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ABSTRACT: This paper describes a Pseudo-Noise (PN) sequence evaluation tool that analyzes potentially corrupted PN sequences and
assigns a metric score indicating the quality of the received sequence. The PN tester is designed to support Spread Spectrum Time
Domain Reflectometry (SSTDR) by evaluating reflected PN sequences and determining whether the received signal is valid or too
corrupted for use. Signal degradation is influenced by noise levels and channel filters encountered by the sequence. To simulate real-
world conditions, various types of noise and filtering effects — representing capacitive or inductive coupling — were applied to a
maximum-length PN sequence. The evaluation model demonstrated a consistent decline in correlation as signal distortion increased,

confirming its effectiveness in assessing signal quality.

1. INTRODUCTION

seudo-random Noise (PN) sequences are used in Spread

Spectrum Time Domain Reflectometry (SSTDR), which is
a diagnostic method for detecting and monitoring faults in elec-
trical wiring systems, such as those in aircraft, rail, instrumen-
tation, power electronics, and photovoltaic panels [1,2]. A
modulated PN sequence is injected into a system under test
(SUT), and the instrument monitors the signals reflected from
the impedance discontinuities. It then cross-correlates the in-
jected signal with the reflected signal to locate and characterize
the faults.

As the signal passes through the system under test, it is de-
graded by various distortions such as attenuation [3], variability
within the (SUT) [4-7] or electronics [8], noise [9], and capac-
itive or inductive (noncontact) coupling to the SUT [10-12].
These distortions can complicate signal analysis. Some of these
distortions — such as reflections from faults — are precisely
the changes SSTDR aims to detect. Others, including noise,
attenuation, and coupling effects, are undesirable artifacts. De-
termining whether a received signal is reliable or excessively
distorted can help quantify the confidence placed in its diagnos-
tic value. The analysis can also be used as a metric to correct
the received signal by applying corrective or adaptive filtering.

In both radar and communication systems, several standard
methods are used to evaluate signal performance under noise
and distortion. A matched filter is employed to optimally de-
tect a known signal by maximizing the output signal-to-noise
ratio (SNR) as established in detection and estimation theory
and applied in radar and communication receivers [13—17]. In
communication systems, the recovered signal quality is com-
monly quantified using metrics such as bit error rate (BER),
which characterizes the impact of noise and distortion on digital
signal detection [16, 18]. For radar applications, the ambiguity
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function is used to characterize waveform properties and to as-
sess resolution and distortion in time and frequency [13, 14, 17].

In this paper, we propose a method for evaluating the quality
of the reflected PN code before using it for fault localization
or other forms of data analysis. Since the original transmitted
sequence is known, we assess the similarity between the trans-
mitted and reflected sequences using the cross-correlation co-
efficient and key PN code properties — bit balance, run length,
and bit correlation — and combine these into a composite qual-
ity metric that reflects the level of distortion. The remainder
of this paper is organized as follows. Section 2 describes the
PN sequence evaluation methods. Section 3 presents the test-
ing procedures and results. Finally, Section 4 summarizes the
findings and provides concluding remarks.

2. PN SEQUENCE EVALUATION METHODS

A PN sequence is a type of binary sequence widely used in
spread spectrum communication, such as code division multi-
ple access (CDMA) [19-21]. PN sequences are also employed
in the SSTDR, where they are transmitted into an SUT, reflect
off impedance discontinuities, and return to the tester. These
reflected signals are cross-correlated with the original PN se-
quence to produce a correlation signature. Peaks in this sig-
nature correspond to reflections caused by impedance disconti-
nuities, revealing their location, magnitude, and type [1,2]. A
key advantage of spread-spectrum signals is that PN codes can
be distinguished from other signals and noise, enabling reliable
operation in noisy or live (energized) environments. Addition-
ally, multiple PN codes can be transmitted simultaneously, al-
lowing concurrent communication or sensing channels and en-
abling multiple users to share the same bandwidth.

In this paper, we focus on Maximal Length (ML) sequences,
which are a specific type of PN sequence, and evaluate the qual-
ity of received sequences based on distortions in their charac-
teristic properties [22]:
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1. Bit Balance Property: The number of ones in the sequence
exceeds the number of zeros by exactly one. This mea-
sures the randomness of the sequence.

2. Run Length Property: A rtun is a sequence of identical
digits (ones or zeros) occurring consecutively. An ML
sequence contains runs that follow a predictable distribu-
tion in both length and frequency, determined by the code
length.

