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ABSTRACT: Complex beams hold significant value in radar and communication systems due to their distinctive propagation character-
istics. Digital metasurfaces, which can dynamically control electromagnetic (EM) waves, play an important role in realizing complex
beams. Conventional analytic and optimization methods face challenges in synthesizing complex beams of low-bit digital metasurfaces
due to the quantization error and the high computational complexity. Here, we propose a statistical method to realize complex beams
with phase-only digital metasurfaces. To this end, we introduce tailored quantization probabilities to design the discrete random phase
distributions, which approximate the continuous excitation coefficients derived from analytic methods. Based on the proposed method,
we analyze the error between the realized and target patterns. These findings offer critical insights into the accuracy of random quanti-
zation. Complex patterns with cosecant, prescribed null, flat-top, and dual-beam are designed and validated in combination with a 2-bit
phase coding digital metasurface. The experimental results are in good agreement with the theoretical analysis. This work pioneers
the application of random phase approximation and statistical synthesis in digital metasurfaces, providing a fast and efficient route for
realizing complex beams in modern radar and wireless communication technologies.

1. INTRODUCTION

Complex beams have extensive applications in various fields
such as radar, sensing, and wireless communications. For

example, flat-top beam antennas provide a stable gain within
a given angular range and maintain low side-lobe levels out-
side the region [1–3]. Cosecant beam antennas compensate for
propagation losses over varying distances [4, 5]. Null steering
antennas maximize signal power in the direction of the intended
receiver, while reducing the power in the directions of potential
eavesdroppers [6–8].
Realizing complex beams by traditional antenna arrays re-

sults in additional feed network. Moreover, the antenna ele-
ment exhibits complicated structures for better performance [9].
Metasurfaces consisting of subwavelengthmetallic or dielectric
elements have opened up unprecedented possibilities for EM
wave manipulation [10, 11]. Digital metasurfaces, proposed by
Cui et al. [12], have been widely investigated in recent years.
They can flexibly control EM waves with a finite number of
elements in a discretized manner, offering simplified designs
and various functions in programmable ways [13–22]. In par-
ticular, complex beams can be effectively realized by digital
metasurfaces [23, 24].

* Corresponding author: Junwei Wu (jwwu@seu.edu.cn).
† These authors contributed equally to this work.

The key point in realizing complex beams based on digi-
tal metasurfaces is designing the amplitude and phase distri-
butions of the array. Historically, a variety of methods have
been proposed for traditional array beamforming, which serve
as valuable references. Analytic methods such as Fourier trans-
form [25–28], Schelkunoff [29, 30], and Woodward-Lawson
synthesis [31–33] are used to realize complex beams with con-
tinuous amplitude and phase distributions for an equispaced ar-
ray. Additionally, the phase distribution can be compensated
to realize complex beams without amplitude control [34]. Al-
though these analytic methods do not achieve the best perfor-
mance, they provide sub-optimal solutions with continuous ex-
citation coefficients immediately. It is noted that digital meta-
surfaces only offer a limited number of discrete amplitude and
phase responses. Direct quantization of the continuous excita-
tion coefficients will inevitably bring errors. Moreover, the im-
plementation of amplitude modulation in most analytic meth-
ods requires a complicated design of metasurface elements with
energy loss.
Stochastic optimization methods like ant colony [35, 36],

simulated annealing [37, 38], particle swarm [39], and genetic
algorithm [40–43] have been usedwidely in designing radiation
patterns with low side lobe levels. In principle, these meth-
ods can be tailored to obtain the discrete phase distributions
of digital metasurfaces. Nevertheless, they always require ex-

64doi:10.2528/PIER25102203 Published by THE ELECTROMAGNETIC ACADEMY

https://doi.org/10.2528/PIER25102203


Progress In Electromagnetics Research, Vol. 184, 64–78, 2025

tensive computation, and the optimization time increases sig-
nificantly for metasurfaces with massive elements. In the last
few years, several methods have been proposed to improve the
computational efficiency, including adaptive genetic [44] and
multiobjective particle swarm [45]. However, it is non-trivial
to achieve an optimal balance between performance and com-
putation time.
It is noted that the continuous excitation coefficients derived

from analytic methods can be discretized to realize rapid syn-
thesis. Random quantization, which approximates the continu-
ous amplitude and phase by discrete quantities with a specific
random function, had been investigated in combinationwith an-
tenna array design [46–48]. The two probable values (2PV)
and three probable values (3PV) methods in [46] aim to sta-
tistically reduce the phase quantization errors, thereby mitigat-
ing the beam pointing deviation and side lobe level. Unlike
the 2PV and 3PV methods, which only focus on the phase of
each element, the four probable values (4PV) method proposed
by Kashin in 1971 [49] approximates the amplitude of each el-
ement with random phase distributions. Simulations demon-
strate that the 4PV method achieves effective amplitude taper-
ing, expanding the applications of random quantization meth-
ods for far-field pattern synthesis. However, the 4PV method
does not achieve the simultaneous approximation of the contin-
uous amplitude and phase distributions of elements. Although
the above methods remain theoretical and are numerical inves-
tigations, they motivate this study to explore the realization of
complex beams with random phase approximation.
In this paper, a novel statistical synthesis method is first in-

troduced to design the coding distribution of phase-only dig-
ital metasurfaces, with a conceptual sketch shown in Fig. 1.
Unlike [49], this work approximates the continuous amplitude
and phase simultaneously with the discrete random phase, pro-
viding improved beamforming performance of digital metasur-
faces. In light of the randomness of the proposed method, we
provide the optimization process employed to obtain the opti-
mal result, which has guiding significance for the study of ran-
dom phase approximation.
The proposed method allows the continuous excitation coef-

ficients derived from conventional analytic synthesis methods
to be achieved using phase-only digital metasurfaces with dis-
crete states. It is also noted that the low computational com-
plexity of the proposed method facilitates its implementation
in embedded systems. Numerical examples and full-wave sim-
ulations are presented to demonstrate the effectiveness of the
proposed method. As an example, a 2-bit phase-only digital
metasurface is utilized to realize complex beams through exper-
imental measurements. The results are in good agreement with
the simulations. This work transforms the statistical method
in [49] from a mere numerical result to a practical route with a
new lease of life in digital metasurfaces.

