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ABSTRACT: To ensure adequate ventilation, radiosonde temperature sensors are typically mounted on top of the device and directly
exposed to solar radiation. However, this configuration makes the sensors highly susceptible to radiation-induced errors, which can
significantly compromise temperature measurement accuracy. This study proposes a four-wire structural design for the radiosonde tem-
perature sensor and evaluates its performance through computational fluid dynamics (CFD) simulations. The radiosonde follows a helical
ascent trajectory, which causes the incident solar radiation on the sensor to vary continuously. This continuous variation makes the quan-
tification and correction of radiation errors more difficult. The proposed four-wire design achieves favorable radiative thermal balance in
three-dimensional space. It also demonstrates low sensitivity to changes in the ascent trajectory. This characteristic allows the correction
model to be simplified by neglecting variations in the incident radiation direction. A coupled flow-structure thermal analysis is conducted
under varying environmental conditions, including altitude, ascent velocity, and solar radiation intensity, to quantify the radiation error
of the four-wire sensor. A neural network algorithm is then trained on the simulation data to develop a radiation error correction model.
Experimental validation is performed using a platform comprising a full-spectrum solar simulator and a low-pressure wind tunnel. The
experimental results yield a root mean square error (RMSE) of 0.159K, mean absolute error (MAE) of 0.143K, and correlation coefficient
of 0.962 between simulated and corrected radiation errors, demonstrating the high accuracy of the proposed correction algorithm. After
correction, the average radiation error of the four-wire sensor decreases from 0.446K to 0.143K, substantially improving temperature
measurement accuracy.

1. INTRODUCTION

Accurate and timely vertical atmospheric temperature obser-
vations are essential for characterizing temperature distri-

butions at various altitudes and provide critical data for weather
forecasting and climate change analysis [1]. High-altitude tem-
perature measurements also play a key role in extreme weather
warnings [2–4], environmental monitoring [5–7], and natural
disaster risk assessment. At present, radiosondes — equipped
with sensors to measure temperature, humidity, and pressure
in real time — remain the primary tools for upper-atmosphere
meteorological observations. To ensure adequate ventilation
during ascent, temperature sensors are typically mounted at
the top of the radiosonde, directly exposed to solar radiation.
However, this configuration introduces significant radiation-
induced errors, causing temperature readings to exceed actual
ambient values and reducing the accuracy and reliability of ra-
diosonde data. According to the World Meteorological Organi-
zation (WMO) Guidelines for Meteorological Instruments and
Methods of Observation, the measurement uncertainty of mod-
ern radiosondes typically ranges from 0.4K to 1K and may ex-
ceed 2K in tropical regions [8]. Moreover, as the radiosonde
ascends along a helical trajectory, the incident solar radiation
on the sensor varies continuously, further complicating radia-
tion error correction. These radiation-induced biases have be-
come a major limiting factor in the performance of radiosonde
* Corresponding author: Ren Hui Ding (15062233858@163.com).

temperature sensors. Therefore, effective mitigation of radia-
tion errors remains a critical challenge in current high-altitude
meteorological and climate research [9].
Radiosonde temperature sensors include a variety of types,

such as platinum resistance thermometers, bead thermistors,
rod thermistors, film thermistors, helical sensors, and thermo-
couples. Among them, bead thermistors are widely used in
atmospheric sounding due to their favorable thermal response
characteristics [10, 11]. Typically composed of spherical or
ellipsoidal ceramic-sintered resistive elements with diameters
ranging from 0.6mm to over 2mm, bead thermistors are coated
with aluminum film or white paint for protection and are elec-
trically connected via two rear-mounted leads [12]. In recent
years, the diameter of these sensors has been reduced to less
than 1mm, effectively decreasing solar radiation absorption
and enhancing convective heat exchange with the surrounding
air [13, 14]. These improvements have significantly enhanced
their measurement accuracy under varying environmental con-
ditions, making bead thermistors one of the most commonly
used temperature sensors in radiosonde applications [15].
To mitigate radiation-induced errors, extensive research has

focused on structural optimization of radiosonde temperature
sensors. For example, Wang et al. developed a novel micro-
bridge temperature sensor and conducted simulation analyses
to evaluate the effects of Joule heating, solar radiation, and
aerodynamic heating on temperature errors, achieving a sub-
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TABLE 1. Comparative results of solar radiation error correction methods reported in previous studies.

Reference Description Metrics

This paper

The radiation error was computed using CFD simulations. Based on the
structuralcharacteristics of the four-wire sensor, an MLP model was

developed to correct the radiation error, and the model was experimentally
validated using a solar simulator and a low-pressure wind tunnel.

The algorithm reduced the mean
error from 0.446K to 0.143K.

18

Using a UAS to simulate the upper-air environment, a radiation-correction
model incorporating parameters such as T, P, v, and S was developed.