3. Bit Correlation Property: 1f a complete ML sequence is
cyclically shifted and compared bit by bit to the original
sequence, the number of matching bits at each shift ex-
ceeds the number of mismatches by exactly one, and this
property holds for every shift until a full cycle is com-
pleted. This measures the uniform predictability of the
sequence.

4. Cross-Correlation Property: The cross-correlation coef-
ficient quantifies the similarity between two sequences.
This will be +1 for perfectly aligned identical sequences
and —1 for inverted but perfectly aligned identical se-
quences.

Correlation-based criteria have traditionally dominated the
evaluation of sequences in spread-spectrum systems. In CDMA
systems [23, 24], sequences are selected and evaluated using
periodic autocorrelation and cross-correlation functions to en-
sure reliable synchronization and to minimize multi-user in-
terference [25-27]. In radar applications [13, 28], waveforms
are assessed through their autocorrelation responses, with per-
formance commonly summarized using sidelobe-based metrics
such as peak sidelobe level and integrated sidelobe level. Simi-
larly, SSTDR-related techniques evaluate PN sequences by an-
alyzing the correlation peak between transmitted and reflected
sequences, as this directly determines spatial resolution and
noise robustness [29—-32]. Various evaluation methods for these
types of signals are summarized in Table 1.

TABLE 1. Summary of PN-sequence evaluation methods.

Appli. Evaluation Method Focus/Metrics
CDMA Periodic autocorrelation & Synchronization,
cross-correlation [23—-27] | multi-user interference
Radar Autocorrelation, Range resolution,
sidelobe metrics [28, 30] detection performance
Correlation peak between Spatial resolution
ul
SSTDR transmitted & reflected pa ’
noise robustness
sequence [29-32]
Bit balance, Run Length, Sequence inteerit
. oo . u i i
This Work Bit-shift Correlation, q .g Y
. after decoding
Cross-Correlation

In this paper, we evaluate and score the four ML properties in
the reflected sequence to assess the extent to which the ML code
has been corrupted during transmission and reflection. These
evaluations form the basis of a quality metric for the reflected
ML code. Each metric can be applied independently or com-
bined into a composite score that quantifies the integrity of the
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received sequence. The intent is to construct metrics that are
sensitive to increasing distortions in the reflected PN codes.

2.1. Bit Balance Property

The Bit Balance property metric can be assessed by calculating
the difference d between the number of ones and zeros in the
reflected sequence. In an ideal ML sequence, this difference is
exactly 1, reflecting the property that the number of ones ex-
ceeds the number of zeros by one. To evaluate how closely the
reflected sequence preserves this property, we define a normal-
ized metric as follows:

1. Take the absolute value of the observed difference, |d|, and
subtract 1 to determine the deviation from the ideal.

2. Normalize this deviation by dividing by the maximum
possible deviation, N — 1, where N is the length of the
sequence.

3. Subtract the normalized deviation from 1 to obtain a score
that equals 1 when the bit balance is ideal and decreases
toward 0 as the balance degrades.

This results in the following Bit Balance Metric Score (BBMS):

BBMS =1 — (d_l)

1
N1 (0
This metric reaches a value of 1 when |d| = 1, indicating an
ideal bit balance. An ambiguity with this formulation is that it
assigns the same quality score to d = 1 (ideal case) and d = —1
(non-ideal case where zeros outnumber ones).

2.2. Run Length Property

Run Length refers to how many Os or 1s occur in a row in an
ML sequence. These patterns are well documented [19,20].
To assess the Run Length property metric of an ML sequence,
we compare the actual run length counts from the reflected se-
quence (the sequence under evaluation) to the run length counts
(of both 1 s and 0 s) in the original sequence. For each valid run
length, if the actual count from the reflected sequence matches
the count from the original sequence, the Run Match Factor
(RMF) is set to 1; otherwise, it is set to 0. The individual
RMFs are then averaged to determine how closely the reflected
sequence follows the ideal run length distribution. The Run
Length Metric Score (RLMS) is:

RLMS = (RMF1;,+ RMF,;)

1

1
(2n—2) @

n
i=
where n is the order of the sequence; RM F'1; and RM F,,; are
the Run Match Factors for run length ¢ of 1s and 0s, respec-
tively.