2. METHODS

2.1. Derivation of the Method
The continuous amplitude and phase distributions of the digital
metasurface are initially given by appropriate analytic synthesis

FIGURE 1. The schematic diagram of various complex beams gener-
ated by the phase-only digital metasurface.

methods. The discrete phases of each metasurface element are
then determined based on specific quantization probabilities.
The schematic workflow of the proposed method is shown in
Fig. 2. The target pattern is a cosecant beam. Specifically, the
beam varies between θ = 8◦ and θ = 20◦ in the ϕ = 0◦ plane.
To simplify the introduction, a uniform planar array (UPA) with
a continuous amplitude and phase distribution is chosen as an
example. If the reference point is taken at the center of the first
element, the radiation pattern is expressed as follows:

F (θ, ϕ) =

M∑
m=1

N∑
n=1

Amn · ejφ(m,n) · ej(kxmnu+kymnv), (1)

where M and N represent the number of elements in the x-
and y-directions; Amn and φ(m,n) denote the equivalent am-
plitude and phase excitation of the element; xmn and ymn

are the coordinates of the (m,n)-th element, u = sin θ cosϕ,
v = sin θ sinϕ, and k is the wavenumber. Amn ·ejφ(m,n) is the
continuous excitation coefficient and should be implemented
by digital metasurfaces. To this end, the discrete phase of each
element is determined by a distinctive quantization probability,
and the corresponding pattern is written as

F0(θ, ϕ) =

M∑
m=1

N∑
n=1

A′
mn · ejφ0(m,n) · ej(kxmnu+kymnv), (2)

where A′
mn is the prescribed amplitude excitation, while

φ0(m,n) denotes the discrete random phase of each element.
The fundamental principle of random phase approximation is
designing the value of φ0(m,n) to guarantee the following
equality:

F0(θ, ϕ) = F (θ, ϕ), (3)
where the bar represents statistical averaging.
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FIGURE 2. The schematic workflow of the proposed method.

The two excitation coefficients Amn · ejφ(m,n) in (1) and
A′

mn · ejφ0(m,n) in (2) are decomposed into real and imaginary
parts, respectively. Thus, (3) is fulfilled by the following con-
ditions:

Amn cosφ(m,n) = A′
mncosφ0(m,n), (4)

and
Amn sinφ(m,n) = A′

mnsinφ0(m,n). (5)
In order to take full advantage of (4) and (5), the phase
φ0(m,n) is decomposed as the product of two random and in-
dependent quantities [49]:

φ0(m,n) = η(m,n)ξ(m,n). (6)

To allow the proposed method to approximate continuous am-
plitude and phase simultaneously, we assume that η(m,n)
takes the values−1 or 1 with specific probabilities. As a result,
the cosine function will not be influenced by η(m,n). Accord-
ingly, (4) and (5) are transformed as

Amn cosφ(m,n) = A′
mncos ξ(m,n), (7)

and

Amn sinφ(m,n) = A′
mnsin η(m,n)ξ(m,n). (8)

For simplicity, we denote

cosψmn = cos ξ(m,n), (9)

where ψmn is the ideal continuous phase. In the case of a 2-
bit phase-only digital metasurface, ξ(m,n) can take any of the
four discrete phases 0◦, 90◦, 180◦, and 270◦ with certain prob-
abilities to satisfy (9). However, to minimize the quantization
error, we only choose the two discrete values adjacent to ψmn.
The probability of taking the two values is determined in the
following form:

ξ (m,n) =

{
∆φ · ⌊ψmn/∆φ⌋ = ξ1 pξ(m,n)

∆φ · ⌊ψmn/∆φ⌋+∆φ = ξ2 1− pξ(m,n),

(10)

where ⌊ψmn/∆φ⌋ denotes the integer part of ψmn/∆φ;∆φ is
the phase quantization precision; and pξ(m,n)means the quan-
tization probability of ξ(m,n). According to the definition of
statistical averaging and (10), cos ξ(m,n) is expressed as

cos ξ(m,n) = pξ(m,n) cos ξ1 + (1− pξ(m,n)) cos ξ2 (11)

By substituting (11) into (7), we can get the value of
pξ(m,n):

pξ(m,n) =
cos ξ2 −Amn · cosφ(m,n)/A′

mn

cos ξ2 − cos ξ1
, (12)

As mentioned before, the random quantity η(m,n) in (8) is de-
signed as

η(m,n) =

{
−1, pη(m,n)
+1, 1− pη(m,n),

(13)

with pη(m,n) representing the quantization probability of
η(m,n). After obtaining ξ(m,n) through (10), we expand
sin η(m,n)ξ(m,n) as follows according to the definition of
statistical averaging:

sin η(m,n)ξ(m,n) = −pη(m,n)pξ(m,n) sin ξ1
−pη(m,n)(1− pξ(m,n)) sin ξ2
+(1− pη(m,n))(1− pξ(m,n)) sin ξ2
+(1− pη(m,n))pξ(m,n) sin ξ1. (14)

Subsequently, we substitute (14) into (8) to get the probability
pη(m,n) as follows:

pη(m,n) =
Amn · sinφ(m,n)/A′

mn

2pξ(m,n) · sin ξ1 + 2(1− pξ(m,n)) · sin ξ2
+
1

2
.