By performing uncertainty propagation and boom-attitude compensation, the
radiation-corrected temperature of the RS41 was obtained.

The expanded uncertainty of the
radiation-corrected temperature (with a
coverage factor of k = 2, corresponding
to a confidence level of approximately

95%) is 0.17◦C.

21
Using a simulation setup, the radiation error was systematically characterized
experimentally, and a two-dimensional parameterized model of the radiation

error was established.

After correction, the radiation error
varies from 0.1 to 0.8K with altitude.

22

Radiation biases were identified using RO, ERA5, and dual-sonde references,
and a GRUAN temperature correction was developed based on solar zenith

angle and pressure, enabling the correction of radiation errors in the RS92/RS41
GDP.2 products.

The GRUAN correction method can
reduce the bias by approximately 0.5K

at 20 hPa during daytime.

stantial reduction in solar radiation-induced bias [13]. Liu et
al. improved sensor response time and measurement accuracy
by incorporating insulating layers and reflective encapsulation
in the design of bead thermistors [12]. Lee et al. proposed a
calibration method using two thermistors coated with different
materials to estimate radiation intensity, offering a simple and
effective approach to solar radiation compensation [16, 17]. In
general, strategies, such as employing small-sized, low-heat-
capacity bead thermistors, and applying reflective surface coat-
ings, have helped reduce radiation errors to a certain extent [18].
However, these improvements remain limited. At high alti-
tudes, rapid fluctuations in solar radiation and variations in the
sensor’s effective receiving area — caused by radiosonde atti-
tude instability during ascent — continue to introduce signifi-
cant uncertainty. Consequently, structural optimization alone is
insufficient to meet the demands of high-precision atmospheric
temperature measurements.
Radiation error correction methods in research have largely

relied on simplified models that use macro-level parameters
— such as altitude, solar radiation intensity, atmospheric pres-
sure, and time — to construct empirical or semi-empirical re-
gression models [19, 20]. For instance, von Rohden et al. pro-
posed a correction model in which the estimated radiation er-
ror increased from 0.1K at ground level to 0.8K at an altitude
of 35 km [21]. Jing et al. developed a correction method for
RS92 and RS41 radiosondes, achieving an error reduction of
approximately 0.5K under daytime conditions at 20 hPa [22].
Lee et al. utilized a high-altitudemeteorological simulator to in-
vestigate the effects of solar radiation, reporting that the uncer-
tainty of RS41-corrected temperatures was 0.17K at the 95%
confidence level [18]. A common limitation of these mod-
els is the assumption of vertical radiosonde ascent, disregard-
ing changes in sensor attitude and orientation due to three-
dimensional wind field disturbances during actual flight. These
dynamic variations cause continuous changes in the sensor’s
effective exposure to solar radiation — a factor strongly cor-

related with radiation error. Ignoring this variability signifi-
cantly restricts the accuracy and adaptability of existing correc-
tionmodels. As a result, many of these methods perform poorly
under real-world radiosonde flight conditions, especially in dy-
namically evolving atmospheric environments. Therefore, to
improve the accuracy of high-altitude temperature measure-
ments, it is essential to pursue advances in both structural sen-
sor design and radiation error correction methodology. Table 1
summarizes the comparative results of solar radiation error cor-
rection methods reported in previous studies.
In this study, a four-wire radiosonde temperature sensor is

proposed, featuring a structural design that offers excellent ra-
diative thermal balance. The sensor maintains a stable radia-
tive heat exchange in three-dimensional space, rendering the
received radiation flux relatively insensitive to attitude varia-
tions during ascent. This characteristic allows dynamic changes
in the irradiated surface to be neglected during error correc-
tion, significantly reducing the complexity of correction model
development. Computational Fluid Dynamics (CFD) is em-
ployed to perform coupled flow-structure-thermal simulations
under various environmental conditions, including ascent ve-
locity, total solar radiation intensity, and altitude [23]. The sim-
ulations yield a high-precision radiation error dataset. A neural
network algorithm is then trained on this dataset to construct
a radiation error correction model [24]. Finally, experimental
validation of both the four-wire sensor and the correction algo-
rithm is carried out using a high-altitude environmental simula-
tion platform comprising a full-spectrum solar simulator and a
low-pressure wind tunnel. Compared with previous studies on
radiosonde temperature sensors, this work further enhances the
sensor’s radiative thermal balance through structural optimiza-
tion and introduces an integrated correction framework that
combines CFD simulation data with a neural network model,
thereby significantly improving the measurement accuracy af-
ter radiation error correction.
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TABLE 2. Comparison of mesh division parameters, number of mesh elements, and radiation error simulation results for different mesh models.

