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ABSTRACT: Permanent magnet synchronous motor (PMSM) used in high-end applications has stringent control performance require-
ments. However, harsh environments, complex operating conditions, and nonlinear parameter variations can compromise model adapt-
ability, which undermines system reliability and precision. This paper proposes a model-free adaptive control (MFAC) method that
utilizes a Multi-Innovation Improved Extended Kalman Filter (MIIEKF) algorithm for prediction and update to enhance system relia-
bility and accuracy. First, the proposed method transforms the PMSM model into a compact-form dynamic linearization (CFDL) data
model, which mitigates the need for precise mathematical modeling. Next, an improved Extended Kalman Filter (IEKF) algorithm is
used to predict and update the pseudo partial derivative (PPD) in real-time. This resolves its estimation dependency and compensates
for data model inaccuracies. Then, the IEKF algorithm is optimized by using Multi-Innovation identification theory to ensure rapid state
convergence. Finally, experimental validation confirms that the proposed method significantly improves the convergence rate, reduces
chattering, and achieves efficient data-driven control compared to PI control and conventional model-free adaptive control.

1. INTRODUCTION

PMSMs are predominantly adopted for high-performance ap-
plications in industrial contexts [1], benefiting from their

superior efficiency and compact design [2]. Although con-
ventional proportional-integral (PI) control remains popular for
its simplicity, it often falls short in meeting high-precision de-
mands [3]. While model-based robust control methods have
been developed to address these limitations [4], their perfor-
mance tends to degrade under system uncertainties and mod-
eling complexity. This has spurred growing interest in model-
free solutions.
Existing model-free control methods based on an ultra-local

model can capture system behavior locally but lack a com-
prehensive representation of global dynamics [5]. A model-
free predictive control method was designed based on an ultra-
local model, significantly reducing speed overshoot and oscil-
lation amplitude, but still failed to fully characterize the system
state [6].
A data-driven model-free adaptive control (MFAC) utilizes

real-time input-output data to construct dynamic linearizations
such as the compact-form dynamic linearization (CFDL) [7].
A CFDL-based MFAC integrated with multi-vector predictive
current control is proposed to enable adaptive speed regula-
tion [8]. However, the CFDL has exhibited limited adaptability
and weak disturbance rejection capabilities due to its reliance
on real-time pseudo-partial derivative (PPD) estimation [9].
The employment of an extended Kalman filter (EKF) has

been shown to enhance the accuracy of state estimation and the
robustness of the system. Amethod integrating themodel refer-
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ence adaptive approach with EKF-based current noise compen-
sation has been demonstrated to achieve precise motor speed
estimation while suppressing noise [10]. Nevertheless, EKF
is constrained by high computational cost and linearization er-
rors [11]. Meanwhile, the multi-innovation identification the-
ory (MIIT) overcomes the limitations of single-innovation re-
cursion by incorporating historical data vectors, thereby im-
proving convergence speed and estimation accuracy [12].
This paper proposes a multi-innovation improved EKF-

based MFAC (MIIEKF-MFAC) method to enhance the
robustness and stability of PMSM drives under varying
operating conditions.
The primary contributions of this research are outlined be-

low:

(i) The integration of MFAC and MIIEKF achieves model-
free control with high-precision state prediction. This syn-
ergy enables real-time estimation and updates while sub-
stantially reducing reliance on PPD estimation, thereby
considerably enhancing dynamic robustness.

(ii) The method reduces computational complexity and re-
source consumption significantly by replacing the covari-
ance matrix in the conventional EKF with a single tuning
parameter.

(iii) The method incorporates the merits of the MIIT, such as
elevated adjustment flexibility and superior tracking of
time-varying parameters.

The structure of this paper is outlined below. Section 2
details the CFDL model-free adaptive control (CFDL-MFAC)
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framework for PMSM. Section 3 first elaborates on the IEKF-
Based PPD prediction-update (IEKF-PPD) Algorithm, then
introduces the multi-innovation optimized scheme (MIIEKF-
PPD) and presents its comprehensive architecture. Section 4
provides a stability analysis of the proposed algorithm. Sec-
tion 5 presents the experimental verification of the proposed
strategy’s effectiveness. Section 6 concludes with a summary
of key findings.