(15)
The two probabilities pξ(m,n) and pη(m,n) should be con-
strained within the range from 0 to 1. Accordingly, we can get
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the following condition (see the detailed derivation in the Ap-
pendix A):

Amn

A′
mn

⩽ cos
(
∆φ

2

)
, (16)

which indicates that the phase quantization precision influences
the performance of the proposed method. Amn is normalized to
the range from 0 to A′

mn cos(∆φ/2) when the value of A′
mn is

fixed. It can be seen thatAmn is less restricted with the increase
of the phase quantization precision, which is further discussed
in Section 3.3.3.

Algorithm 1 Optimization Process of the Random Phase Ap-
proximation Method
1: Input:
2: Metasurface’s parameters: xmn, ymn;
3: Target pattern’s parameters: Amn, φ(m,n), F ;
4: Random quantities’ parameters: η1, η2, ξ1, ξ2, pη, pξ.
5: for s = 1, . . . , S do
6: Calculateφs using (10) and (13) as the s-th phase coding

pattern.
7: Calculate Fs using (2) as the s-th realized pattern.
8: Calculate Fe(s) = |F − Fs| as the s-th error between

the realized and the target pattern.
9: end for
10: Select s∗ that minimizes Fe(s)
11: output: The optimal pattern Fs∗ and the phase coding pat-

tern φs∗ .

The randomness of the proposed method indicates that a sin-
gle realization of the pattern F0(θ, ϕ) may not provide an opti-
mal approximation of the target pattern F (θ, ϕ). Thus, we gen-
erate the random phase distribution of elements multiple times
and select the optimal result, i.e., the one that minimizes the
error between the realized and the target patterns. The pseudo-
code of the optimization process is summarized in Algorithm 1,
where F is the target pattern. S is the number of computations.
φs and Fs denote the s-th phase coding pattern and the realized
pattern, respectively. Fe(s) = |F − Fs| represents the s-th er-
ror between the realized and target pattern. The definition of
the mean squared error (MSE) between the realized and target
pattern is expressed as follows:

σ2 = |F0(θ, ϕ)− F (θ, ϕ)|2. (17)

The above equation is further expanded in combination
with (1), (2), and (6):

σ2 =

∣∣∣∣∣
M∑

m=1

N∑
n=1

A′
mnbmn cos ξ(m,n)

∣∣∣∣∣
2

+

∣∣∣∣∣
M∑

m=1

N∑
n=1

A′
mnbmn sin[η(m,n)ξ(m,n)]

∣∣∣∣∣
2

−

∣∣∣∣∣
M∑

m=1

N∑
n=1

Amne
jφ(m,n)bmn

∣∣∣∣∣
2

, (18)

where bmn represents ej(kxmnu+kymnv) for simplicity. Since
the random quantities ξ(m,n) and η(m,n) are uncorrelated,
the three terms in (18) are expanded as∣∣∣∣∣

M∑
m=1

N∑
n=1

A′
mnbmn cos ξ (m,n)

∣∣∣∣∣
2

=

∣∣∣∣∣
M∑

m=1

N∑
n=1

A′
mnbmncos ξ(m,n)

∣∣∣∣∣
2

+

M∑
m=1

N∑
n=1

(A′
mn)

2cos2 ξ (m,n)

−
M∑

m=1

N∑
n=1

(A′
mn)

2{cos ξ(m,n)}2, (19)

∣∣∣∣∣
M∑

m=1

N∑
n=1

A′
mnbmn sin[η(m,n)ξ(m,n)]

∣∣∣∣∣
2

=

∣∣∣∣∣
M∑

m=1

N∑
n=1

A′
mnbmnsin[η(m,n)ξ(m,n)]

∣∣∣∣∣
2

+

M∑
m=1

N∑
n=1

(A′
mn)

2sin2 ξ (m,n)

−
M∑

m=1

N∑
n=1

(A′
mn)

2{sin η(m,n)ξ(m,n)}2, (20)

and ∣∣∣∣∣
M∑

m=1

N∑
n=1

Amne
jφ(m,n)bmn

∣∣∣∣∣
2

=

∣∣∣∣∣
M∑

m=1

N∑
n=1

A′
mnbmncos ξ(m,n)

∣∣∣∣∣
2

+

∣∣∣∣∣
M∑

m=1

N∑
n=1

A′
mnbmnsin[η(m,n)ξ(m,n)]

∣∣∣∣∣
2

, (21)

respectively. More details are presented in the Appendix B.
Substituting (7) and (8) into (19) and (20) and combining (19),
(20), and (21), we further reduce the MSE in (18) as

σ2 =

M∑
m=1

N∑
n=1

(
(A′

mn)
2 −A2

mn

)
. (22)

The normalized MSE of (22) is expressed as

σ2
1 =

∑M
m=1

∑N
n=1

(
(A′

mn)
2 −A2

mn

)∣∣∣∑M
m=1

∑N
n=1Amn

∣∣∣2 . (23)

The MSE comparison between this work and other random
quantization methods will be presented and discussed in Sec-
tion 3.2.
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(a) (b) (c)

FIGURE 3. Vector representation of the proposed method. (a) ξ and η are both random quantities. The red vector representsAejφ with float amplitude
and phase. The vectors ejη1ξ1 , ejη1ξ2 , ejη2ξ1 , and ejη2ξ2 are the possible values of ejφ0 , where ejη2ξ1 = ejη1ξ1 = ej0. (b) ξ is random, while
η is +1. Aξ moves along the purple line segment when pξ varies from 0 to 1. Re(Aξ) = Re(Aejφ) = A cosφ is achieved when pξ is set to
cosφ. (c) ξ is fixed as φ1, while η is random, where cosφ1 = A cosφ. Aη moves along the purple line segment when pη varies from 0 to 1.
Im(Aη) = Im(Aejφ) = A sinφ is achieved when pη is set to 1/2(A sinφ/ sinφ1 + 1).