Mesh scheme Minimum
mesh size (mm)

Curvature
normal angle (◦)

Number of
mesh elements (104)

Radiation error
simulation result (K)

Coarse #2 0.2 18 42 0.292
Coarse #1 0.1 18 59 0.323
Baseline 0.05 18 76 0.339
Refined #1 0.03 15 102 0.341
Refined #2 0.02 15 169 0.342

2. MULTIPHYSICS HEAT TRANSFER ANALYSIS FOR
THE FOUR-WIRE RADIOSONDE TEMPERATURE SEN-
SOR

2.1. Construction of the 3D Physical and Mesh Models of the
Four-Wire Sensor
The three-dimensional physical model of the four-wire temper-
ature sensor consists of a miniature bead thermistor positioned
at its center, encapsulated in an epoxy layer to provide me-
chanical protection and environmental isolation. The sensing
element is supported by four slender metallic leads arranged
in a symmetric cross configuration. Each lead has a diame-
ter of 0.2mm and a length of 15mm, providing sufficient me-
chanical rigidity while minimizing thermal expansion effects.
The exterior of the sensor is coated with an aluminum layer,
which effectively reflects incident solar radiation and further re-
duces radiative heating. Geometrically, the four leads are uni-
formly distributed at 90◦ intervals in the azimuthal direction,
forming a highly symmetric three-dimensional support struc-
ture that promotes directional equilibrium of radiative heat flux.
This symmetry substantially reduces the sensor’s sensitivity to
changes in solar incidence angle caused by radiosonde rotation
or pendulum-like oscillation during ascent, thereby enhancing
measurement stability under radiative heating conditions. In
the experimental setup, the sensor is mounted such that the
plane of the leads is perpendicular to the direction of incom-
ing solar radiation, ensuring uniform radiative exposure across
all leads. The thermistor is fully exposed to both radiation and
airflow without any additional shielding, replicating its actual
operating configuration during radiosonde flights. The three-
dimensional structural model of the sensor is shown in Fig. 1.

35 mm

2
5

 m
m Signal 

interface

Support 

frame

Lead

Epoxy 

resin Resistors

Aluminum 

layer

FIGURE 1. 3D physical model of the four-wire temperature sensor.

To ensure convergence and physical consistency of the sim-
ulation results, an appropriately sized computational domain is
critical. Considering the radiosonde temperature sensor oper-
ates within an effectively infinite air domain, a cubic compu-
tational domain with dimensions approximately ten times the
sensor’s characteristic length was employed to approximate the
unbounded environment. This choice balances computational
accuracy with efficiency. The sensor model is positioned at
one-third of the domain length from the inlet boundary in the
downstream direction, minimizing boundary effects on the flow
field around the sensor. The physical model of the four-wire ra-
diosonde temperature sensor and its surrounding air domain is
illustrated in Fig. 2(b). In this model, the left boundary serves
as the airflow inlet, representing the upstream position relative
to the radiosonde, while the right boundary is set as the air-
flow outlet. To guarantee sufficient airflow development, the
air domain extends along the flow path. During mesh genera-
tion, an unstructured hybrid meshing approach was applied us-
ing ICEMCFD, incorporating localized refinement near critical
regions. These include the temperature-sensing element sur-
face, the junctions of the supporting leads, and areas prone to
flow separation or vortex formation upstream and downstream
of the sensor. This refinement enables accurate resolution of
microscale thermal flow and heat transfer phenomena, which
is essential for reliable and physically meaningful CFD simula-
tions in radiation error evaluation. Fig. 2(a) presents the mesh
model of the sensor alone, while Figs. 2(a) (b) show the mesh
encompassing both the four-wire sensor structure and its sur-
rounding air domain.
In constructing a high-quality mesh model for the four-wire

radiosonde temperature sensor, a rational control of mesh dis-
tribution is essential to balance simulation efficiency and mod-
eling accuracy. To accurately resolve the sensor’s complex ge-
ometry and the physical field variations in the surrounding fluid
domain, while avoiding the excessive computational cost of
uniformly fine meshes, a differentiated mesh size control strat-
egy is employed. This strategy integrates curvature-based re-
finement with soft size control to optimize mesh quality. In
regions with sharp geometric features — such as the spherical
surface of the temperature-sensing element, the intersections
of the four leads, and the sensor support structure — a cur-
vature control algorithm dynamically adjusts mesh density ac-
cording to local curvature. This targeted refinement enhances
mesh resolution and quality in critical areas. Conversely, in
air regions distant from the sensor, where physical gradients
are relatively mild, a soft size control method imposes an up-
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FIGURE 2. (a) Mesh model of the four-wire radiosonde temperature sensor. (b) Mesh model of the sensor and its surrounding air domain.
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FIGURE 3. Comparison of mesh refinement before and after applying
curvature control in localized regions.

