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ABSTRACT: The results of the propagation of electromagnetic waves in 1D periodic photonic waveguides and resonators are presented
in this study. This structure consists of periodically arranged cells, with each cell containing parallel and series segments, grafted by two
resonators at two different sites. This system creates passbands separated by photonic bandgaps, in which electromagnetic waves cannot
propagate. The analytical calculation is based on the transfer matrix method (TMM), which aims to calculate the dispersion relation and
transmission rate. Our results indicate the importance of the resonator length in applications, such as guiding and filtering electromagnetic
waves. This study also demonstrates how the addition of cells and the adjustment of resonator lengths influence the frequency selectivity,

which is essential for filtering in communication technologies.

1. INTRODUCTION

he study of electromagnetic wave propagation in periodic
Twaveguide structures has been a focus of interest in recent
decades, leading to significant advances in various fields of re-
search [1-3]. These structures are characterized by a central
waveguide with multiple lateral branches or resonators at each
site, which offer unique electromagnetic properties. This dis-
tinctive design plays an essential role, particularly in electro-
magnetic technology and photonics [4,5]. One of the main
features of these structures is the presence of photonic band
gaps (PBGs) [6], which are separated by narrow passbands.
The strategic positioning and dimensions of these band gaps
are crucial for the development of devices designed to reflect or
confine electromagnetic waves [7]. This study focuses on the
relationship between the structural design of periodic waveg-
uides and their electromagnetic properties, underlining the im-
portance of PBGs in current electromagnetic and photonic ap-
plications [8, 9].

Concerning specific contributions to periodic systems,
Antraoui and Khettabi [10] examined the propagation of
acoustic waves in a 1D comb-like periodic structure in the
presence of a defective open resonator situated in the middle
of the perfect periodic structure using the transfer matrix
method (TMM) and Sylvester’s theorem. El Kadmiri et al. [11]
showed that there is a double frequency filtering based on two
defect modes in an enormous gap by creating a defect at the
segment and opening resonator levels in a one-dimensional
comb-like phononic structure. On the other hand, Ben Ali et
al. [12] studied new filters based on the defect modes by using
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defective resonators in this structure containing left-handed
materials. In addition, Vasseur et al. [13] demonstrated the
presence of defect modes in the band gaps by integrating
defective branches of different lengths and materials into star
waveguide structures. Finally, the existence of band gaps was
experimentally demonstrated by Dobrzynski et al. [14] who
used coaxial cables in the frequency range up to 500 MHz.
The present research is based on a recent study presented
in [15], which studied electromagnetically induced trans-
parency (EIT) and Fano resonances in one cell in order to
develop multichannel electromagnetic filters. The present
study extends this previous study by considering the propaga-
tion of electromagnetic waves in finite and infinite periodic
systems composed of parallel waveguides coupled to asym-
metric resonators. In contrast to [15], where the analysis was
limited to an isolated or finite structure, the introduction of
periodicity in the present study allows the derivation of Bloch
dispersion relation and the identification of photonic bandgaps
and passbands. Furthermore, this study systematically exam-
ines the influence of geometrical parameters and the number
of unit cells on wave propagation and frequency selectivity,
highlighting the crucial role of resonator lengths in controlling
the position and width of photonic band gaps, thereby enabling
more advanced and highly selective electromagnetic filtering.
The propagation of electromagnetic waves through the pho-
tonic structure was theoretically investigated in this work (Fig-
ure 1). This article is organized as follows. A detailed ana-
lytical calculation of the dispersion relation, transmission and
reflection rates using the TMM is presented in Section 2. The
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FIGURE 1. Geometrical representation of the periodic structure. The system can be physically implemented using coaxial cables. Each unit cell
consists of longitudinal series waveguide segments (d1, ds), three parallel branches (ds, da, ds), and two lateral resonators of lengths d2 and d~

grafted at different positions.

numerical results and discussion are presented in Section 3. In
Section 4, we present the main summary of this study.

For clarity, the physical meaning of the geometrical parame-
ters defining the unit cell in Figure 1 is specified as follows. The
proposed structure can be physically realized using coaxial ca-
bles, as commonly employed in experimental investigations of
one-dimensional electromagnetic waveguides [16]. In this con-
text, all segments of lengths d; to dr correspond to coaxial cable
sections with identical characteristic impedance and dielectric
properties. The lengths d; and dg represent the main longitu-
dinal coaxial waveguide sections connected in series, ensuring
electromagnetic wave propagation along the structure. The seg-
ments ds, dy, and d5 correspond to parallel coaxial branches
that introduce multiple propagation paths and coupling effects.
The parameters ds and d7 denote the lengths of two lateral coax-
ial resonators grafted at different positions within the unit cell.
These resonators are responsible for local resonant phenom-
ena, such as Fano or electromagnetically induced transparency
(EIT)-like resonances, and play a key role in the formation and
tuning of photonic band gaps.

