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ABSTRACT: To achieve wideband operation while maintaining a small overall footprint (26 mm x 27 mm X 1.6 mm) and electrical size
of 0.46\ x 0.47A x 0.03), this paper presents a compact wideband Microstrip Patch Antenna (MPA) that uses a Defected Ground
Structure (DGS) and internal slots on a radiating patch and ground plane. The proposed antenna was designed on FR-4 with loss tangent
=0.02, e, = 4.4 & h = 1.6 mm, which achieves a wide bandwidth covering key wireless bands (Sub-6 GHz 5G, Wi-Fi, WIMAX) with
acceptable gain and radiation stability. The upper and lower edges of the band were tuned by the slot geometry and DGS, as demonstrated
by parametric analysis. Full-wave electromagnetic simulation results are reported, and the fabrication and measurement procedure are
described. The stated antenna achieves a peak radiation efficiency of 95.46%, a fractional bandwidth of 64.39%, a maximum gain of
4.8dB, and an S;; below —10dB over the range of frequency 3.57—6.96 GHz, all in a small size similar to a coin. The antenna is
particularly suitable for compact wireless devices, [oT modules, and Sub-6 GHz applications.

1. INTRODUCTION

ompact wideband antennas are required for the latest

wireless devices that support multiple bands (e.g., Wi-Fi,
WIiMAX, LTE, Sub-6 GHz) [1,21-23]. Traditional patch
antennas are compact and easy to fabricate but inherently
narrowband.  Techniques to broaden bandwidth include
thick substrates, stacked patches, proximity coupling, and
ground-plane modifications [16-20]. A compact single-layer
approach combining slot loading and a patterned DGS is
effective to increase the bandwidth while keeping the man-
ufacturing simple [1,14]. Adding slots to both the ground
plane and the radiating element has been proven to help
design small antennas that can operate over multiple frequency
bands [11-13].

A compact patch antenna (26 x 27 x 1.6 mm?) with internal
slots and an optimized DGS is presented. DGS offers an effec-
tive way to enhance antenna characteristics without complex
multilayer fabrication and increasing antenna size.

2. MATHEMATICAL MODEL

The core mathematical formulations governing the MPA design
are systematically outlined below:
Effective electrical length at resonance:

c

2fr\/Ees
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The extension length Al:
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Equations (6) and (7) were used to determine the dimensions of
the ground plane [2, 23].

3. PROPOSED ANTENNA DESIGN

Figure 1 shows the structural layout and dimensional specifi-
cations of the designed antenna. The antenna is compact, with
dimensions of 26 mm x 27 mm X 1.6 mm.
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FIGURE 1. Optimized design of antenna: (a) Top view, (b) bottom view.

The antenna employs longitudinal symmetry, configured in
the plane (z-y). The structure consists of a central radiating
semicircular patch with radius (R) and slot at the center (Sz,
Sw ). A microstrip feed line, with length (¥, ) and width (Fyy),
is implemented on the upper part of a dielectric substrate.

A DGS (defected ground structure) is etched into the bottom
layer of the substrate to improve the key performance parame-
ters, radiation gain, bandwidth (BW), and suppression of cross-
polarization components [4, 15, 17].

The ground plane incorporates two identical tiny reflectors
(Rg; and Ry,,) for gain improvement. A rectangular slot (St
and Sy g4.,) is introduced to achieve impedance matching, while
two additional square slots (Sy;, Sq.) are incorporated to en-
hance the S); performance. The electrical dimensions of the
antenna are 0.46\ x 0.47\ x 0.03\. The detailed structural
parameters are listed in Table 1.

TABLE 1. Detailed specification of the design parameters.

Parameter | Value | Parameter | Value
L 0.46 R 0.23)

w 0.47X Ry 0.02X

h 0.03X Ryw 0.02X

St 0.12X Sq 0.05X
Sw 0.02X Sgw 0.05X
Fr, 0.23) Stqtl 0.07X
Fw 0.05X Stgw 0.05X

4. ANTENNA DESIGN EVOLUTION AND PERFOR-
MANCE PARAMETER ANALYSIS

As illustrated in Figure 2, the antenna geometry was systemat-
ically modified to enhance wideband performance. Earlier re-
search has shown that E-shaped and U-shaped patch antennas
exhibit superior wideband characteristics. Accordingly, An-
tenna 1 was designed as a compact U-shaped configuration with
a full ground plane. In Antenna 2, a centrally symmetrical slot
was introduced within the U-shaped patch, and the ground was
partially etched to further improve the impedance bandwidth.
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Antenna 3 incorporates two identical miniature reflectors on
the ground plane to enhance the gain, along with a slot near
the feedline to achieve better impedance matching. Finally, in
Antenna 4, two identical slots are etched in the DGS of An-
tenna 3 to further extend the bandwidth. This progressive ge-
ometrical evolution results in a significant improvement in the
impedance characteristics and a substantial enhancement in the
overall wideband performance.