2.2. Principle of Simultaneous Amplitude and Phase Approxi-
mation

To explain how the proposed method simultaneously approx-
imates the amplitude and phase distributions of elements, we
transform (3) as follows:

E[ejφ0 ] = Aejφ, (24)

whereA andφ represent the continuous amplitude and phase of
elements, while φ0 denotes the random phase calculated by the
proposed method. E[ejφ0 ] is the statistical average of ejφ0 . φ0

is decomposed as two random quantities ξ and η through (6).
For simplicity, we assume that the continuous phase φ ranges
from 0◦ to 90◦. In the case of a 2-bit phase-only digital metasur-
face, η takes the values η1 = +1 and η2 = −1, and ξ takes the
two discrete values adjacent to φ, i.e., ξ1 = 0◦ and ξ2 = 90◦,
as determined by (10) and (13).
To illustrate the relationship between ejφ0 and Aejφ intu-

itively, we plot them as vectors on the unit circle in Fig. 3(a),
where x-axis and y-axis denote the real and imaginary parts, re-
spectively. The red vector representsAejφ with float amplitude
and phase, with the three blue vectors denoting all possible val-
ues of the random phase ejφ0 . Since η takes the values η1 = +1
and η2 = −1, (ejη1ξ1 , ejη1ξ2) and (ejη2ξ1 , ejη2ξ2) are symmet-
ric with respect to the x-axis. Moreover, ejη2ξ1 coincides with
ejη1ξ1 , as both are equal to ej0. E[ejφ0 ] is the statistical aver-
age of the vectors ejη1ξ1 , ejη1ξ2 , ejη2ξ1 , and ejη2ξ2 with respect
to the random quantities ξ and η. The influences of ξ and η on
E[ejφ0 ] are investigated as follows.
First, we assume that η is fixed as +1 and ξ is random. In this

case, only the vectors ejξ1 and ejξ2 are considered, andE[ejφ0 ]
is transformed as

Aξ = pξe
jξ1 + (1− pξ)e

jξ2 , (25)

where Aξ represents the statistical average of the two vectors
ejξ1 and ejξ2 with respect to ξ. As shown in Fig. 3(b), when
pξ varies from 0 to 1, the red dashed vector Aξ moves along
the purple line segment. The black dashed line corresponds to
all vectors whose real part is A cosφ. It can be seen that the
variation of pξ influences both the real and imaginary parts of
Aξ. In this case, we only need to set pξ = cosφ such that the
real part of Aξ satisfies Re(Aξ) = A cosφ.

Next, we assume that ξ is fixed as φ1, where cosφ1 =
A cosφ. While ξ is discrete in the proposed method, it is set
to a specific continuous value here for the sake of illustration.
In this case, the green vectors ejη1φ1 and ejη2φ1 are considered,
and E[ejφ0 ] is transformed as

Aη = pηe
jη1φ1 + (1− pη)e

jη2φ1 , (26)

where Aη represents the statistical average of the two vectors
ejη1φ1 and ejη2φ1 with respect to η. As shown in Fig. 3(c),
when pη varies from 0 to 1, Aη moves along the purple line
segment. It can be seen that the variation of pη primarily influ-
ences the imaginary part of Aη without affecting its real part.
Specifically, we set pη = 1/2(A sinφ/ sinφ1 + 1) such that
the imaginary part of Aη satisfies Im(Aη) = A sinφ. In this
case, Aη coincides with Aejφ.
Overall, the two random quantities ξ and η respectively influ-

ence the real and imaginary parts of E[ejφ0 ]. By appropriately
adjusting the probabilities of ξ and η, we find that the value
of E[ejφ0 ] almost covers the entire unit circle. This indicates
that the proposed method can approximate nearly all continu-
ous amplitudes and phases of elements.

3. RESULTS

3.1. Numerical Examples
To demonstrate the performance of the proposed method, a dig-
ital metasurface consisting of 16×16 elements with 2-bit phase
responses of 0◦, 90◦, 180◦, and 270◦ is taken as the hardware.
The size of the metasurface element is 0.48 × 0.48 × 0.09λ30
at 11GHz. The continuous excitation coefficients obtained
from three analytic methods are approximated by the proposed
method, and the generated discrete phase distributions can be
implemented on the hardware to realize three types of complex
beams. For simplicity, the amplitude of each metasurface ele-
ment is fixed as 1 in the following numerical examples.

3.1.1. Cosecant Beam

In the first example, a cosecant beam is designed. Specifically,
the beam varies between θ = 8◦ and θ = 20◦ in the ϕ = 0◦

plane. The Woodward-Lawson method is utilized to calculate
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FIGURE 5. The process of forming a radiation pattern at 11GHz with a prescribed null at 18◦. (a) The original and cancellation pattern. (b) The
cancellation pattern is multiplied by the coefficient γ1. (c) The final pattern with a null at 18◦.

the continuous excitation coefficients. TheWoodward-Lawson
method regards the desired cosecant beam as the superposition
of multiple linear arrays. The excitation coefficients of these
linear arrays are added, yielding the continuous amplitude and
phase for each corresponding element [26].
The obtained continuous amplitude and phase distribution

is approximated by the proposed method to obtain the desired
discrete phase distribution. The specific process is as follows:
First, the two quantization probabilities pξ(m,n) and pη(m,n)
are derived as (12) and (15). Then, the discrete phase distri-
butions are obtained as (10) and (13). Finally, the beams are
calculated as (1) and (2). It should be noted that all the fol-
lowing radiation pattern gains are normalized, as the primary
contribution of this work is the random phase approximation
method, and the radiation patterns are only provided for verifi-
cation. As illustrated in Fig. 4(a), the blue solid line represents
the cosecant beam corresponding to the excitation with the con-
tinuous amplitude and phase, while the red dashed line depicts
the beam corresponding to the excitation with the discrete ran-
dom phase. The two beams match well in the range between 8◦
and 20◦. The side lobe level of the beam with discrete random
phase excitation is −14.2 dB, which is 3.1 dB higher than that
of the beam with continuous amplitude and phase excitation.
The higher side lobe can be attributed to the limited modula-
tion capability of 2-bit phase-only digital metasurfaces, which
cannot achieve precise beamforming and low side lobe levels
simultaneously. The phase coding pattern of the metasurface is
shown in Fig. 4(b).