2. MODEL AND FORMALISM

Our theoretical analysis is based on the formalism of the trans-
fer matrix method, and we calculate the dispersion relation and
transmission and reflection rates. The expressions for the elec-
tric fields in the segment and resonator are given by [15, 17-19]:

Ey (z) = Age?®® + Bye 7% for: z <0
5 ) Ei(x) = A1eIT 4 BreiT for: 0 < x < d;
(@y)= Es (y) = Coe?*2Y + Doe=792Y for: 0 < y < do
(z)

E, (z) = Agelos(z—d1) for: z > dy

)

The electric field distribution within each medium is expressed

as the sum of the incident and reflected waves. «; is the wave

number in medium “¢” (¢ = 0,1, 2, s), and the coefficients 4,,
and B,, are constants (n = 0, 1, s).

We use the conditions of the passage of electric fields and

find the transfer matrix of segment length d; and grafted res-

onator length d; in the following form [15, 17]:
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The transfer matrix of a single segment is:
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We use the admittance matrix to calculate the transfer matrix of
the three parallel segments. The segment admittance matrix is:

By A Vi1l Yi12 Ay
=Y = (5)
B As Yi2l Y22 Ag
We use the admittance matrix to calculate the transfer matrix of
three parallel segments of lengths ds, ds, and ds:

(o) =w(a)-si(2)
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The transfer matrix of three parallel segments is given by [15]:
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FIGURE 2. (a) Spectrum of the dispersion relation. (b) Spectrum of the transmission rate as a function of the reduced frequency of the perfect periodic
structure with N = 5,dy = 0.5D,ds = d7y = 0.54D,ds = dy = ds = 1D and dg = 1.5D.

The transfer matrix of segment length d¢ and grafted res-
onator length dy is:

e

The transfer matrix of a cell is given by:

Cs —Jae
. Sy 08 ®)
—jaeSe — 5 Cs  Cs — T35 S6

Ty, Tio
Meen, = My - M - M3 = ©)
Toy Tao
The dispersion relation of the infinite system is given by:
t Mce
cos (kD) = T (Mea) (10)

2

where K represents the Bloch vector.

The considered system is composed of N cells (Figure 1),
and the matrix corresponding to this periodic structure can be
obtained by calculating the product of each matrix as follows:

N
N
=1 Mcelli = ( ) (11)

The unit matrix of order N can be simplified by the following
identity matrix:

N
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S (NKD ) .
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the perfect structure are given by:
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3. RESULTS AND DISCUSSIONS

In this section, we numerically illustrate the propagation of
electromagnetic waves through a periodic system in which each
cell contains parallel segments and symmetrical/asymmetrical
resonators (Figure 1). We take the dielectric permittivity of the
segments and resonators as €; = 2.3 (polyethylene), and the
magnetic permeability of the materials is ;2; = 1 (non-magnetic
medium), where ‘¢’ indicates the medium (¢ = [1 — 7]). The

reduced frequency is given by €2 = % which is a dimen-
sionless quantity; D is a unit of length; c is the velocity of elec-
tromagnetic waves in vacuum; and w is the pulsation. It should
be noted that the reduced frequency € and all geometric param-
eters used in this work are normalized quantities and therefore
dimensionless. This normalization allows for general and scal-
able results, without reference to a specific physical length or
frequency scale.