Figure 3 shows Sy variation with respect to frequency for
antennas Design-1, 2, 3, and 4. —10 dB is considered as the ref-
erence line here. For wideband performance, a design that pro-
vides a wide S below —10 dB is considered good. Initially for
Design-1, the S}, curve does not fall below —10 dB, so it is to be
modified. With the first structural enhancement as mentioned in
Design-2, an additional resonance emerges, and the S, graph
deepens significantly, indicating improved impedance match-
ing, but it does not stay below —10dB for the wideband. Fur-
ther, geometric evolution, as mentioned in Design-3, introduces
a wider bandwidth. In the final configuration, as mentioned in
Design-4, the S}, graph is below —10 dB for bandwidth 3.57 to
6.96 GHz, which clearly indicates wideband performance due
to the cumulative design enhancements.

Figure 4 shows that varying the Patch Slot Length (S},) sig-
nificantly affects the return loss of the antenna. The parametric
analysis of Sy, varying from 5 mm to 9 mm provided optimal
performance at S;, = 7 mm,; therefore, it was considered in the
design.

As depicted in Figure 5, incorporating DGS (Defected
Ground Structure) significantly affects S;; to a great ex-
tent. From Figure 5, it is clear that a ground plane between
40% and 50% improves the wideband characteristics; there-
fore, a ground plane with a size of 44.23% was taken into
consideration in the design.

Figure 6 illustrates the impact of variations in Fyy, Sq;, and
Sgw on return loss. As per the figure’s parametric analysis of
Fw, Sg, and S, good performance is achieved for the dimen-
sions of 3 mm and 3.5 mm, while maintaining structural sym-
metry. Fyy = Sg; = Sgu = 3 mm dimensions are taken into
the design consideration.

Figure 7 shows the impact of variations in Sy, Rg;, and R,
on return loss. As per the parametric analysis of Sy, Ry, and
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FIGURE 2. Progressive evaluation of antenna.
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FIGURE 3. S}, variation across diverse designs.
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FIGURE 5. Parametric analysis: .S} variation as a function of the ground

plane.

R, the deepest resonance occurs at 1.5 mm, showing optimal
performance. Therefore, Sy = Ry = Ry, = 1.5 mm dimen-
sions are considered in the design.

For structural symmetry and impedance matching, the
Ground Feed Slot Width (S, ) is considered to be the same
as the Feedline Width (Fyy), which is equal to 3mm. The
Feedline Length (F7) is taken as 13 mm, which is exactly the
shortest distance between the periphery of the semi-circle of
the patch and the excitation.
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FIGURE 4. Parametric analysis: S variation as a function of patch slot
length (SL).
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FIGURE 6. Parametric analysis: Si; variation as a function of feedline
width (Fw ), ground slot length (Sy:) and ground slot width (Sgu ).

Figure 8 illustrates that varying the Ground Feed Slot Length
(Stq1) affects the Sy plot, and it is varied from 3 to 5 mm with
a 0.5 mm interval as per the figure, and the overall geometry
Stgqr = 4mm is considered in the design.

5. RESULTS AND DISCUSSION

Figure 9 shows that our antenna prototype was simulated using
ANSYS HFSS software.
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FIGURE 7. Parametric analysis: .S1; variation as a function of patch slot ~ FIGURE 8. Parametric analysis: S variation as a function of ground
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FIGURE 11. (a), (b) Measurement setup inside an ELARC anechoic chamber and (¢) measurement with VNA.
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FIGURE 14. Radiation and total efficiency.
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FIGURE 15. Analysis of the current distribution of the proposed antenna at frequencies (a) 4.2 GHz, (b) 5.7 GHz, (c) 6.9 GHz.
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FIGURE 16. Designed antenna far-field radiation patterns: simulated & measured. (a) E-field at 4.2 GHz, (b) H-field at 4.2 GHz, (¢) E-field at
5.7 GHz, (d) H-field at 5.7 GHz, (e) E-field at 6.9 GHz, (f) H-field at 6.9 GHz.

Figure 10 shows the compactness of the designed antenna,
which is similar in dimension to a rupee coin with dimensions
of 26 mm x 27 mm X 1.6 mm.

The fabricated MPA was tested in an anechoic chamber, as
shown in Figures 11(a) and (b). The analysis examined the re-
turn loss, radiation pattern, gain, and Voltage Standing Wave
Ratio (VSWR). Figure 11(c) depicts the measurement with
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Figure 11(c) depicts measurements with with Vector Network
Anayzer (VNA).