3.1.2. Beam Scanning with the Prescribed Null

In the second example, beams with prescribed nulls are con-
sidered due to their wide application in radar and communica-
tions. The null steering synthesis method in [50] is utilized to
calculate the continuous excitation coefficients. This method
generates a prescribed null by subtracting a scaled cancellation
pattern from an original pattern, as detailed below. Fig. 5(a)
demonstrates that the method starts from a given original pat-
tern F0(θ) and a cancellation pattern Fc(θ) in the direction
θn = 18◦. Fig. 5(b) illustrates the scaled cancellation pattern
γ1Fc(θ) where γ1 = F0(θn)/Fc(θn). Finally, Fig. 5(c) shows
that the final pattern is determined by the subtraction of γ1Fc(θ)
from F0(θ), yielding a prescribed null. Furthermore, it is possi-
ble to generate multiple prescribed nulls on the original pattern.
The pattern with L null angles is represented as follows [50]:

F (θ) = F0(θ)−
L∑

l=1

γl

N∑
n=1

ej(n−1)kd(cos θ−cos θl). (27)

The excitation coefficient of each element is derived from (27)
using the inverse Fourier transform

an = a0n −
L∑

l=1

γle
−j(n−1)kd cos θl . (28)

where a0n denotes the excitation coefficient that generates the
original pattern.
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FIGURE 6. Numerical results of the beam at 11GHz with a prescribed null at 18◦: (a) Simulated beams; (b), (c), and (d) the calculated coding patterns
with main beams pointing at −10◦, 0◦, and 5◦, respectively.

The random phase distribution is calculated to approximate
the continuous excitation coefficients yielded by the above
method. The results are demonstrated in Fig. 6(a). It can be
seen that as the beam scans from θ = −10◦ to θ = 5◦ in the
ϕ = 0◦ plane, a prescribed null remains near θn = 18◦ with its
normalized level below −25 dB. The phase coding patterns of
the metasurface are shown in Figs. 6(b)–(d), respectively. The
simulations illustrate the effectiveness of the proposed method.

3.1.3. Flat-Top Beam

In the last example, the target pattern is a flat-top beam. Specif-
ically, the main lobe region is fixed between θ = 8◦ and
θ = 20◦ in the ϕ = 30◦ plane. The continuous excitation
coefficient amn is obtained from the two-dimensional inverse
Fourier transform as follows:

amn =

∫ 2π

0

∫ π/2

0

F (θ, ϕ)ej(kxmnu+kymnv)dθdϕ. (29)

The resultant amn is approximated by the proposed method to
obtain the discrete random phase distribution. As illustrated
in Fig. 7, the patterns of the flat-top beams generated by the
two excitations are shown in Figs. 7(a) and 7(b). It can be
seen that the two results show good consistency. The side lobe
level of the pattern with discrete random phase excitation is
−9.8 dB, being 9.5 dB higher than that of the pattern with con-
tinuous amplitude and phase excitation. This is attributed to
the fact that the excitation coefficient obtained from the inverse
Fourier transform includes amplitude tapering, whereas the dig-
ital metasurface in this work provides uniform amplitude dis-
tribution across all elements. The phase coding pattern of the
metasurface is shown in Fig. 7(d). The example confirms the
effectiveness of the proposed method in beam synthesis.

3.2. Comparison with Stochastic Optimization and Other Phase
Quantization Methods

Stochastic optimization methods can also provide discrete
phase distributions that generate complex beams. To demon-
strate the advantages of the proposed method, we compare it
with stochastic optimization methods. The flat-top beam is
utilized as an illustrative example. The array in the comparison
is the same as that in Section 3.1. The fitness function for
stochastic optimization is defined as

fitness = c1 · |MLL−MLL0|+ c2 ·max |SLL− SLL0| ,
(30)

where c1 and c2 are the weighting coefficients; MLL is the
main lobe level of the flat-top region; and SLL is the side lobe
level of the other regions. The coefficient c1 weights the flat-
ness of the main lobe region, while c2 influences the maximum
side lobe level. We find that a large c1/c2 leads to a signifi-
cant increase in side lobe levels, whereas a small c1/c2 causes
fluctuations within the main lobe. Thus, we perform multiple
adjustments of c1 and c2 to achieve satisfactory performance.
The values of c1 and c2 are set as c1 = 1.1 and c2 = 0.45,
respectively.
The main lobe region of MLL0 = 0 dB is fixed between

θ = 8◦ and θ = 20◦ in the ϕ = 0◦ plane. The side lobe level is
constrained to a maximum of SLL0 = −15 dB. The main lobe
and side lobe levels of the desired pattern are dictated by the de-
sign requirements and the practical capabilities of the metasur-
face. The comparison of the flat-top beam patterns generated by
GA, PSO, and the proposed method is illustrated in Fig. 8. The
detailed performance is presented in Table 1, where the half-
power beam width (HPBW) of the three methods shows slight
discrepancies. Although GA and PSO achieve slightly lower
side lobe levels than the proposed method, they require signif-
icantly longer optimization time than the latter. Overall, the
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FIGURE 7. Numerical results of the flat-top beam at 11GHz: (a) Far-field patterns generated by metasurfaces with continuous amplitude and phase
and (b) Far-field patterns generated by metasurfaces with discrete random phase; (c) Comparison between the two results. Excitation 1 denotes the
continuous amplitude and phase, while Excitation 2 represents the discrete random phase; (d) The calculated coding pattern of the metasurface with
random phase approximation.