3.1. Analysis of Dispersion and Transmission Spectra in the
Perfect Periodic Structure

Figure 2 shows two related physical concepts found in the study
of wave dynamics within periodic structures, such as photonic
crystals, acoustic waveguides or photonic waveguides. Fig-
ure 2(a) illustrates the spectrum of the dispersion relation in
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FIGURE 3. Variation of the reduced frequency 2 as a function of the real part of K D of the infinite periodic system for different values of d2 and

dr, withdy = 0.5D,ds =ds =ds = 1D and dg = 1.5D.

a periodic system, showing the real part of the Bloch vector
(K) (is a representation of the periodicity of the structure in the
wave-vector space) and a characteristic dimension (D). This
representation clearly shows that the system allows for specific
frequencies where the phase effects of a wave repeatedly pass
through a period of the structure. This reveals the band structure
of the material, where the value of cos(/K D) varies between
—1 and +1, indicating the passband (allowing waves to prop-
agate). Figure 2(b) shows the transmission spectrum for a fi-
nite periodic system, where the transmission peaks indicate the
passband frequencies where the propagation of electromagnetic
waves is permitted, whereas the band gaps indicate that the
electromagnetic waves cannot propagate. The two cases show
a clear correspondence between the passbands and cos(K D)
values in the allowed region. The presence of band gaps and
band pass is crucial for technological applications, particularly
in the design of optical filters and waveguides, where control
of the propagation wave is necessary. In practice, the ability
to precisely control transmission frequencies through structural
design is important for the development of telecommunications
and optical filtering devices.

3.2. Variation of the Reduced Frequency as a Function of Real
Part of the Bloch Vector

Figure 3 presents the band structure of an infinite periodic sys-
tem, showing the variation in the reduced frequency with the
real part of the Bloch vector. Figures 3(a), (b), and (c) cor-
respond to different cases, with parameters d, and d; taking
the values of 0.46.D and 0.6D in various combinations. These
graphs are essential for determining the transport properties of
waves, such as optics for photons or acoustics for phonons [20].
The real part of the wave vector is related to the phase veloc-
ity of the wave and periodicity of the medium, whereas the
imaginary part of the K' D wave vector is typically associated
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with the attenuation of the wave inside the band gaps. Pass-
bands are areas where the real part of K D corresponds to prop-
agation modes. The black branches (solid black lines) repre-
sent the passbands, where electromagnetic waves can propagate
through the structure with minimal attenuation. It can be ob-
served that the change in d, from 0.46 D to 0.6.D between plots
(a) and (b) changes the position and width of the band gaps,
which could affect the behaviour of the waves as they interact
with the material. Similarly, the combination of the two values
in (c) produces a combined effect on the band structure, show-
ing the importance of the interaction between different lengths
in the material. In all the cases, the absence of features was due
to destructive interference.

3.3. Effects of Cell Number

Figure 4 shows the transmission rate as a function of the re-
duced frequency for different numbers of cells, NV, with d; =
05D, d2 = d7 = 054D, d3 = d4 = d5 = ].D, and
d¢ = 1.5D. Each case shows the periodic nature of the struc-
ture. In the case where N = 1, we note the emergence of a
Fano resonance, resulting from the uniformity of the resonator
length. When N = 3, this case shows that there are frequencies
where the transmission is almost zero (band gaps). In addition,
transmission peaks were observed (areas where the transmis-
sion curve reached unity). For N = 5, corresponding to five
waveguide cells, we observed that the number of oscillations
increased. The addition of cells modified the resonance charac-
teristics of the structure, resulting in more selective filters with
N = 10, and the transmission spectrum becomes more com-
plex with a wide band gap. The Fano resonance mode appears
in the N = 1 case, and its form changes in all other cases, in-
dicating a fundamental characteristic of the structure, in which
its position is independent of the number of cells. The insets
for cases (c) and (d) provide a more detailed view of the trans-
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FIGURE 4. Evolution of transmission rate as
(¢) N =5and (d) N = 10.

a function of the reduced frequency for different values of cell numbers N, i.e., (a) N =1, (b) N = 3,
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FIGURE 5. Variation of transmission rate as a function of the reduced frequency for a structure containing N = 5 cells.

mission peaks at the center of the band gap. As the number of
cells increased, the number of peaks increased, as did the num-
ber of oscillations in passbands. This could indicate that the
system is becoming more selective. We conclude that the inter-
action between electromagnetic waves and the periodic struc-
ture becomes more complex, resulting in selective filters. The
presence of band gaps and transmission peaks is crucial for ap-
plications, such as frequency filters in telecommunications.
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3.4. Influence of Resonator Lengths

Figure 5 shows the variation in the transmission rate as a func-
tion of reduced frequency for a finite structure containing N =
5 cells. Three different cases of resonator lengths are exam-
ined: (a) d2 = d7r = 0.46D, (b) da = d7 = 0.54D, and (c)
do = 0.46D, d7 = 0.54D. Figure 5(a) shows the presence of
band gaps and transmission peaks. Figure 5(b) and Figure 5(c)
suggest that asymmetrical resonator lengths can lead to changes
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FIGURE 6. Evolution of the reduced frequency as a function of identical lengths d3 = ds = ds for two cases: (a) do = d7 = 0.46D and (b)

d2 = 0.46D; d7 = 0.54D.

in the position and width of the band gaps. These variations
show how the precise geometry of a periodic structure, includ-
ing the length of the individual elements, can be used to finely
control the transmission properties. The differences observed
in the transmission profiles for each configuration demonstrate
the importance of perfect periodic structure engineering for the
development of advanced photonic devices.