2. CFDL-MFAC FOR PMSM
According to theMFAC theory, the PMSM system can be mod-
eled as:

n(k + 1) = f (n(k), . . . , n(k − by), iq(k), . . . , iq(k − bu)) ,
(1)

where n(k) and iq(k) represent the output speed and input cur-
rent of the PMSM system at time k, respectively; by and bu are
two unknown positive integers.

Assumption 1 The system (1) is both observable and control-
lable. That is, when the desired output signal n∗(k + 1) is
bounded, it is always possible to construct a finite control input
that ensures the system output asymptotically tracks the desired
signal.

Assumption 2 The system (1) satisfies a generalized Lipschitz
condition, meaning that for any time instant k and∆iq(k) ̸= 0,
the following holds:

|∆n(k + 1)| ≤ b |∆iq(k)| , (2)

where∆n(k+1) = n(k+1)−n(k);∆iq(k) = iq(k)−iq(k−
1); and b is a positive constant.

Assumption 3 At any time instant k, where ∆iq(k) ̸= 0, re-
stricted adjustments to the input of the PMSM system will not
cause its output to grow or decay unbounded; that is, |ϕ(k)| ≤
b, where ϕ(k) denotes the pseudo partial derivative.

Under Assumptions 1–3, with the PMSM operating under
the id = 0 control strategy, whenever ∆iq(k) ≠ 0, there must
exist a ϕ(k) such that the PMSM system can be represented by
the following dynamically linearized data model:

∆n(k + 1) = ϕ(k)∆iq(k). (3)

The CFDL-based MFAC (CFDL-MFAC) relies solely on the
input of the current time step. The control procedure of the
CFDL-MFAC is outlined below:

i) Estimate the PPD using the I/O data of system (3):

ϕ(k) = ϕ(k − 1) +
η∆iq(k − 1)∆n(k)

µ+∆iq(k − 1)2

−η∆iq(k − 1)ϕ(k − 1)∆iq(k − 1)

µ+∆iq(k − 1)2
, (4)

where µ > 0 is a weighting factor, and η ∈ (0 , 1] repre-
sents the step-size factor.

ii) Introduce a reset mechanism into the PPD estimation al-
gorithm:

ϕ(k) = ϕ(1),

 |ϕ(k)| ≤ ε
|∆iq(k − 1)| ≤ ε
sign((ϕ(k) ̸= sign(ϕ(1))

, (5)

where ε is a sufficiently small positive constant.

iii) Derive the control law based on the control input criterion
function:

i∗q(k)= iq(k−1)+
ρϕ(k)

λ+ |ϕ(k)|2
(n∗(k + 1)− n(k)) , (6)

where λ > 0 and ρ ∈ (0, 1] are control parameters. i∗q
denotes the reference output current.

Remark 1 The dynamically linearized data model (3) relies
solely on the system I/O data and contains no explicit or implicit
model information of the controlled plant. Thus, the CFDL-
MFAC constitutes a data-driven approach. Consequently, the
aforementioned assumptions are easily satisfied in practical
PMSM systems. However, errors in the data model may still
arise due to dynamic linearization approximations, noise dis-
turbances, and PPD estimation deviations.

Assumption 4 The data model error, d(k) is bounded; that is,
there exists a constant bd > 0 such that |d(k)| < bd.

3. DESIGN OF MFAC FOR PMSM BASED ON MIIEKF
To counteract the limitations of CFDL-MFAC, such as residual
model errors and accumulating PPD deviations, this paper pro-
poses an IEKF-based prediction-update mechanism integrated
with amulti-innovation algorithm. This significantly boosts the
system’s response speed.