TABLE 1. Comparison of the proposed method with optimization al-
gorithms.

Method HPBW Side lobe level Optimization time
(deg.) (dB) (s)

PSO 18.2 −10.7 1674
GA 18.4 −12.1 1243

This work 17.55 −9.79 1.31

proposed method exhibits satisfactory performance with mini-
mal time.
To clarify the differences between the proposed method and

other random quantization methods, we take the pencil beam
and flat-top beam in the ϕ = 0◦ plane as examples. The array in
the comparison is still the same as that in Section 3.1. For pen-
cil beam generation, the main lobe direction is controlled solely
by the phase variation across the array, without any amplitude
modulation. Therefore, in the case of phase-only approxima-
tion, the proposed method is equivalent to the 2PVmethod, that
is, η(m,n) in (6) is fixed as +1. The comparison of the pencil
beam along θ = −20◦ is shown in Fig. 9(a), where the target
beam is generated by the continuous phase distribution. Ran-
dom quantization methods, including the 2PV, 3PV, and the
proposed method, are subsequently employed to approximate
the target beam. These methods effectively reduce the beam
pointing deviation and side lobe level. Furthermore, the com-
parison of the flat-top beam is shown in Fig. 9(b), where the
target beam is generated by the continuous amplitude and phase
distribution with the main lobe region fixed between θ = −8◦

and θ = 8◦ in the ϕ = 0◦ plane. For flat-top beam genera-
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FIGURE 8. Comparison of flat-top beams generated by stochastic opti-
mizations and the proposed method at 11GHz.

tion, each element has distinct amplitude and phase responses.
The phase determines the beam direction while the amplitude
shapes the beam envelope. However, the 2PV and 3PV meth-
ods are limited to approximating the phase. Consequently, their
beamforming performance is significantly degraded. In con-
trast, the proposed method agrees well with the target beam.
Furthermore, to quantitatively evaluate the performance of

the proposed method in flat-top beam synthesis, we compute
the MSE between the beams generated by these random quan-
tization methods and the target beam for different numbers of
elements. As illustrated in Fig. 10, the results are normalized
to the maximum MSE among all the compared methods. It
can be observed that the proposed method consistently exhibits
lower normalized MSE than the 2PV and 3PV methods. These
results indicate that the proposed method achieves enhanced
beamforming performance, as it can approximate continuous
amplitude and phase distributions of elements simultaneously.
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FIGURE 9. Comparison of (a) pencil beams and (b) flat-top beams generated by different quantization methods. The frequency is 11GHz.
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FIGURE 10. Comparison of the normalized MSE between the beams
generated by random quantization methods and the target beam.

3.3. Full-Wave Simulations

3.3.1. The Metasurface

The metasurface element in [51] (0.48 × 0.48 × 0.09λ30 at
11GHz) is utilized to validate the numerical results in Sec-
tion 3.1. The geometrical configuration of the metasurface ele-
ment is presented in Fig. 11. The element consists of four parts,
including the radiation layer, the ground planes, the direct cur-
rent (DC) bias layer, and the feed network layer. The four parts
are laminated together with two pieces of 0.2mm thick Rogers
RO4450F (εr = 3.7, tan δ = 0.004).
The top radiation layer consists of two identical patches and

a small square patch with a metal via. The radiation patch is an
equivalent magnetic dipole with a wide HPBW and is suitable
for complex beam generation. Two PIN diodes are located in
the gaps of the radiation patch, with their ON and OFF states
switched by voltage modulation. When the two PIN diodes
are respectively in the ON state, the surface current exhibits
the same magnitude but opposite directions, producing a 180◦
phase difference. The feed network is composed of a two-port
reflection-type phase shifter (RTPS) that integrates two PIN
diodes. When both PIN diodes are in the ON state, the carefully
designed microstrip line provides a 90◦ phase shift relative to
the OFF state. The combination of the top radiation layer and
RTPS then allows for the realization of 2-bit phase responses.
The digital metasurface for full-wave simulations is com-

posed of 16 × 16 elements. The feed network is carefully de-
signed to ensure the uniform distribution of energy across all
ports.

FIGURE 11. Geometrical configuration of the metasurface element
based on [51].

3.3.2. Full-Wave Simulation Results

The cosecant, prescribed null and flat-top patterns in theϕ = 0◦

plane are simulated in CST Microwave Studio. The result of
the cosecant beam is represented in Fig. 12(a), which agrees
with the numerical result. The side lobe level remains below
−14 dB. The results of scanning beams with a prescribed null
at θn = 18◦ are demonstrated in Fig. 12(b). As depicted, the
difference between the full-wave and numerical results is negli-
gible. Although the normalized gain at the prescribed null with
the main beam pointing at −10◦, 0◦, and 5◦ is slightly higher
than the numerical result, it remains below −25 dB. The result
of the flat-top beam is shown in Fig. 12(c). The target main
lobe region is fixed between θ = 8◦ and θ = 20◦, generally
agreeing with the numerical result. The side lobe level is be-
low −10 dB. The difference in the side lobe range depicted in
Fig. 12 can be explained as follows. The numerical result is
based on the point-source model, without considering the mu-
tual coupling between adjacent metasurface elements, which
affects the beamforming performance of the digital metasur-
face.