per limit on mesh size, effectively reducing the total cell count
and lowering computational demands. The combined applica-
tion of these methods achieves global optimization of the three-
dimensional mesh, ensuring strong adaptability and precision
in capturing the coupled thermal-fluid phenomena. Fig. 3 il-
lustrates the local mesh refinement before and after applying
the curvature control algorithm, demonstrating significant im-
provement in mesh quality [25, 26].
To verify the stability and convergence of the numerical sim-

ulations for the four-wire radiosonde temperature sensor under
varying mesh resolutions and to ensure the accuracy and relia-
bility of the results, a systematic grid independence study was
performed. Starting from the baseline mesh optimized using
curvature and soft size control, two levels of mesh refinement
and two levels of coarsening were applied, resulting in five rep-
resentative grid configurations. All cases maintained consistent
geometry and boundary conditions, with flow and heat transfer
simulations conducted in ANSYS Fluent. Key evaluation met-
rics included the surface temperature distribution and local flow
field parameters. As summarized in Table 2, the temperature of
the resistive element showed gradual convergence as the mesh
cell count increased. Once the total number of mesh cells ex-
ceeded 76 million, the variation in simulation results fell below
3%, indicating that further mesh refinement had a negligible
impact on the solution. Consequently, this mesh configuration
was selected for all subsequent simulations [27].

2.2. Multi-Physics Simulation Model Construction

To systematically investigate the thermal response characteris-
tics of the four-wire radiosonde temperature sensor under high-
altitude solar radiation conditions, a multiphysics coupled nu-
merical simulation was conducted using ANSYS Fluent [28].
The finite volume method was employed to discretize both the
sensor geometry and the surrounding air domain. The computa-
tional mesh incorporated localized refinement near the thermis-
tor surface, lead junctions, and upstream/downstream regions
prone to flow separation or vortex formation. The minimum
mesh size was set to 0.05mm, and curvature-based mesh re-
finement was controlled with a normal angle of 18◦ to accu-
rately capture complex geometrical features. The left bound-
ary was set as a velocity inlet corresponding to the sensor as-
cent speed, the right boundary as a pressure outlet, and all other
faces as adiabatic no-slip walls. A pressure-based steady solver
was selected, with velocity-pressure coupling achieved via the
SIMPLE algorithm. The energy equation was fully solved to
account for the thermal effects of solar radiation. The standard
k-ε turbulence model was applied to capture boundary layer be-
havior and turbulent heat transfer, while the Discrete Ordinates
model was used for radiative heat transfer from solar irradia-
tion. A first-order upwind discretization was used in initial it-
erations to promote convergence, followed by a second-order
upwind scheme for momentum, energy, and turbulence once
the solution stabilized.
The simulation conditions were defined as follows: solar ra-

diation intensity of 1000W/m2, sensor ascent velocity of 5m/s,
simulated altitude of 30 km, and sensor surface reflectivity of
0.85. In addition, the model incorporated an altitude-dependent
atmospheric profile based on the International Standard Atmo-
sphere (ISA). The ambient temperature decreases with altitude,
following the standard lapse rate of−6.5K/km, while the pres-
sure and air density are computed as functions of altitude using
the hydrostatic equation and the ideal gas law, respectively. To
evaluate the effect of solar incident angle on thermal perfor-
mance, CFD simulations were performed under varying irra-
diation directions. The solar radiation was initialized at a 45◦
angle relative to the XOZ plane and the Z-axis, then rotated
around the sensor in 30◦ increments to encompass directions
up to the Y OZ plane. For each irradiation setting, all other
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FIGURE 4. Temperature field distribution of the four-wire radiosonde temperature sensor under different solar radiation directions

parameters were held constant. The resulting surface tempera-
ture distributions and thermal equilibrium characteristics under
different incident angles were analyzed. The simulation results
are presented in Fig. 4.
According to the simulation results, when the sensor is il-

luminated by the Sun at a 45° incidence angle and the illu-
mination direction is varied in 30° increments, the maximum
change in the average temperature of the resistive element is
only 0.033K. First, the metallic coating on the sensor surface
effectively reflects most of the incoming solar radiation, sub-
stantially reducing the temperature rise caused by radiative ab-
sorption. Second, the four-wire temperature sensor features a
highly symmetric structure in which four metal leads support
the central thermistor at uniformly spaced azimuthal angles,
forming balanced heat-conduction and heat-dissipation paths in
three-dimensional space. This geometric symmetry enables the
sensing element to maintain an almost identical radiative ther-
mal equilibrium under different solar incidence angles, thereby
minimizing the temperature deviations induced by directional
illumination. In addition, the high thermal conductivity of the
metal leads rapidly spreads any localized heating along the
wires, further suppressing the small temperature differences as-
sociated with varying illumination directions. This result con-
firms that the four-wire radiosonde temperature sensor achieves
excellent radiative thermal balance in three-dimensional space,
thereby significantly improving the accuracy of radiation error
correction in atmospheric temperature measurements.