3.1. IEKF-PPD
Considering both data model errors and estimation inaccura-
cies, the one-step-ahead prediction of the PPD using the modi-
fied projection estimation algorithm is described as

ϕm (k) =ϕm (k − 1) +
η∆iq (k − 1)∆n(k)

µ+∆iq (k − 1)
2

− ηϕm (k − 1)∆iq (k − 1)
2

µ+∆iq (k − 1)
2 + w (k − 1)

ϕ (k) =ϕm (k) + v (k) ,

(7)

where ϕm(k) ∈ R represents the actual PPD under the CFDL;
ϕ(k) ∈ R denotes the estimated PPD obtained via the modified
projection algorithm; w(k) ∈ R is the process noise arising
from data model errors in the dynamically linearized system;
v(k) ∈ R refers to the estimation error introduced by the mod-
ified projection algorithm together with external disturbances;
µ > 0 is a weighting factor and η ∈ (0, 1] represents the step-
size factor.
The following assumptions are made for system (7):
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Assumption 5 The noise terms w(k) and v(k) are defined as
mutually uncorrelated white noise sequences of zero mean, pos-
sessing variances Q and R, respectively.

E[w(k)] = 0, E[w(k)2] = Q,

E[v(k)] = 0, E[v(k)2] = R, E[w(k)v(k)] = 0.

Remark 2 In practical applications involving complex error
noises arising from diverse sources with unknown probability
distributions, Gaussian white noise can serve as an effective ap-
proximation. This approach aligns with the fundamental noise
characteristics of the classical Kalman filter, thereby establish-
ing the practical feasibility of Assumption 5.

Within the framework of the dynamically linearized model,
let ϕ̂(k|k) = E∗[ϕm(k)/ϕ(k)] denote the linear minimum vari-
ance estimate of the actual PPD value ϕm(k) based on the es-
timated PPD value ϕ(k).

Lemma 1 The minimum variance estimate has the property of
linearity. Specifically, if the linear minimum variance estimate
of the actual dataφ given the quantity ζ isE∗[φ/ζ], then for any
deterministic matrix F and deterministic vector ω, the linear
minimum variance estimate of Fφ+ω given the same quantity
ζ is given by

E∗
[
Fφ+ ω

ζ

]
= FE∗

[
φ

ζ

]
+ ω. (8)

Theorem 1 Under the condition that system (7) satisfies As-
sumption 5, the IEKF algorithm performs real-time prediction
and update utilizing the initial pseudo partial derivative value
with an initial error covariance P (0|0) = P (0).

The detailed procedure for PPD prediction and updating via
the IEKF is as follows:
1) One-step-ahead PPD prediction:

ϕ̂(k|k − 1) = ϕ̂(k − 1|k − 1) +
η∆iq(k − 1)∆n(k)

µ+∆iq(k − 1)2

−ηϕ̂(k − 1|k − 1)∆iq(k − 1)2

µ+∆iq(k − 1)2
. (9)

2) One-step prediction error covariance:

P (k|k−1)=

(
1− η∆iq(k − 1)2

µ+∆iq(k − 1)2

)2
P (k − 1|k − 1) +Q.

(10)
3) Compute the IEKF gain:

K(k) =
P (k|k − 1)

P (k|k − 1) +R
. (11)

4) Optimal estimate of the PPD Value:

ϕ̂(k|k) = ϕ̂(k|k − 1) +K(k)[ϕ(k)− ϕ̂(k|k − 1)]. (12)

5) Update the estimation error covariance:

P (k|k) = [1−K(k)]P (k|k − 1). (13)

Proof 1 The one-step-ahead prediction involves estimating the
output value at time k based on the estimated value at time k−1.
That is, it constructs the linear minimum variance estimate of
ϕm(k − 1) using the actual PPD data {ϕ(1), ϕ(2), . . . , ϕ(k −
1)} from the first k − 1 time instants of the system.

ϕ̂(k|k − 1)=E∗
[

ϕm(k)

ϕ(1), ϕ(2), . . . , ϕ(k − 1)

]

=E∗
[

ϕm(k − 1)

ϕ(1), ϕ(2), . . . , ϕ(k − 1)

]

+E∗


η∆iq(k − 1)∆n(k)

µ+∆iq(k − 1)2

ϕ(1), ϕ(2), . . . , ϕ(k − 1)



−E∗


η∆iq(k−1)2ϕm(k−1)

µ+∆iq(k − 1)2
+w(k−1)

ϕ(1), ϕ(2), . . . , ϕ(k − 1)

. (14)
It follows from Lemma 1 that

ϕ̂(k|k − 1) = E∗
[

ϕm(k − 1)