The RLMS ranges between [0, 1]. A value of 1 indicates a
perfect match, where all run lengths in the reflected sequence
exactly correspond to those in the original sequence. A value
of 0 indicates no matches. Intermediate values represent partial
matches, reflecting the degree to which the reflected sequence
preserves the run-length distribution of the original sequence.
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2.3. Bit Correlation Property

The Bit Correlation property metric can be assessed by shift-
ing the reflected sequence cyclically bit by bit and comparing
the resulting shifted sequence to the original non-shifted refer-
ence sequence for like bits in each bit position. For each shift:
i =1to N — 1, we track the number of matching-bits to non-
matching-bits. We then assign a bit correlation shift score BitC;
for each shift 7 as follows:

BitC; =1
= 0 otherwise.

The final Bit Correlation Metric Score (BCMS) is obtained by

summing all the BitC; scores and dividing the total by N — 1,

thereby weighting each shift equally. This is expressed mathe-
matically as:

if |#matching-bits — #non-matching-bits| = 1

N-1

1 .
BOMS = ; BitC; (3)

The resulting BCMS value lies in the range [0, 1]. A value of
1 indicates perfect adherence to the ideal bit correlation behav-
ior expected of ML sequences, whereas a value of 0 indicates
complete deviation. Intermediate values reflect a partial match.

2.4. Correlation Coefficient

A key metric for comparing the original and reflected ML
sequences is correlation coefficient [22] which serves as the
Cross-Correlation Coefficient Metric Score (CCMS). This co-
efficient quantifies the degree of similarity between the two se-
quences and is defined as:

Y (@ =) (v — )
VEX, @i — 2SS, (i - 9)°

“)

CCMS =1y, =

where NV is the length of the sequence; x; and y; are the ith ele-
ments of the transmitted and reflected sequences, respectively;
and Z and ¥ are the respective means of the transmitted and
reflected sequences.

The Correlation Coefficient r,, takes the values of —1
through +1. Values of —1 or +1 indicate a perfect correla-
tion between the two sequences, whereas a value of 0 indicates
no association. Negative values indicate the polarity of the as-
sociation. Intermediate values reflect varying degrees of asso-
ciation. Unlike other quality scores used in this evaluation —
such as Bit Balance, Run Length, and Bit Correlation — which
are normalized to the range [0, 1], the CCMS spans a wider
range of [—1, 1]. This broader scale captures both the strength
and polarity of the linear association, which is useful for iden-
tifying inverse relationships in addition to direct matches. In
the context of PN sequence evaluation, we can use the magni-
tude of the CCMS or |CCM S|, where +1 signifies the strong
similarity between the transmitted and reflected sequences, and
deviations from this ideal suggest potential distortion, noise, or
corruption in the reflected signal.
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2.5. Overall Quality Metric Score (QMS)

Each of the individual metric scores can be evaluated separately
to assess specific types of degradation in the reflected ML se-
quence. These metrics target different structural properties of
the sequence, and their individual evaluation can provide in-
sights into where and how degradation has occurred. Alterna-
tively, to obtain a unified measure of signal quality, these in-
dividual scores can be combined using a weighted sum. This
results in an overall Quality Metric Score (QMS), defined as:

QMS=WyuBBMS + W RLMS + Wy, BCMS
+Wee| CCMS| (5)

where Wy, W1, Wy, and W, are the weighting factors as-
signed to the Bit Balance, Run Length, Bit Correlation, and
Cross-Correlation respectively. These weights can be tuned
to application-specific requirements or to sensitivity to specific
types of sequence degradation.

In this paper, we focus on reflectometry for wire fault lo-
cation. For this case, the correlation peak magnitude and its
location are most important. For this, we will emphasize the
correlation and de-emphasize the other metrics, by using the
weights Wy, = 0.0%, W,y = 22.5%, W, = 22.5%, and
Wee = 66.5%. The appropriateness of these weights was con-
firmed by preliminary results. The CCMS was weighted more
due to its consistent baseline through the trials, while the RLMS
and BCMS were equally weighted, but had observed variations,
so we weighted them less than the CCMS. BBMS was set to 0,
because the preliminary simulations showed minimal changes
under the random noise and filtering trials, indicating an even
1s and Os distribution under the inflicted distortions. This can
be seen in the subsequent figures showing the metric changes
versus distortions. The resulting QMS provides a normalized,
composite measure of the reflected sequence quality. For other
applications, such as those related to communication, where
data is associated with individual bits, the other metrics may be
weighted more. It may also be reasonable to consider only one
of the metrics, in some cases, as opposed to combining them.