3.5. Impact of Waveguide Lengths

Figure 6 shows the evolution of the reduced frequency as a
function of the length d3 = ds = d5 for two specific cases
of resonator lengths do and dy. In case (a), the resonators
with lengths ds and d7 are equal to 0.46D. The band structure
shows the existence of band gaps and passbands (represented
by white areas and black lines, respectively), which show the
dependence of the resonant frequencies on the uniform varia-
tion of lengths ds, dy4, and d5. The white regions indicate the
band gaps, whereas the gray regions indicate the passband that
can propagate through an infinite perfect periodic structure. In
case (b), do is maintained at 0.46 D while d7 equals 0.54D, and
we note the change in the frequency band structure. It can be
seen that some band gaps become wider, and new passbands ap-
pear, which demonstrates the effect of asymmetrical resonator
lengths. These cases are the key to understanding how different
waveguide geometries affect the transmission properties and
can be used to design optical waveguides with specific trans-
mission characteristics.

3.6. Influence of Resonator Length d-

Figure 7 shows the evolution of the reduced frequency as a
function of a resonator length d,, with d; = 0.46D and d; =
dy = ds = 1D. It can be seen that the variation in length
do leads to significant changes in the position and width of the
band gaps. This demonstrates the sensitivity of the waveguide
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Reduced Frequency

FIGURE 7. Evolution of the reduced frequency as a function of a res-
onator length d2 with d7 = 0.46D.

to the physical dimensions of its internal components, underlin-
ing the importance of precise design in the development of ad-
vanced optical devices. The ability to control the transmission
properties in this manner is crucial in many fields, including
optical telecommunications.

4. SUMMARY

In this paper, we study the propagation of electromagnetic
waves in a 1D perfect periodic structure using the transfer ma-
trix method (TMM), which considers the periodicity of parallel
segments and resonators. This system creates passbands sep-
arated by band gaps, and electromagnetic waves cannot prop-
agate. Our study suggests the importance of resonator length
for guiding, filtering, and investigating the effect of changing
the cell number and resonator length on the selective frequency.
This study aims to advance the design of devices, such as elec-
tromagnetic filters and demultiplexers.

WWwWw.jpier.org



Progress In Electromagnetics Research C, Vol. 165, 221-227, 2026

PIER C

REFERENCES

(1]

(2]

Du, F., Y.-Q. Lu, and S.-T. Wu, “Electrically tunable liquid-
crystal photonic crystal fiber,” Applied Physics Letters, Vol. 85,
No. 12, 2181-2183, 2004.

Mao, Q., K. Xie, L. Hu, Q. Li, W. Zhang, H. Jiang, Z. Hu, and
E. Wang, “Light confinement at a dirac point in honeycomb-like
lattice photonic crystal,” Optics Communications, Vol. 384, 11—
15,2017.

Bouzidi, A., D. Bria, A. Akjouj, Y. Pennec, and B. Djafari-
Rouhani, “A tiny gas-sensor system based on 1D photonic crys-
tal,” Journal of Physics D: Applied Physics, Vol. 48, No. 49,
495102, 2015.

Ben-Ali, Y., A. Ghadban, Z. Tahri, K. Ghoumid, and D. Bria,
“Accordable filters by defect modes in single and double nega-
tive star waveguides grafted dedicated to electromagnetic com-
munications applications,” Journal of Electromagnetic Waves
and Applications, Vol. 34, No. 4, 539-558, 2020.

Cocoletzi, G. H., L. Dobrzynski, B. Djafari-Rouhani, H. Al-
Wahsh, and D. Bria, “Electromagnetic wave propagation in
quasi-one-dimensional comb-like structures made upof dissi-
pative negative-phase-velocity materials,” Journal of Physics:
Condensed Matter, Vol. 18, No. 15, 3683, 2006.

Yablonovitch, E., “Inhibited spontaneous emission in solid-
state physics and electronics,” Physical Review Letters, Vol. 58,
No. 20, 2059, 1987.