ϕ(1), ϕ(2), . . . , ϕ(k − 1)

]

−E∗
[

ϕm(k − 1)

ϕ(1), ϕ(2), . . . , ϕ(k − 1)

]
η∆iq(k − 1)2

µ+∆iq(k − 1)2

+E∗
[

w(k − 1)

ϕ(1), ϕ(2), . . . , ϕ(k − 1)

]

+
η∆iq(k − 1)∆n(k)

µ+∆iq(k − 1)2
(15)

Within the framework of the modified projection algorithm,
(7) indicates that the PPD value ϕ(k) is mutually independent
of the process noise w(k − 1). Due to the zero mean property
E[w(k)] = 0 stated in Assumption 5, the one-step-ahead pre-
diction of the PPD value is derived as follows:

ϕ̂(k|k − 1) = ϕ̂(k − 1|k − 1) +
η∆iq(k − 1)∆n(k)

µ+∆iq(k − 1)2

−ηϕ̂(k − 1|k − 1)∆iq(k − 1)2

µ+∆iq(k − 1)2
. (16)

To ensure that parameter estimation converges and to pre-
vent parameter perturbation, a reset mechanism similar to that
used in CFDL-MFAC is introduced into the one-step-ahead
PPD prediction:

ϕ̂(k|k − 1) = ϕ̂(1|0),

 |ϕ̂(k|k − 1)| ≤ ε
|∆iq(k − 1)| ≤ ε

sign(ϕ̂(k|k − 1)) ̸= sign(ϕ̂(1|0)).
(17)
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The error introduced by substituting the one-step-ahead pre-
dicted value ϕ̂(k|k−1) for the actual system PPD value ϕm(k)
is given by

em(k|k − 1) = ϕm(k)− ϕ̂(k|k − 1). (18)

The estimation residual resulting from substituting the one-
step-ahead predicted value ϕ̂(k|k − 1) for the PPD estimate
ϕ(k) of the modified projection algorithm is defined as follows:

ec(k|k − 1) = ϕ(k)− ϕ̂(k|k − 1)

= ϕm(k)− ϕ̂(k|k − 1) + v(k)

= em(k|k − 1) + v(k). (19)

A weighted adjustment is applied to the residual ec(k|k− 1)

to correct the one-step-ahead prediction ϕ̂(k|k−1), producing

the final updated PPD value ϕ̂(k|k).

ϕ̂(k|k) = ϕ̂(k|k − 1) +K(k)ec(k|k − 1)

= ϕ̂(k|k − 1) +K(k)[ϕ(k)− ϕ̂(k|k − 1)], (20)

where K(k) ∈ [0, 1] is the gain coefficient for ec(k|k − 1),
denoting the filter gain.
Define the predicted-updated error as em(k|k) = ϕm(k) −

ϕ̂(k|k). The gain coefficient K(k) is selected to minimize the
mean square errorP (k|k) = E[em(k|k)2]. FromEquations (7)
and (20), we obtain

em(k|k) = ϕm(k)− ϕ̂(k|k)
= [1−K(k)] em(k|k − 1)−K(k)v(k). (21)

From Assumption 5, it follows that

P (k|k) = E[em(k|k − 1)2 − 2K(k)em(k|k − 1)2

+K(k)2v(k)2 +K(k)2em(k|k − 1)2

+2(1−K(k))em(k|k − 1)K(k)v(k)]

= P (k|k − 1)− 2K(k)P (k|k − 1)

+K(k)2R+K(k)2P (k|k − 1), (22)

where

em(k|k−1) = ϕm(k)− ϕ̂(k|k − 1)

=

(
1− η∆iq(k − 1)2

µ+∆iq(k−1)2

)
em(k−1|k−1)

+w(k−1). (23)

Given the mean square error and Assumption 5, it can be
derived that

P (k|k − 1)

= E

((1− η∆iq(k − 1)2

µ+∆iq(k−1)2

)
em(k − 1|k − 1)+w(k−1)

)2

=

(
1− η∆iq(k − 1)2

µ+∆iq(k − 1)2

)2

P (k − 1|k − 1) +Q. (24)

Differentiating (22) with respect to K(k) and setting the
derivative to zero yields the filter gain:

K(k) =
P (k|k − 1)

P (k|k − 1) +R
. (25)

Furthermore, substituting (25) into (22) yields

P (k|k) = P (k|k − 1)− 2P (k|k − 1)
P (k|k − 1)

P (k|k − 1) +R

+(P (k|k − 1) +R)

(
P (k|k − 1)

P (k|k − 1) +R

)2

= [1−K(k)]P (k|k − 1). (26)

By integrating Equations (16), (20), (24), (25), and (26), the
IEKF prediction-update equation set is thus proven.