3. SIMULATION RESULTS

In real-world sensing systems, various types of degradation
can compromise the integrity of ML sequence, leading to re-
duced accuracy in detection. To investigate the robustness of
the proposed ML evaluation metrics, we simulated the system
in Fig. 1 with several common forms of signal degradation. Ad-
ditive White Gaussian Noise (AWGN) introduces random fluc-
tuations in the reflected signal, which can corrupt individual
bits, resulting in increased false correlations and degraded peak
resolution [9]. Another source of degradation arises from elec-

Incident
PN Code Corl System
Generator Under Test
G —
Reflected

FIGURE 1. PN code generator with capacitive (C) or inductive (L) cou-
pling to a transmission line or System Under Test (SUT).

WWwWw.jpier.org



rPlER Letters

Nguyen et al.

tromagnetic coupling between the system components, such as
when an instrument is indirectly coupled to a transmission line
using capacitive, or inductive connection to the SUT [10-12].
Capacitive coupling introduces a high-pass filter effect, attenu-
ating low-frequency components. Inductive coupling behaves
as a low-pass filter, suppressing high-frequency components.

In this section, we will test the effectiveness of the evaluation
method by simulating existing SSTDR instrumentation similar
to that shown in Fig. 1. The SSTDR instrumentation gener-
ates a 2047-bit Manchester-encoded ML PN Code sequence
transmitted into an SUT through capacitive and/or inductive
coupling. The ML PN Code sequence originates as a 24 MHz
and was generated using a linear feedback shift register (LFSR)
with taps at positions 4, 5, 6, and 11. The sequence was then
Manchester-encoded, yielding a 48 MHz signal. Degradation
to the signal is applied in the SUT module by adding AWGN
or by applying high-pass or low-pass filters digitally to simu-
late the capacitive or inductive coupling. The existing SSTDR
instrument would typically correlate the received signal and an-
alyze it from there. As we are interested in the reflected signal
prior to the SSTDR instrumentation receiver port, in the lab, we
capture the signal using an oscilloscope. The lab oscilloscope
captures the signal with a 125 Mega-sample/second analog to
digital converter probe at the output port of the SUT.

In our MATLAB simulations of the instrumentation de-
scribed above, we generate the 48 MHz Manchester signal and
sample it at 125 Mega-Samples/second (MS/s). The simulated
AWGN is then added to this 125 MS/s signal. The capacitive
and inductive couplings are typically analog mechanisms in the
real world. The distortions due to these couplings are simulated
by high-pass and low-pass filters applied at varying cutoff fre-
quencies. To minimize artifacts in the signal processing step,
we up-sampled the 125 MS/s signal to 1 GS/s. This signal was
transformed into the frequency domain where the high-pass and
low-pass filters were applied before transforming the filtered
signal back to the time domain. This signal is then interpolated
back to a 125 MS/s signal for decoding back to a PN Code via
the Manchester decoder.

Once the 125 MS/s data is obtained, we decode the Manch-
ester encoded signal by processing each 5-point windowed bit
through a (Pearson) cross-correlation-based decoder. The sam-
ples are compared against two ideal five-sample Manchester 1’
(a rising clock edge) and ‘0’ (a falling edge) (IEEE encoding).
We apply a 60% correlation threshold. If the correlation value
between the sampled window and ideal Manchester templates
exceeds this threshold, the corresponding bit value is recorded.
However, if the sample is too noisy to meet the threshold for
both comparisons, our simulation will flag the bit as an inde-
terminate value (NaN). Once the decoder has gone through the
125 MS/s signal and decoded as much as possible. It will then
replace all indeterminate values with a random binary (0 or 1)
to provide a complete 2047-bit sequence for metric evaluation.

3.1. Evaluation under White Gaussian Noise

In the presence of noise, the correlation properties of ML se-
quences will vary as a function of SNR. The ML sequences
exhibit ideal autocorrelation in noise-free conditions [19], and
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that under AWGN, the correlation becomes statistical with a
mean and variance that depend on SNR [16]. Metrics com-
puted on the recovered binary sequence after Manchester de-
coding reflect these noise-induced deviations rather than the
ideal correlation of the raw waveform [33]. As a result, the
observed degradation of the Bit Correlation, Run Length, and
Cross-Correlation metrics with decreasing SNR is consistent
with the expected behavior of noisy ML sequences.