3.3.3. Parametric Study

A parametric study is necessary to examine the impact of vary-
ing numbers of elements and phase quantization precision on
the performance of the proposedmethod. To this end, full-wave
simulations of the flat-top beam are performed under these dif-
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FIGURE 12. The numerical and full-wave results of patterns with (a)
cosecant beam, (b) prescribed null, and (c) flat-top beam at 11GHz.

ferent factors. For all the cases, the target main lobe region
is fixed between θ = 8◦ and θ = 20◦ in the ϕ = 0◦ plane.
As shown in Fig. 13(a), a larger array provides greater flexi-
bility and precision for the proposed method when the target
main lobe region is fixed. (16) indicates that the continuous
amplitudeAmn derived from analytic methods is subject to the
amplitude constraint, i.e., Amn is normalized to the range from
0 to cos(∆φ/2), since A′

mn is fixed as 1. When Amn satisfies
the amplitude constraint in (16), the performance is improved
with the increase of the phase quantization precision, as shown
in Fig. 13(b). Moreover, when ∆φ is fixed as 90◦, the com-
parison between the cases in which Amn is or is not subject
to the amplitude constraint in (16) is shown in Fig. 13(c). It
can be observed that the performance is slightly deteriorated
when (16) is not satisfied. The two comparisons in Figs. 13(b)
and 13(c) indicate that the performance is improved whenAmn

satisfies the constraint in (16) and the phase quantization preci-
sion increases, which is in accordance with the analysis of (16)
in Section 2.1.

3.4. Experimental Measurement

To further verify the proposed method, the flat-top, cosecant,
and dual-beam patterns in the ϕ = 0◦ plane are experimentally
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FIGURE 13. The flat-top beams with different (a) numbers of elements,
(b) phase quantization precision at 11GHz, and (c) comparison be-
tween the cases in which Amn is subject to or not subject to the am-
plitude constraint in (16).

measured. Unlike the simulations, a smaller array with 8 × 8
elements is employed in the experiment, which is sufficient to
validate the effectiveness of the proposed method. The effec-
tive size of the metasurface is 104 × 104mm2 (3.8 × 3.8λ20
at 11GHz), and the total size increases to 144 × 144mm2 for
DC bias and assembly. The experimental measurements of the
metasurface were performed in an anechoic chamber, as shown
in Fig. 14. The digital metasurface was excited through a coax-
ial port. Besides, the field-programmable gate array (FPGA)
control board provided dynamic biasing voltages for the 2-bit
digital metasurface, and commands were transmitted from the
laptop via the I/O port. A linearly polarized horn antenna was
connected to a vector network analyzer (Keysight N5230C) to
receive the signal.
As shown in Fig. 15(a), the measured flat-top beam at

11GHz is in general agreement with the simulation result.
The HPBW is 38.5◦ (from −22.25◦ to 16.25◦), being slightly
narrower than the simulated value. The side lobe level is
−6.35 dB, being 2.4 dB higher than the simulated value. In
Figs. 15(b) and 15(c), the measured cosecant and dual-beam
patterns agree well with the simulation results. The side lobe
levels of the measured cosecant and dual-beam are 2.3 dB and
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TABLE 2. Comparison of different realizations of flat-top beams.

Reference Frequency (GHz) Size (λ2
0) Antenna type Method

Computational
complexity

Reconfigurability

[33] 5.74 13.12 Phased array Woodward-Lawson Low No
[34] 5.2 4.3 Transmitarray Phase compensation Low No
[39] 11.1 7.1 Transmitarray PSO High No
[41] 10 4.88 Transmitarray GA High No
[43] 10 10 Reconfigurable transmitarray GA High Yes

This work 11 3.8 Digital metasurface Random phase Low Yes

(a)

(b)

FIGURE 14. Far-field measurements. (a) Back view, (b) front view.

1.84 dB higher than the simulated values, respectively. Never-
theless, the curves in the other regions agree well with the sim-
ulations, validating the effectiveness of the proposed method.
The higher side lobes in the measured results can be explained
as follows. The SMA connector introduces extra loss in the ex-
periment. Moreover, the errors in the fabrication of the digital
metasurface contribute to additional loss.
To justify the novelty and advantages of the proposed

method, it is compared with previous works in the field of
complex beam synthesis. The flat-top beam is used as an
illustrative example, and the results are summarized in Table 2.
References [33] and [34] utilize analytic methods to design
the excitation coefficients of the array elements, while Refer-
ences [39, 41], and [43] used stochastic optimization methods
to generate flat-top beams. The comparison focuses on two
aspects: reconfigurability and computational complexity.
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FIGURE 15. Measured beams of the 2-bit digital metasurface with 8×8
elements at 11GHz, using the phase codes obtained by the proposed
method. (a) Flat-top beam. (b) Cosecant beam. (c) Dual-beam.

The analytic methods, such as Woodward-Lawson in [33]
and phase compensation in [34], are first discussed. These
methods rapidly provide the continuous excitation coefficients
of each element for complex beam synthesis. However, it is
difficult to implement the calculated continuous distribution in
digital metasurfaces, which require discrete excitations. On
the contrary, the proposed method generates discrete random
phase distributions that approximate continuous excitation co-
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efficients, thereby enabling a complex beam reconfigurability
on digital metasurfaces.
The existing stochastic optimization methods in refer-

ence [39], [41], and [43] can flexibly provide continuous
or discrete excitation coefficients of each element to realize
complex beams. Nevertheless, they suffer from extensive
computational complexity. Compared to them, the proposed
method significantly reduces computational complexity while
avoiding the fine-tuning of optimization parameters, which is
particularly suitable for dynamic complex beam synthesis.