3.2. MIIEKF-PPD
Although the single-innovation method in (12) updates the
model using only the current innovation, which aligns with the
CFDL conceptually, it underutilizes available data. MIIT ad-
dresses this issue by integrating a series of past innovations
within a sliding window. This strategy is analogous to PFDL
and enables a more thorough and precise system identification.

θ (t) = θ (t− 1) + Tp(t)Ep(t), (27)
ET
p (t) = [e (t) , e (t− 1) , . . . , e (t− p+ 1)], (28)

where θ is the parameter estimation vector; Tp(t) ∈ R1×p

denotes the gain matrix; Ep(t) ∈ Rp×1 represents the Multi-
Innovation vector; and p ≥ 1 indicates the length of the Multi-
Innovation vector.
The Multi-Innovation vector Ep(k) is defined as:

Ep(k) =


ec(k|k − 1)

ec(k − 1|k − 2)
...

ec(k − p+ 1|k − p)



=


ϕ(k)− ϕ̂(k|k − 1)

ϕ(k − 1)− ϕ̂(k − 1|k − 2)
...

ϕ(k − p+ 1)− ϕ̂(k − p+ 1|k − p)

 .

(29)

Extend the gain coefficient Kp(k) into a Multi-Innovation
gain matrix

Kp(k) =


K(k)

K(k − 1)
...

K(k − p+ 1)

 . (30)

To mitigate the cumulative disturbance caused by outdated
data in the Kalman prediction, a forgetting factor is introduced.
This balances the influence of historical and recent data, thus
improving the update accuracy.
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The forgetting factor matrix is defined as:

α = diag (λ1, λ2, . . . , λp) , (31)

where the weighting matrix for the forgetting factors can be se-
lected as {

λ1 = 1

λ2 = λ3 = . . . = λp = β
p−1

, (32)

where β denotes the historical forgetting rate, which is bounded
by 0 ≤ β ≤ 1.
Substituting (31), (30), and (29) into (12) yields:

ϕ̂MI(k|k) = ϕ̂(k|k − 1) + α

p∑
i=1

Ep(k)Kp (k) . (33)

Thus, synthesizing (16), (24), (25), (26), and (33) establishes
the PPD equations based on the multi-innovation improved ex-
tended Kalman filter prediction-update. Substituting ϕ̂MI(k|k)
for ϕ(k) in CFDL-MFAC yields the proposed MIIEKF-MFAC
algorithm.
Figure 1 illustrates the MIIEKF-based MFAC system. Fig-

ure 2 shows the overall algorithm structure.
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FIGURE 1. Block diagram of the MFAC system based on MIIEKF.

The steps of the MIIEKF-PPD algorithm are described be-
low, using the prediction of the PPD value at time k as an ex-
ample.
Step 1: Based on the dynamic linearization model of MFAC,

the time-varying parameter PPD is calculated.
Step 2: Prediction and Update based on MIIEKF informa-

tion: Taking the PPD data ϕ(k − 1) output by the projection
algorithm at time k− 1 and the corresponding optimal PPD es-
timate ϕ̂MI(k − 1|k − 1) as the baseline inputs, the predicted

value ϕ̂(k|k − 1) of the PPD at the current moment is obtained
through the predictionmechanism ofMIIEKF. This is then used
to calculate the MIIEKF gain and, combined with the current
moment’s PPD value ϕ(k), a correction step is performed to

derive the optimal output estimate ϕ̂MI(k|k) of the PMSM at
the current moment. Finally, the actual dynamic linearization
model of MFAC is updated accordingly.
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FIGURE 2. Structure of MFAC based on MIIEKF.