2.3. Impact of Different Environmental Factors on Radiation Er-
rors
To further investigate the variation of radiation temperature er-
rors in the four-wire radiosonde temperature sensor under dif-
ferent environmental conditions, a series of multiphysics cou-
pled simulations were conducted using CFD methods. The
analysis considered various combinations of altitude, ascent ve-
locity, and solar radiation intensity. The initial temperature of
both the air domain and the sensor surface was set to 300K.
Solar radiation intensities of 400W/m2, 600W/m2, 800W/m2,
and 1000W/m2 were applied. The altitude was varied from
6 km to 25 km in 1 km increments, while the ascent velocity

was varied from 1m/s to 5m/s in 1m/s steps. The simulation
results are presented in Fig. 5.
When the altitude is held constant, the radiation error in-

creases as the ascent speed decreases. This is because the
convective heat transfer around the sensor becomes weaker
at lower ascent speeds, making it more difficult for the sen-
sor to dissipate the solar energy it absorbs, thereby amplify-
ing the resulting temperature rise. Conversely, at a fixed as-
cent speed, the radiation error exhibits an exponential increase
with altitude. As the atmospheric density and heat capacity de-
crease at higher altitudes, the aerodynamic heating effect be-
comes significantly weaker, and the sensor’s surface energy
balance becomes more sensitive to solar radiation, leading to
an intensified radiation-induced temperature error. In addition,
stronger solar radiation further enlarges the radiation error, as
the amount of absorbed radiative energy increases while the
heat dissipation conditions do not improve correspondingly.
Under extreme conditions — namely a solar radiation inten-
sity of 1000W/m2, an ascent speed of 1m/s, and an altitude of
25 km — the air becomes sufficiently rarefied that convective
heat transfer is minimized, while the absorbed radiation reaches
its maximum. As a result, the four-wire radiosonde tempera-
ture sensor experiences its highest radiation-induced tempera-
ture increase, with the radiation error reaching 0.652K. These
findings indicate that under the combined effects of strong solar
radiation and high-altitude low-density air, radiation errors can
significantly affect sensor measurements.

3. DESIGN OF A RADIATION ERROR CORRECTION
ALGORITHM

In the preceding sections, a multi-physics coupling model was
employed to investigate the influence of environmental param-
eters on radiation-induced measurement errors. However, in
practical meteorological observations, these parameters vary
dynamically and continuously over time. As a result, numer-
ical simulations based on discrete parameter values are insuffi-
cient to capture the continuity and complexity of measurement
errors under real-world conditions. To address this limitation,
this study proposes a correction method based on an multilayer
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FIGURE 5. Numerical calculation results of radiation errors for the radiosonde temperature sensor under different environmental conditions. (a) Solar
radiation intensity of 400W/m2. (b) Solar radiation intensity of 600W/m2. (c) Solar radiation intensity of 800W/m2. (d) Solar radiation intensity
of 1000W/m2.

perceptron (MLP) neural network [29]. By taking various envi-
ronmental parameters as inputs and radiation error as the output,
the neural network is trained to learn a generalized correction
function capable of accurately estimating measurement errors
across a range of conditions.
To determine the optimal network architecture and hyperpa-

rameters — including the number of hidden layers, the num-
ber of neurons in each layer, and the activation function —
a Bayesian optimization strategy was employed. The search
space was defined to include 1–3 hidden layers with 1–300
neurons per layer. Each candidate configuration was evalu-
ated through five-fold cross-validation, and themean validation
performance was used to guide the optimization process. The
Bayesian optimization identified an optimal architecture con-
sisting of two hidden layers with 12 and 17 neurons, respec-
tively. After selecting the optimal hyperparameters, the final

model was retrained on 80% of the dataset designated for train-
ing in order to obtain a unified set of model weights. The net-
work was trained using the Adam optimizer with a learning rate
of 0.0005, a batch size of 32, and 500 epochs. Convergence was
assessed based on the stability of the validation loss. All input
features were normalized using Z-score standardization prior to
training, and 20% of the dataset was reserved for independent
validation. On the validation set, the optimized model achieved
an RMSE of 0.0041, an MAE of 0.0029, and an R2 of 0.99,
demonstrating excellent predictive accuracy and strong gener-
alization capability. Therefore, this architecture was adopted as
the final model for this study.As shown in Fig. 6, the optimized
two-hidden-layer MLP architecture establishes a hierarchical
feature-extraction mechanism for modeling the nonlinear rela-
tionship between inputs and radiation-error outputs. The com-
putational expressions for the outputs of the two hidden layers
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FIGURE 6. (a) Neuron model. (b) Neural network architecture diagram.

and output layer are as follows:

A[1] = ReLU (W [1]X + b[1]) (1)
A[2] = ReLU (W [2]X + b[2]) (2)
∆T = Purelin (W [3]A[2] + b[3]) (3)

whereA[1] represents the output of the first hidden layer, which
is the result of the weighted sum with weight matrixW [1] and
bias term b[1], passed through an activation function. This out-
put also serves as the input for the second hidden layer. A[2] is
the output from the second hidden layer and is used as the input
to the output layer. ∆T is the output of the neural network.
The activation function employed in the hidden layers is rec-

tified linear unit (ReLU), while the output layer utilizes the
Purelin (linear) activation function. Compared with sigmoid
and tanh functions, ReLU offers a significant advantage in ac-
celerating network convergence. This is primarily because sig-
moid and tanh are prone to the vanishing gradient problem,
where gradients tend to zero during backpropagation, poten-
tially hindering effective learning. In contrast, ReLUmaintains
a constant derivative of 1 on the positive half-axis, thereby mit-
igating the vanishing gradient issue [30]. The Purelin function
is well-suited for regression tasks, as it does not constrain the
output to a fixed range. This preserves the continuity and scal-
ability of the predicted values, allowing the network to better
approximate the actual distribution of the target variable. The
ReLU activation function is defined in Eq. (4), and the Purelin
activation function is defined in Eq. (5).

ReLU (x) = max (0, x) (4)
Purelin (x) = x (5)

Once the MLP network structure is built, and the activation
functions for each layer are selected, the neural network’s com-

putation process primarily involves two stages: forward sig-
nal propagation and backward error propagation. The forward
propagation process is as follows.
The input to the i-th neuron in the hidden layer is the

weighted sum of all the inputs to that neuron, plus a bias term.
This can be expressed mathematically as Eq. (6).

neti =
∑

Wijxj + θi (6)

The output yi of the i-th neuron in the hidden layer can be
expressed as Eq. (7).

yi = Φ(neii) (7)

The input to the k-th neuron in the output layer, denoted as
netk, can be expressed as Eq. (8).

netk=

q∑
i=1

Wkiyi+αk=

q∑
i=1

WkiΦ

 M∑
j=1

Wijxi+θi

+αk (8)

The output of the k-th neuron in the output layer, denoted as
Ok, can be expressed as Eq. (9).

Ok=φ(netk)=φ

 q∑
i=1

WkiΦ

 M∑
j=1

Wjixj+θi

+αk

 (9)

The weight connecting the i-th neuron in the hidden layer
and the j-th neuron in the input layer is denoted as Wij , while
θi represents the threshold of the i-th hidden layer neuron. Sim-
ilarly, the weight from the output layer neuron to the j-th hidden
layer neuron is denoted asWki, and αk represents the threshold
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FIGURE 7. (a) Experimental platform based on the low-pressure wind tunnel and full-spectrum solar simulator. (b) Four-wire sounding temperature
sensor.

of the output layer neuron. The final output of the output layer
is denoted as Ok.
The error backpropagation process begins at the output layer

and sequentially calculates the output error for each preceding
neuron layer. This error is propagated backward through the
network using the chain rule, enabling the computation of gra-
dient information for all layers. Subsequently, an optimization
strategy based on gradient descent is applied, where the weights
and biases of each layer are updated using the computed gra-
dients and a predefined learning rate. Through iterative cy-
cles of error backpropagation and parameter adjustment, the
neural network progressively learns the mapping relationship
between the input features and the output target. After suffi-
cient training, the network is capable of generating predictions
that closely approximate the true values, thereby demonstrating
strong generalization capability.
The quadratic error criterion function for a single sample P

is defined as Eq. (10).

Ep =
1

2

L∑
k=1

(Tk −Ok)
2 (10)

The total error criterion function for all P samples in the neu-
ral network is defined as Eq. (11).

E =
1

2

p∑
p=1

L∑
k=1

(T p
k −Op

k)
2 (11)

To minimize the error function, the gradient descent method
is used to optimize the network parameters. Specifically, the
backpropagation algorithm is used to compute the adjustments
for the weights and biases of the output layer and hidden layers.
The update formulas for the output layer weights∆Wki, output
layer biases∆αk, hidden layer weights∆Wij , and hidden layer
biases∆θi are as Eqs. (12)–(15).

∆ωki = η

p∑
p=1

L∑
k=1

(T p
k −Op

k) ·Ψ
′(netk) · yi (12)

∆αki = η

p∑
p=1

L∑
k=1

(T p
k −Op

k) ·Ψ
′(netk) (13)

∆ωij = η

p∑
p=1

L∑
k=1

(T p
k −Op

k)·Ψ
′(netk)·ωkiφ

′(neti) · xi (14)

∆θi = η

p∑
p=1

L∑
k=1

(T p
k −Op

k)·Ψ
′(netk)·ωki ·φ′ ·(neti) (15)

Based on Eqs. (12)–(15), the weights and biases of the net-
work can be iteratively adjusted using the Eqs. (16)–(19).

