.8148
128 0.8489 0.8975 0.82  0.8595  0.8317

TABLE 5. Results with and without PE (averaged over 5-fold cross-
validation).

PE Accuracy AUC Recall Precision Fl-score
Yes 0.8493 0.9015  0.76 0.9096 0.82
No 0.7536 0.7957  0.52 0.7355 0.6101

We first split the proposed network into two independent
branches and trained them separately. As shown in Table 3, us-
ing only spatial or temporal branch got lower scores than the
spatiotemporal method. Spatial or temporal dimension indi-
vidually can only provide part of the information, which can
be explained by our previous analysis. However, the results
were competitive compared to benchmarks, proving that our
proposed network had the ability of extract useful temporal and
spatial features.

Embedding is important for Transformer based model. The
temporal branch with no embedding showed poor results on our
dataset, with accuracy of 69.95% and recall of 0.48. Adding
an embedding layer before encoder significantly improved
model’s performance, as shown in Table 5. When embedding
size increased from 16 to 32, the performance of the Temporal-
only model got obvious improvement, while larger embedding
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sizes including 64 and 128 had brought no significant changes.
We believe that the bottleneck of increasing embedding size lies
in the limited information in 2-dimensional raw data. The em-
bedding operation we utilize is a fully connected layer with no
nonlinear activation, which is a linear combining operation of
the original data. For a 2-d (x,y) coordinate, the meaningful
combination is finite.

Positional encoding is another important factor that deter-
mines model’s performance. Transformer with positional en-
coding outperformed the one with no positional information by
about 10% accuracy. ASD showed different gaze behavior, as
discussed before, and might have special gaze orders, which
were missed in no PE model. Besides, applying PE enables
Transformer to capture more temporal features, such as speed
and acceleration between two gaze points, thus learning the in-
stability of visual behavior, while model with no PE can only
know where participants look.

5. CONCLUSIONS

In this study, we collected ET data from individuals with ASD
and TD in social stimuli. Qualitative and quantitative analy-
ses of their visual behaviors were conducted in both temporal
and spatial dimensions. An SP-Inception-Transformer classifi-
cation network was proposed that took both these two aspects
into consideration more effectively.

In summary, this study demonstrates that even with a rela-
tively lenient stimulus selection criterion, we were able to iden-
tify ASD, thereby reducing the application difficulty of ET-
based systems. The key findings reveal that compared to
TD, ASDIs exhibit a much more dispersed attention distribu-
tion, lacking consistency in visual patterns across different in-
dividuals. We believe that complex social images have more
interest points for ASD children, which are often non-human
elements in the background, and the primary visual focus of
ASD is not concentrated on the characters within a short view-
ing time. However, the degree of attention to these points of in-
terest varies among ASDIs, which may be associated with indi-
vidual preferences and living environments. Moreover, in cer-
tain specific scenarios, the spatial attention distribution of ASD
and TD is quite similar, but the visual behavior differs tempo-
rally. We observed that in some cases of gaze-following, AS-
DIs showed a slower response to the gaze of character, which
indicate that they may have a relatively low efficiency while
understanding social cues, thus experience communication dif-
ficulties. The gaze movement of ASD is more unstable, which
may be related to their control over eye muscles and nerves.
Notably, data loss (blink and looking away from the screen)
proves to be a useful feature in distinguishing between ASD and
TD, as ASD often have poor concentration on social scenes.

Our proposed SP-Inception-Transformer network can simul-
taneously learn spatial and temporal information from raw eye-
tracking data, minimizing the loss of useful information. The
using of Inception block enables us to extract features that con-
tain spatial information at multiple scales, so the network can
learn whether the ASD gaze positions are significant in the
saliency map and whether these positions are the main areas
of interest. We utilized Transformer encoder to model tempo-
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ral information instead of widely used LSTM, making the raw
sequence data as input possible. Compared to benchmarks, our
model achieved the best performance in accuracy (0.886), AUC
(0.8972), recall (0.82), precision (0.95), and F1 score (0.8719).
Single spatial or temporal branch achieved lower results, prov-
ing the importance of leveraging information from both two as-
pects. However, results of branches from our model are also
acceptable, making them useful in some low computational re-
source conditions. Due to that the proposed model utilizes raw
ET data, it can be easily applied in other eye-tracking scenarios
as well and an improved result may be expected. More recent
Al algorithms (see, e.g., [36,37]) could be employed for better
future results.
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