Figures 12 and 13 illustrate a comparison of the simulated
and measured S, and VSWR values across the frequency spec-
trum. The results exhibited strong correlation and consistency.

The antenna successfully achieves a bandwidth of 3.39 GHz,
spanning a frequency range of 3.57-6.96 GHz with a 64.39%
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TABLE 2. Performance comparison of this compact design with reported compact designs in Sub-6 GHz range.
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FIGURE 17. Simulated and measured gains of the designed antenna.

fractional bandwidth while maintaining an S); value below
—10dB. Figure 14 shows that the radiation efficiency remains
above 89% throughout the full 3.57-6.96 GHz band with a
peak value reaching 95.46%. The total efficiency calculated as
per Equation (8) remains above 80% throughout the full 3.57—
6.96 GHz band with a peak value reaching 90.08%. As the pro-
posed antenna exhibits good impedance matching over the op-
erating band, the total efficiency closely follows the radiation
efficiency.

Figure 15 illustrates the surface current patterns at 4.2, 5.7,
and 6.9 GHz, showing how the antenna excites different reso-
nant modes. The current began near the feed and gradually ex-
tended along the arms and edges, forming intricate paths. These
variations suggest the activation of higher-order modes, thereby
improving radiation characteristics. The increasing current
strength and spread confirm the antenna’s effective broadband
operation and high efficiency.

As illustrated in Figure 16, the far-field radiation patterns of
the proposed antenna are plotted for both the E-plane (X Z,
® = 0°) and the H-plane (YZ, ® = 9°) at 4.2, 5.7, and
6.9 GHz. In the XZ plane, the pattern reveals a clear bidirec-
tional nature, which aids focused signal transmission. In con-
trast, the YZ plane shows a near-omnidirectional pattern, ensur-
ing wider coverage and reliable performance.

Ref. Antenna Size Substrate Frequency Range (GHz) | Efficiency (~%) | FBW (%) Gain (Peak)
[1] 0.34X x 0.34X x 0.02A FR4 3.20-5.34 96% 50 2.76 dBi
[3] 0.40A x 0.39X x 0.01A FR4 3.4-43 43% 234 3dBi
[4] 0.71A x 0.81A x 0.016\ FR4 1.73-4.38 88-96% 86.7 5.1dB
[5] 0.18X x 0.31\ x 0.007\ | Rogers RT 5880 2.67-5.23 GHz 98% Not reported 4.65dB
[6] 0.40 x 0.45X x 0.02X FR4 3-7 Not reported Not reported ~3dBi
[7] 0.43X x 0.19A x 0.01X FR4 3.3-4.0 Not reported Not reported ~2.5dBi
[8] 0.29A x 0.43X x 0.02A FR4 3.15-5.55 68.4~79.6 Not reported | 1.87~2.69 dBi
[9] 0.59A x 0.24X x 0.006\ Teflon 2.32-5.24 Not reported 77.2 ~3dB
[10] 0.50 x 0.65A x 0.03\ | Taconic TLY-5A 3.1-11.8 Not reported Not reported 3.86 dBi
Present Work | 0.46\ x 0.47A x 0.03\ FR4 3.57 t0 6.96 GHz 89.2-95.46% 64.39% 4.8dB
Figure 17 shows a gain comparison of the designed antenna.
51 ‘_;Z‘i“r‘:j g:l‘: :gg)) For the entire band 3.57-6.96 GHz, sufficient gain is received

with a maximum gain of 4.8 dB at 6.9 GHz frequency.

Table 2 provides a comparison between the performance of
the designed antenna and other designs reported in the liter-
ature, assessing key parameters such as physical dimensions,
gain, BW (%), substrate materials, frequency range, radiation
efficiency, and feeding methods.

6. CONCLUSION

A compact wideband microstrip patch antenna that integrates a
DGS and strategically placed slots was developed. By adding
slot modifications to the structure, this antenna significantly im-
proves the bandwidth while maintaining a small overall size of
26 x 27 x 1.6mm?> (0.46) x 0.47\ x 0.03)). Built on an FR4
substrate, this antenna works in the 3.57-6.96 GHz range with
an S below —10 dB, making it usable for Sub-6 GHz, Wi-Fi,
and WiMAX applications. The good match between the sim-
ulation and measurement verifies the design, with the antenna
offering a maximum gain of 4.8 dB, a fractional bandwidth of
64.39%, and a high radiation efficiency of 95.46% while en-
suring stable radiation across the frequency range. Owing to its
small size, wide impedance bandwidth, and good performance,
this antenna is an excellent choice for compact wireless devices,
Internet of Things modules, and portable Sub-6 GHz commu-
nication systems.
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