ωki(k + 1) = ωki(k) + ∆ωki(k) (16)
ωij(k + 1) = ωij(k) + ∆ωij(k) (17)
αk(k + 1) = αk(k) + ∆αk(k) (18)
θi(k + 1) = θi(k) + ∆θi(k) (19)

In this model, the outputs of the hidden layer neurons are
treated as independent variables, while the outputs of the out-
put layer neurons serve as dependent variables. The training
process is iterative, continuing until the network output error
converges to a predefined threshold or meets other stopping cri-
teria. Based on the simulation results shown in Fig. 5, training
samples are established, and theMLP neural network algorithm
is employed for learning.

4. EXPERIMENTAL STUDY

4.1. Experimental Platform Setup
A laboratory observation platform was constructed by integrat-
ing a low-pressure wind tunnel with a full-spectrum AM1.5G
solar radiation simulator. Solar radiation was provided by the
AM1.5G simulator, which covers a wavelength range of 300–
1100 nm and employs a xenon arc lamp as the light source. Un-
der standard operating conditions, the simulator closely repro-
duces the spectral distribution and intensity of natural sunlight,
ensuring uniform and stable irradiation of the four-wire ra-
diosonde temperature sensor. The irradiation intensity was ad-
justable from 100W/m2 to 1200W/m2, enabling precise repli-
cation of the solar heating effects experienced during high-
altitude ascents. The low-pressure wind tunnel was capable
of operating at pressures ranging from 50 Pa to 100 kPa. In-
ternal pressure was regulated through an adjustable valve and
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FIGURE 8. Relationship among radiation intensity, altitude, ascent speed, and radiation error under different conditions. (a) Solar radiation intensity
of 400W/m2. (b) Solar radiation intensity of 600W/m2. (c) Solar radiation intensity of 800W/m2. (d) Solar radiation intensity of 1000W/m2.

continuously monitored with a vacuum gauge. The airflow ve-
locity could be varied between 1 and 7m/s and was measured
using a high-precision flowmeter. This configuration allowed
accurate simulation of atmospheric conditions and sensor as-
cent through the upper troposphere and lower stratosphere un-
der controlled wind speeds.During the experiments, the four-
wire radiosonde temperature sensor was mounted at the center
of the low-pressure wind tunnel and positioned directly beneath
the solar simulator. The lead-wire plane was oriented perpen-
dicular to the incident radiation to ensure uniform exposure.
The complete experimental setup is illustrated in Fig. 7.

4.2. Experimental Parameter Settings
The altitude range is set from 6 to 25 km, with a step size
of 1 km. The solar radiation intensity is set to 400W/m2,
600W/m2, 800W/m2, and 1000W/m2. The low-pressure wind
tunnel provides an air speed range from 1 to 5m/s, with a step
size of 1m/s. A total of 400 experimental runs were conducted,
with the environmental parameters set as shown in Table 3.

4.3. Experimental Data Analysis
The experimental data of radiation errors for the four-lead
radiosonde temperature sensor under different environmental

TABLE 3. Environmental parameter settings.

Sample No. Radiation
intensity (W/m2)

Altitude
(km)

Wind speed
(m/s)

1–100 400 6–25 1–5
101–200 600 6–25 1–5
201–300 800 6–25 1–5
301–400 1000 6–25 1–5

conditions are shown in Fig. 8. The experimental results ex-
hibit the same overall trend as the CFD simulations, although
the measured radiation errors are slightly higher. This discrep-
ancy may result from idealized assumptions in the CFD model,
such as perfectly uniform geometry and coating, as well as real-
world effects including flow turbulence in thewind tunnel, fluc-
tuations in the solar simulator output, and minor variations in
ambient pressure.
Under constant solar radiation intensity, the radiation error

of the four-wire radiosonde temperature sensor increases with
altitude. Conversely, when the altitude is fixed, a higher as-
cent speed leads to a reduction in radiation error. Specifically,
under conditions of 1000W/m2 solar radiation intensity, an al-
titude of 25 km, and an ascent speed of 1m/s, the maximum ra-
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diation error reaches 0.936K. At the same radiation intensity,
the maximum variation in radiation error across different ascent
speeds is 0.461K. This result indicates that airflow velocity has
a significant impact on radiation error, as increased airflow en-
hances convective heat transfer on the sensor surface, thereby
reducing the error.
The main sources of uncertainty include the thermistor’s in-

trinsic accuracy, wind tunnel airflow velocity and turbulence,
ambient pressure fluctuations, stability and spectral variations
of the solar simulator, repeatability errors of the measurement
system, sensor mounting deviations, and data acquisition noise.
All measurement instruments were calibrated prior to the ex-
periments, and the measurement uncertainties were assumed to
remain statistically stable throughout the entire process, with-
out introducing systematic drift. Combined using the root-sum-
square method, these uncertainties yield an expanded uncer-
tainty of 0.18K (k = 2, 95% confidence level).
The environmental parameters listed in Table 2 are used as