4. CONCLUSION
A random phase approximation method is first proposed to
rapidly and effectively realize complex beams in combination
with digital metasurfaces. It is demonstrated that discrete ran-
dom phases with specific quantization probability distributions
can approximate a continuous amplitude and phase excitation.
Several numerical examples are provided to evaluate the effec-
tiveness and accuracy of the proposed method. Practical meta-
surfaces are utilized to validate the numerical and full-wave
simulations. Themetasurface shows excellent performance and
adaptability under different complex beams. Overall, the pro-
posed method provides a simple and effective way to realize
complex beams. It can be extended to the terahertz, optical,
and acoustic regimes with the exploration of different imple-
mentations.
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APPENDIX A. DETAILED DERIVATION OF (16)
By substituting (7) into (12), we get the quantization probability
pξ(m,n) as follows:

pξ(m,n) =
cos ξ2 − cos ξ(m,n)

cos ξ2 − cos ξ1
. (A1)

The statistical average cos ξ(m,n) necessarily lies between
cos ξ1 and cos ξ2. Therefore, pξ(m,n) is always constrained
between 0 and 1.
The quantization probability pη(m,n) is constrained to the

range of 0 ∼ 1 through the following condition:

Amn · sinφ(m,n)/A′
mn

pξ(m,n) · sin ξ1 + (1− pξ(m,n)) · sin ξ2
− 1 ⩽ 0. (A2)

The value of pξ(m,n) is substituted into (A2). Amn/A
′
mn is

represented by c for simplicity. The denominator is then ex-

panded as

pξ(m,n) · sin ξ1 + (1− pξ(m,n)) · sin ξ2

=
cos ξ2 sin ξ1 − cos ξ1 sin ξ2

cos ξ2 − cos ξ1

+
c · cosφ(m,n)(sin ξ2 − sin ξ1)

(cos ξ2 − cos ξ1)
. (A3)

The trigonometric identities employed in this analysis are

cos ξ2 − cos ξ1 = −2 sin
(
ξ2 + ξ1

2

)
sin
(
ξ2 − ξ1

2

)
,(A4)

sin(ξ1 − ξ2) = 2 sin
(
ξ1 − ξ2

2

)
cos
(
ξ1 − ξ2

2

)
. (A5)

The condition in (A2) is then transformed as

c · cos(φ(m,n)− ξ1+ξ2
2 )− cos ∆φ

2

cos ∆φ
2 − c · cos( ξ1+ξ2

2 ) cosφ(m,n)
⩽ 0, (A6)

where cos∆φ/2 is greater than 0 since∆φ is less than π. The
following condition is derived from (10)

cosφ(m,n) ≈ cos
ξ1 + ξ2

2
, (A7)

which means cos(φ(m,n) − (ξ1 + ξ2)/2) is greater than 0.
Since the maximum value of cos((ξ1+ ξ2)/2) is cos∆φ/2 and
c is less than 1, cos∆φ/2 is always greater than c · cos((ξ1 +
ξ2)/2) cosφ(m,n). Thus, (A6) is transformed as

c · cos
(
φ(m,n)− ξ1 + ξ2

2

)
− cos

∆φ

2
≤ 0, (A8)

which should be satisfied for all values of m and n. Since
cos(φ(m,n)− (ξ1 + ξ2)/2) is less than 1, (A8) is reduced as

c ≤ cos
(
∆φ

2

)
, (A9)

which is (16) in the main text.

APPENDIX B. DETAILED DERIVATION OF (19)
In Equation (19), the statistical averaging depends on the value
of ξ(m,n). We can transform (19) into a symmetrical form as
follows: ∣∣∣∣∣

M∑
m=1

N∑
n=1

A′
mnbmn cos ξ (m,n)

∣∣∣∣∣
2

−

∣∣∣∣∣
M∑

m=1

N∑
n=1

A′
mnbmncos ξ(m,n)

∣∣∣∣∣
2

=

M∑
m=1

N∑
n=1

(A′
mn)

2cos2 ξ (m,n)
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−
M∑

m=1

N∑
n=1

(A′
mn)

2{cos ξ(m,n)}2. (B1)

Both sides of this equation are consistent with the definition of
the variance. Accordingly, the left-hand side of (B1) is trans-
formed as ∣∣∣∣∣

M∑
m=1

N∑
n=1

A′
mnbmn cos ξ (m,n)

∣∣∣∣∣
2

−

∣∣∣∣∣
M∑

m=1

N∑
n=1

A′
mnbmncos ξ(m,n)

∣∣∣∣∣
2

= Var

(
M∑

m=1

N∑
n=1

Xmn

)
, (B2)

where Var() denotes the variance, and |A′
mnbmn cos ξ(m,n)|

is represented by Xmn for simplicity. According to the rela-
tionship between variance and covariance, (B2) is expanded as

Var

(
M∑

m=1

N∑
n=1

Xmn

)

=

M∑
m1,m2=1

N∑
n1,n2=1

Cov(Xm1n1
, Xm2n2

)

=

M∑
m=1

N∑
n=1

Var(Xmn)

+
∑

m1 ̸=m2

∑
n1 ̸=n2

Cov(Xm1n1
, Xm2n2

), (B3)

where Cov() denotes covariance. Since each of the random
quantities ξ(m,n) is uncorrelated, the variance in (B3) is re-
duced as

Var

(
M∑

m=1

N∑
n=1

Xmn

)
=

M∑
m=1

N∑
n=1

Var(A′
mn |bmn| cos ξ (m,n)).

(B4)
According to the properties of variance, (B4) is transformed as

Var

(
M∑

m=1

N∑
n=1

Xmn

)

=

M∑
m=1

N∑
n=1

(A′
mn)

2 |bmn|2 Var(cos ξ (m,n)). (B5)

It can be found that |bmn|2 is always equal to 1. Thus, (B5) is
transformed as

Var

(
M∑

m=1

N∑
n=1

Xmn

)

= (A′
mn)

2
M∑

m=1

N∑
n=1

Var(cos ξ(m,n))

=

M∑
m=1

N∑
n=1

(A′
mn)

2cos2 ξ (m,n)

−
M∑

m=1

N∑
n=1

(A′
mn)

2{cos ξ(m,n)}2, (B6)

which is (19) in the main text.
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