To assess the robustness of the proposed metrics, AWGN was
added to the Manchester-encoded simulated analog signal and
the Signal-to-Noise Ratio (SNR) was varied. Following noise
injection, the sampled signal was decoded using a Manchester
decoding algorithm to recover the digital bitstream. This recov-
ered sequence was then compared to the original, noise-free ML
sequence using the metric scores defined in Section 2. The ef-
fects of noise on each of these metrics, as a function of SNR,
are presented in Fig. 2. The Bit Balance metric changed very
little with respect to SNR, but the other three individual metrics
responded well to this degradation. Of the responding metrics,
the Bit Correlation metric decreased the most rapidly as noise
increased. The Run Length and Cross-Correlation scores also
decreased with increasing noise, but not as rapidly as the bit
correlation score. The Overall score, based on the weights cho-
sen, represented a reasonable summary of the three-responding
metrics.

005
20.4 F 7-Correlation Coefficient
0.3 ~=Run length
Bit correlation
02 -Bit balance
o1r | = Overall value ‘
0 5 0 5 10 15

SNR (dB)

FIGURE 2. ML sequence evaluation under additive white Gaussian
noise.

3.2. Evaluation under Inductive Coupling

To investigate the impact of low-pass filtering or inductive cou-
pling, a low-pass filter was applied at varying cutoff frequencies
in the simulation (method described above). The decoded se-
quence was compared to the unfiltered reference ML sequence
to assess performance degradation across a range of filter cut-
off frequencies. The resulting metric scores, which characterize
the sensitivity of the system to inductive coupling variations,
are summarized in Fig. 3. The Run Length, Bit Correlation,
and Correlation Coefficient metrics showed considerable sen-
sitivity and value reduction to the increasing cutoff frequency
as the distortion increased. The Bit Balance again showed lit-
tle change, and the Overall score showed an intermediate value
with respect to the responding metrics.
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FIGURE 3. ML sequence evaluation distorted by low-pass filtering to
represent inductive coupling.
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FIGURE 4. ML sequence evaluation distorted by high-pass filtering to
represent capacitive coupling.
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FIGURE 5. (a) Manchester-coded signal and filtering effects in the time domain. (b) Frequency-domain representation of a Manchester signal with

ideal LPF and HPF.

3.3. Evaluation under Capacitive Coupling

To investigate the impact of high-pass filtering or capaci-
tive coupling, a high-pass filter was applied at various cutoff
frequencies in the simulation method described above. The
decoded output was evaluated against the original ML se-
quence using the same metric scores, with degradation quan-
tified across a range of cutoff frequencies. The results of the
metric responses are shown in Fig. 4. The metrics under high-
pass filtering showed sensitivity similar to that seen in the low-
pass filter evaluation, with the Bit Balance metric showing little
variations with the decreasing cutoff frequency .

The Manchester-coded signal is shown in the time domain
together with the effect of filtering in Fig. 5(a)). A high-order
FIR low-pass filter (LPF) is applied to illustrate how attenu-
ation of high-frequency components (for instance, in the case
of capacitive coupling) smooths the waveform and reduces the
sharp transitions. A high-order FIR high-pass filter (HPF) is
also shown to emphasize rapid transitions by suppressing low-
frequency content (typical of inductive coupling, for instance).
This diagram demonstrates the qualitative effect of bandwidth
limitation on the Manchester waveform.

The frequency-domain representation is provided in
Fig. 5(b). This shows the magnitude envelope of the Fourier
transform of a 2047-bit 24 MHz ML PN sequence waveform.
Manchester encoding doubles the frequency (to 48 MHz). This
is overlaid with ideal low-pass and high-pass filter responses
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(with 12 MHz cutoff). The frequency-domain plot illustrates
where the dominant spectral components of the Manchester
signal lie and how filtering with different cutoff frequencies
leads to the observed time-domain behavior. The asymmetry
in the frequency-domain response shown in Fig. 5 leads to the
asymmetry seen when comparing Figs. 3 and 4.

4. DISCUSSION & CONCLUSION

We constructed a PN code quality metric based on ML code
properties, which shows sensitivity to distortions in the re-
flected code. We simulated AWGN, and capacitive and induc-
tive coupling on encoded PN sequences and evaluated perfor-
mance based on both individual and combined metric scores
based on ML code properties. As the level of distortion in-
creased, the corresponding metrics indicated degradation, con-
firming the tester’s effectiveness in detecting loss in signal
quality. For the distortions tested, the Bit Balance property
was not a good measure, but the Run Length, Bit Correlation,
and Cross-Correlation Coefficient metrics decreased as desired
with increasing signal distortions. These results highlight the
metrics’ potential to identify signal degradation and provide a
quantitative means of determining whether a reflected PN se-
quence remains viable for analysis. The metric has the potential
to be used adaptively to process the signal to improve SNR and
signal decoding.
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