4. STABILITY ANALYSIS
Theorem 2 Under Assumptions 1–3, when the desired speed
satisfies n∗(k + 1) = n∗(k) = const, the PMSM speed track-
ing error using the MIIEKF-MFAC method converges mono-
tonically, and the system exhibits bounded input and bounded
output stability.

Proof 2 From (7), v(k) denotes the estimation error noise
introduced by the modified projection algorithm. According
to [13], v(k) is bounded, that is, v(k) ≤ b1. Under Assump-
tion 4, the data model error d(k) is bounded. This implies that
w(k) is also bounded, i.e., w(k) ≤ b2.
From (18), the prediction-update error of the pseudo partial

derivative is given by: em(k|k) = ϕm(k)−ϕ̂(k|k). Combining
this with Equation (12) leads to:

|em(k|k)| = ϕm(k)− ϕ̂(k|k − 1)

−K(k)[ϕ(k)− ϕ̂(k|k − 1)]. (34)

From (7), ϕ(k) = ϕm(k) + v(k), it follows that:

|em(k|k)| =
∣∣∣ϕ(k)− v(k)− ϕ̂(k|k − 1)

−K(k)[ϕ(k)− ϕ̂(k|k − 1)]
∣∣∣

= |[1−K(k)] em(k|k − 1) +K(k)v(k)| . (35)

Since (20) indicatesK(k) ∈ [0, 1], we have [1−K(k)] ≤ 1.
Given that v(k) is bounded by v(k) ≤ b1, it follows that:

|em(k|k)| ≤ |em(k|k − 1)|+ |v(k)| . (36)

Furthermore, we obtain the following from (23):

|em(k|k)| ≤
∣∣∣∣1− η∆iq(k − 1)2

µ+∆iq(k − 1)2

∣∣∣∣ |em
(k − 1|k − 1)|

+ |w(k − 1)|+ |v(k)| . (37)

Since η ∈ (0, 1] and µ > 0, the term |1 − η∆iq(k−1)2

µ+∆iq(k−1)2 | is

monotonically decreasing, with a maximum value of 1− ηε2

µ+ε2 /.
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Thus, there exists a constant m such that:

0 ≤
∣∣∣∣1− η∆iq(k − 1)2

µ+∆iq(k − 1)2

∣∣∣∣ ≤ 1− ηε2

µ+ ε2
= m < 1. (38)

Therefore, (37) can be rewritten as:

|em(k|k)| ≤ m |em(k − 1|k − 1)|+ |w(k − 1)|+ |v(k)|
≤ m |em(k − 1|k − 1)|+ b1 + b2

≤ m2 |e
m
(k − 2|k − 2)|+ (m+ 1)b2 + (m+ 1)b1

≤ . . .

≤ mk−1 |em(1|1)|+ (b1 + b2)

(
1−mk−1

)
1−m

(39)

From Assumption 3, |ϕ(k)| ≤ b, and since v(k) ≤ b1, (7) im-
plies that ϕm(k) is bounded. Given that (39) shows |em(k|k)|
is bounded, it follows that ϕ̂(k|k) is bounded.
As established in Section 2, the standard Kalman filter en-

sures exponentially stable and bounded estimation error un-
der persistent excitation. The Multi-Innovation Kalman Fil-
ter (MIKF) extends this framework by constructing an aug-
mented system through innovation stacking. Since the orig-
inal system satisfies the boundedness condition for the PPD
ϕ̂(k|k), this property is preserved in the augmented system.
Therefore, according to multi-innovation system theory, the
MIIEKF also yields an exponentially stable estimator with
uniformly bounded error [14]. Consequently, the PPD esti-
mate ϕ̂MI(k|k) obtained from the MIIEKF remains uniformly
bounded.

5. EXPERIMENTAL VERIFICATION
To assess the practical effectiveness of the proposed method, a
series of experiments was conducted on the experimental plat-
form depicted in Figure 3. This platform includes an upper
computer, a motor-drag system, and a multi-motor drive con-
trol unit. The test used a PMSM (controlled object) loaded by
a DC motor [15]. Its performance was compared with PI [16]
and MFAC [17] under two distinct operating conditions. The
i∗d = 0 control strategy was performed. The sampling period
was set to be 10µs, and the DC bus voltage was UDC = 24V.