input neurons for the previously established correction algo-
rithm. The algorithm is employed to fit the radiation error under
varying environmental conditions. The corrected error is ob-
tained by calculating the difference between the fitted radiation
error and the experimentally measured value. Fig.9 presents
the experimental radiation error, the values corrected using the
neural networkmodel, and the corresponding residual errors for
the four-wire temperature sensor. Under the same airflow ve-
locity, the residual error after correction increases with altitude
because the decreasing air density at higher altitudes weakens
convective heat transfer, reducing the sensor’s ability to dissi-
pate absorbed solar radiation. In contrast, at a fixed altitude,
the residual error decreases as the ascent speed increases, as
higher airflow enhances forced convection around the sensor
surface and suppresses radiation-induced heating. Moreover,
micro-radiation intensity remains the most direct factor influ-
encing the corrected error: stronger radiation leads to greater
radiative heating of the sensor, thereby enlarging the temper-
ature deviation that the correction algorithm must compensate
for and consequently resulting in larger residuals under high-
radiation conditions.
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FIGURE 9. Comparison of experimental radiation error, predicted radi-
ation error, and radiation error after correction of the four-wire sound-
ing temperature sensor.

To evaluate the accuracy of the predicted radiation error re-
sults, the root mean square error (RMSE), mean absolute error
(MAE), and correlation coefficient (r) are introduced, with the
corresponding formulas provided in Eqs. (20)–(22).

RMSE =

√∑n
i=1 (xi − yi)2

n
(20)

MAE =
1

n

n∑
i=1

| xi − yi | (21)

r =

∑n
i=1 (xi − x) · (yi − y)√∑n

i=1 (xi − x)2 ·
√∑n

i=1(yi − y)2
(22)

where xi and yi represent the experimental radiation errors
and predicted radiation errors of the temperature measurement
system, respectively, while x and y denote the corresponding
means, and n is the sample size.
As shown in Fig. 9, the neural network was employed to

correct the radiation error of the four-wire sounding temper-
ature sensor using 400 sets of experimental data. Before cor-
rection, the average radiation error of the sensor was 0.446K.
After applying the correction algorithm, the RMSE, MAE, and
correlation coefficient between the experimental radiation er-
ror and the neural network-fitted values were 0.159K, 0.143K,
and 0.962, respectively. The 95% confidence interval for the
radiation error after correction ranged from 0.136K to 0.150K.
These results indicate that the neural network-based correction
algorithm provides high correction accuracy, with an average
post-correction error reduced to the order of 0.1K.However, re-
ducing the error to this level in the laboratory does not guarantee
equivalent performance in real-world sounding flights, where
factors such as solar elevation angle, ventilation rate, ascent
velocity, atmospheric turbidity, cloud cover, and sensor aging
may alter the radiation environment. Therefore, the 0.1K accu-
racy reported here should be interpreted as the achievable per-
formance under laboratory conditions, and its applicability to
operational soundings requires further validation through field
experiments across diverse atmospheric conditions.

5. CONCLUSION
This study proposes a four-wire structural design for the ra-
diosonde temperature sensor and evaluates its performance
through CFD simulations. A coupled flow-structure thermal
analysis is conducted under varying environmental conditions,
including altitude, ascent velocity, and solar radiation intensity,
to quantify the radiation error of the four-wire sensor. A neural
network algorithm is then trained on the simulation data to de-
velop a radiation error correction model. Experimental valida-
tion is performed using a platform comprising a full-spectrum
solar simulator and a low-pressure wind tunnel.The main con-
tributions, limitations, and future research directions are sum-
marized as follows:
(1) The four-wire lead structure exhibits excellent radiation

heat balance in three-dimensional space, with minimal varia-
tion in radiation levels. As a result, the influence of solar radia-
tion direction on measurement accuracy is negligible, allowing
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the error correction process to be simplified by omitting direc-
tional considerations.
(2) The measurement error of the four-wire sounding tem-

perature sensor increases with both altitude and solar radiation
intensity. However, the direction of solar radiation has little ef-
fect on the error. Wind speed significantly influences the radi-
ation error, with higher wind speeds enhancing convective heat
transfer and thereby reducing the measurement error.
(3) Before applying the correction algorithm, the average

radiation-induced observation error of the sensor was 0.446K.
After correction using the proposed neural network-based ap-
proach, the average error was effectively reduced to the order
of 0.1K.
(4) Although the laboratory environment incorporates low-

pressure, high-irradiance, and controlled-flow conditions, it
still cannot fully reproduce the complexity of real-world flights.
Furthermore, because the correction model is trained primarily
on CFD-generated data, its performance may degrade when ac-
tual atmospheric conditions deviate from the simulated param-
eter space.
(5) Future work will expand the simulation scenarios to

cover a wider range of solar elevation angles, dynamic radia-
tive fluxes, and more realistic atmospheric compositions, while
incorporating additional real radiosonde flight datasets to en-
hance model generalization under true high-altitude conditions.
In addition, real radiosonde flight experiments will be con-
ducted to further validate the correction model and assess its
performance under actual atmospheric conditions.
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