John, S., “Strong localization of photons in certain disordered di-
electric superlattices,” Physical Review Letters, Vol. 58, No. 23,
2486, 1987.

Notomi, M., “Manipulating light with strongly modulated pho-
tonic crystals,” Reports on Progress in Physics, Vol. 73, No. 9,
096501, 2010.

Soukoulis, C. M., Photonic Crystals and Light Localization in
the 21st Century, Springer Science & Business Media, 2012.
Antraoui, . and A. Khettabi, “Properties of defect modes in a fi-
nite periodic structure with branched open resonators,” Materials
Today: Proceedings, Vol. 27, 31323138, 2020.

El Kadmiri, 1., Y. Ben-Ali, A. Ouariach, A. Khaled, and
D. Bria, “Double frequency filtering in one dimensional comb-
like phononic structure containing a segment defect,” in Ad-
vances in Integrated Design and Production (CPI 2019), A.
Saka, et al. (eds.), Lecture Notes in Mechanical Engineering,

227

[12]

[13]

[16]

[17]

[19]

(20]

Springer, Cham, 2021.

Ben-Ali, Y., Z. Tahri, F. Falyouni, and D. Bria, “Study about
a filter using a resonator defect in a one-dimensional photonic
comb containing a left-hand material,” in Proceedings of the st
International Conference on Electronic Engineering and Renew-
able Energy (ICEERE 2018), B. Hajji, et al. (eds.), Lecture Notes
in Electrical Engineering, Vol. 519, Springer, Singapore, 2019.
Vasseur, J. O., B. Djafari-Rouhani, L. Dobrzynski, A. Akjouj,
and J. Zemmouri, “Defect modes in one-dimensional comb-
like photonic waveguides,” Physical Review B, Vol. 59, No. 20,
13446, 1999.

Dobrzynski, L., A. Akjouj, B. Djafari-Rouhani, J. O. Vasseur,
and J. Zemmouri, “Giant gaps in photonic band structures,”
Physical Review B, Vol. 57, No. 16, R9388, 1998.

Khattab, M. S., T. Touiss, I. E. Kadmiri, F. Z. Elamri, and
D. Bria, “Multi-channel electromagnetic filters based on EIT and
Fano resonances through parallel segments and asymmetric res-
onators,” Progress In Electromagnetics Research Letters, Vol.
115, 105-109, 2024.

Mouadili, A., E. H. E. Boudouti, A. Soltani, A. Talbi, A. Akjouj,
and B. Djafari-Rouhani, “Theoretical and experimental evidence
of fano-like resonances in simple monomode photonic circuits,”
Journal of Applied Physics, Vol. 113, No. 16, 164101, 2013.
Touiss, T., Y. Errouas, 1. E. Kadmiri, and D. Bria, “Electromag-
netic filtering with high performance by one dimensional defec-
tive comb-like waveguides structure using the transfer matrix,”
E3S Web of Conferences, Vol. 469, 00091, 2023.

Touiss, T., Y. Errouas, A. Ouariach, and D. Bria, “Theoreti-
cal design of high-performance guiding and filtering devices us-
ing photonic comb-like waveguides with defective resonators,”
Journal of Electromagnetic Waves and Applications, Vol. 38,
No. 16, 1779-1795, 2024.

Touiss, T., I. E. Kadmiri, Y. Errouas, and D. Bria, “Electromag-
netically induced transparency and Fano resonances in waveg-
uides and U-shaped or cross-shaped resonators,” Progress In
Electromagnetics Research Letters, Vol. 127, 53-63, 2024.
Bria, D., M. B. Assouar, M. Oudich, Y. Pennec, J. Vasseur,
and B. Djafari-Rouhani, “Opening of simultaneous photonic and
phononic band gap in two-dimensional square lattice periodic
structure,” Journal of Applied Physics, Vol. 109, No. 1, 014507,
2011.

WWwWw.jpier.org



	Introduction
	MODEL AND FORMALISM
	RESULTS AND DISCUSSIONS
	Analysis of Dispersion and Transmission Spectra in the Perfect Periodic Structure
	Variation of the Reduced Frequency as a Function of Real Part of the Bloch Vector
	Effects of Cell Number
	Influence of Resonator Lengths
	Impact of Waveguide Lengths
	Influence of Resonator Length bold0mu mumu d2d2d2d2d2d2

	SUMMARY