Monitor Computer Experimental result

monitoring interface

PMSM Load monitor

Multi-motor integrated drive

control experimental platform

FIGURE 3. Experimental platform.

Table 1 lists the nominal parameters of the PMSM. Table 2
provides the specific control parameters for the PI, MFAC, and
MIIEKF-MFAC algorithms.

TABLE 1. Parameters of PMSM.

Parameters Values
Rated voltage UN (V) 36
Rated output power P (W) 200
DC voltage UDC (V) 24
Rated Torque TL (N ·m) 0.45
Number of Pole Pair np (pairs) 4
Stator resistance Rs (Ω) 0.33
d-axis Stator inductance Ld (mH) 0.9
Rated Speed nN (r/min) 2500
q-axis Stator inductance Lq (mH) 0.9
Rotor PM flux ψr (Wb) 0.0105
Rotational Inertia J (kg ·m2) 1.89× 10−5

TABLE 2. Parameters of controllers.

PI MFAC MIIEKF-MFAC
P = 0.03 ϕ(1) = 2, λ = 0.1 ϕ̂MI (1|0) = 4, λ = 0.2

I = 0.77 η = 0.86, ρ = 0.2 η = 0.75, ρ = 0.4

µ = 0.01 β = 0.5, p = 3

Q = 0.5, R = 3

µ = 0.01

ϕ(1) and ϕ̂MI(1|0) are the initial values of the reset
mechanism of the PPD.

5.1. Control Performance of PMSM at Varying Speed and Load
At 3.5 s, the reference speed, nd, was set to 1000 r/min, and
the load torque, TL, was set to 0.1N ·m. Then, at 4.5 s, the
reference speed, nd, was set to 1500 r/min, and the load torque,
TL was increased to 0.2N ·m. Finally, at 6.0 s, the reference
speed, nd, was set to 2200 r/min, and the load torque, TL was
increased to the rated value of 0.45N ·m.
Figure 4 shows the experimental results comparing conven-

tional PI control, MFAC, and MIIEKF-MFAC methods under
variable speed and load conditions. The experimental findings
are summarized as follows.

(i) The conventional PI control fails to rapidly track step ref-
erences during speed regulation. At 4.5 s, the response
is characterized by a slow convergence process (0.9 s)
accompanied by speed fluctuations of 9 r/min [see Fig-
ure 4(a) Magnified area 1]. By 6 s, a maximum speed
deviation of 31 r/min is observed [see Figure 4(a) Mag-
nified area 2]. Compared with no-load operation, the con-
trol performance deteriorates significantly under varying
speed and load conditions.

(ii) At 4.5 s under 1500 r/min, the CFDL-MFAC exhibits
faster dynamic response than the PI control, converging
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FIGURE 4. Experimental results of the three control algorithms at varying speed and load.

within 0.42 s. Nevertheless, there are still speed oscilla-
tions of 9 r/min [see Figure 4(b) Magnified area 1]. At 6 s,
the speed deviation reaches a peak value of 35 r/min [see
Figure 4(b) Magnified area 2]. The dynamic performance
remains unsatisfactory, with noticeable degradation under
variable speed and load conditions.

(iii) By comparison, at 4.5 s, MIIEKF-MFAC achieves ultra-
fast convergence in only 0.002 s, with speed variations
limited to 3 r/min [see Figure 4(c) Magnified area 1]. By
6 s, the steady-state error is restricted to 1.6 r/min, and the
maximum speed error is merely 3.5 r/min [see Figure 4(c)
Magnified area 2]. These results conclusively verify its
exceptional robustness under varying speeds and load con-
ditions.

As shown in Figure 4, the MIIEKF-MFAC algorithm
demonstrates superior performance in torque ripple suppres-
sion, thereby effectively enhancing the operational quality of
the system.

5.2. Control Performance of PMSM at Varying Load
The reference speed, nd, was set to 1,000 r/min and remained
constant throughout the operation. During stable motor op-

eration, the load torque, TL, was increased to the rated value
0.45N ·m at 9 s, and was restored to 0N ·m at 12.5 s.
Figure 5 shows the experimental results of the conventional

PI control, MFAC, andMIIEKF-MFACmethods under varying
load conditions. The key findings are summarized as follows.
(i) The conventional PI control requires 3 s to achieve sta-

bilization, with a speed fluctuation amplitude of 90 r/min
[see Figure 5(a) Magnified areas 1–2].

(ii) The CFDL-MFAC method reduces the settling time
to 1.5 s and restricts the maximum speed deviation to
75 r/min [see Figure 5(b) Magnified areas 1–2].

(iii) The MIIEKF-MFAC algorithm achieves stability in only
0.5 s, with a peak speed deviation of merely 39 r/min[see
Figure 5(c) Magnified areas 1–2]. These results represent
an 83.3% improvement in response speed and a 57% re-
duction in speed deviation compared to the PI control.

At the 9 s mark, the torque response curves in Figure 5 reveal
that both the conventional PI control and CFDL-MFAC exhibit
significant current tracking errors and a phase shift of about 1◦.
In contrast, the proposed MIIEKF-MFAC strategy demon-

strates enhanced dynamic performance, yielding smoother and
more stable torque waveforms.
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FIGURE 5. Experimental results of the operation of three control algorithms running under sudden load changes.

TABLE 3. Parameters of controllers.

Operating conditions Operating Parameters The 1st Stage The 2st Stage The 3st Stage
Set the Time 3.5 s 4.5 s 6 s

Varying speed and load Speed 1000 r/min 1500 r/min 2200 r/min
Torque 0.1N ·m 0.2N ·m 0.45N ·m
Set the Time 0 s 9 s 12.5 s

Sudden loading Speed 1000 r/min 1000 r/min 1000 r/min
Torque 0N ·m 0.45N ·m 0N ·m

TABLE 4. Control performance comparison.

Operating conditions Performance PI MFAC MIIEKF-MFAC
Convergence time 0.9 s 0.42 s 0.002 s
Maximum speed deviation 31 r/min 35 r/min 3.5 r/min

Varying speed and load Speed oscillations 9–10 r/min 5 r/min 3–3.2 r/min
Torque pulsation 0.13N ·m 0.12N ·m 0.11N ·m
Convergence time 3 s 1.5 s 0.5 s

Sudden loading Torque pulsation 0.12N ·m 0.12N ·m 0.11N ·m
Speed overshoot 90 r/min 75 r/min 39 r/min
Phase shift 1◦ 1◦ 0◦
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5.3. Experimental Setup and Key Results Presentation
To systematically evaluate the performance of the proposed
MIIEKF-MFAC method and ensure the fairness and rigor in
comparison with PI and MFAC methods, this section presents
and analyzes all experimental settings and key results.
The operating condition settings of the aforementioned ex-

periments were summarized in Table 3. The experimental re-
sults of the PI, SMC, and MIIEKF-MFAC were summarized in
Table 4.
The comparative evaluation confirms that the MIIEKF-

MFAC method outperforms the conventional PI and MFAC
approaches in terms of dynamic response speed, steady-state
tracking accuracy, and robustness.

6. CONCLUSION
This paper proposes an MIIEKF-based MFAC method. The
proposed approach not only eliminates the dependency on
precise system models but also resolves the estimation relia-
bility issue of PPD through the improved extended Kalman
algorithm, while compensating for inaccuracies in the data
model. Furthermore, by integrating multi-innovation identi-
fication theory, the Kalman algorithm is optimized to ensure
rapid state convergence. Experimental results demonstrate that
the proposed method achieves excellent dynamic response per-
formance, effectively suppresses chattering, and enhances sys-
tem robustness. The method ensures the stable and efficient op-
eration of the PMSM under complex working conditions, thus
validating its practical utility. Note that adjusting several key
parameters, such as the covariance matrices in the MIIEKF and
the weighting factors in the MFAC, requires mutual coordina-
tion. Developing intelligent parameter tuning methods to fur-
ther enhance the adaptability and deployment convenience of
the proposed method remains a crucial direction for future re-
search.
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