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ABSTRACT: Electromagnetic acoustic transducers (EMATs) have shown broad application prospects in industrial nondestructive testing
due to their non-contact and couplant-free operation. However, their low energy conversion efficiency leads to a poor signal-to-noise ratio
(SNR), especially under low-power excitation in safety-critical fields such as the petrochemical and nuclear power industries, thereby
severely affecting the thickness measurement accuracy. To address this challenge, this paper proposes an Adaptive Dual-Attention Fusion
Autoencoder (ADFAE) for EMAT echo signal denoising. The ADFAE adopts a dual-path parallel architecture that integrates a multi-scale
convolutional autoencoder with channel attention (MCACA) to capture local temporal features and a spatial attention-guided denoising
autoencoder (SAGDA) to model global dependencies. Based on the denoised signals, a CNN-BiLSTM network is further employed to
directly estimate material thickness. Experimental results demonstrate that the proposed method achieves effective denoising under low
SNR conditions, with an average SNR improvement exceeding 23 dB and a mean Peak SNR above 43 dB. Compared with traditional
time-of-flight (TOF)-based methods, the proposed ADFAE-CNN-BiLSTM framework significantly improves thickness measurement
accuracy, reducing the average relative error to below 0.25%.

1. INTRODUCTION

Nondestructive testing (NDT) technologies play a critical
role in ensuring the structural integrity and operational

safety of industrial systems, and they have been widely applied
in key sectors such as the aerospace, energy, and petrochemical
industries [1, 2]. Among the various NDT techniques, electro-
magnetic acoustic transducers (EMATs) have emerged as a re-
search focus because of their unique advantages, including non-
contact operation, elimination of couplant requirements, suit-
ability for high-temperature environments, and capability for
in-line inspection [3, 4]. Compared with conventional piezo-
electric ultrasonic testing, EMATs generate and receive ultra-
sonic waves through electromagnetic coupling, thereby avoid-
ing issues associated with couplants in traditional ultrasonic
testing methods [5]. However, this non-contact mechanism
also results in significantly lower energy conversion efficiency
for EMAT than piezoelectric transducers; consequently, the
generated ultrasonic signals exhibit weaker strength and a rel-
atively low signal-to-noise ratio (SNR) [6, 7]. In practical en-
gineering environments within the petroleum, natural gas, and
petrochemical industries, equipment is frequently subjected
to various sources of electromagnetic interference, vibrational
noise, and adverse environmental conditions, which further de-
teriorate signal quality [8]. Consequently, the echo signals are
often completely submerged in background noise, making it
difficult to directly determine the material thickness.
To address the problem of low SNR, researchers have pro-

posed various solutions. From a signal processing perspective,
traditional methods include signal averaging, digital filtering,
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and wavelet transform. The variational mode decomposition
(VMD) method proposed by Dragomiretskiy and Zosso has
beenwidely applied in the field of signal processing [9]. Si et al.
combined VMD with wavelet transform to achieve EMAT sig-
nal denoising under large lift-off distance conditions [6]. Guo et
al. [10] employed variational mode decomposition for Nuclear
Magnetic Resonance echo data denoising, solving the mode
mixing and end effect problems of traditional Empirical Mode
Decomposition methods. However, these traditional methods
require presetting decomposition parameters and lack adapt-
ability, showing limited effectiveness when dealing with com-
plex and variable noise environments. With the rapid develop-
ment of artificial intelligence technology, deep learning meth-
ods have demonstrated tremendous potential in signal process-
ing owing to their powerful feature learning capabilities and
noise robustness. Zhou et al. [11] proposed a deep stacked de-
noising autoencoder for low-power EMAT testing, demonstrat-
ing its ability to reconstruct echo signals from voltages ranging
from 750V to 25V. Using this method, the average SNR was
approximately 11 dB at 25V excitation and thickness measure-
ment relative errors below 0.3% across different specimens.
Wu et al. [12] developed a one-dimensional convolutional neu-
ral network denoising autoencoder model for pipeline ultra-
sonic guided wave signal denoising, which improved the SNR
by 30.63 dB.Wang et al. [13] performed electrocardiogram sig-
nal denoising using a stacked denoising autoencoder, achiev-
ing effective noise suppression and robust feature extraction.
Lu et al. [14] proposed an Adaptive Denoising Autoencoder for
bearing fault vibration signal denoising, achieving an SNR im-
provement of 24.02 dB and root-mean-square error (RMSE) of
0.13 under varying noise conditions (−6 dB), significantly out-
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performing traditional denoising approaches. However, these
methods mostly adopt single-scale feature extraction and lack
effective attention mechanisms, making it difficult to adap-
tively process weak signals in complex noisy environments.
Attention mechanisms, as an important breakthrough in the
field of deep learning, provide new insights into EMAT signal
processing. The Squeeze-and-Excitation networks proposed by
Hu et al. [15] significantly improve the image classification
accuracy of convolutional neural networks (CNNs) through
channel attention mechanisms, which can adaptively adjust the
weights of different feature channels and emphasize informa-
tive features. The deep residual multi-scale CNN with an at-
tention mechanism proposed by Han et al. [16] significantly
improves bearing fault diagnosis accuracy in strong noise envi-
ronments by adaptively enhancing fault feature representations.
These studies indicate that the combination of attention mecha-
nisms and autoencoders has significant potential in EMAT sig-
nal processing.
Traditional thickness measurement methods are based on

the time-of-flight (TOF) principle of ultrasonic waves in ma-
terials [17], which calculates material thickness by measur-
ing the time interval between adjacent echoes and combining
it with the ultrasonic wave propagation velocity in the mate-
rial [18, 19]. This method achieves high accuracy under ideal
conditions with good signal quality and homogeneous materi-
als. However, in practical engineering applications, composi-
tional deviations, nonuniform grain sizes, residual stress dis-
tributions, and local temperature variations in materials can
cause spatial variations in acoustic velocity, thereby affect-
ing the accuracy of thickness determination [20]. Compared
to traditional TOF methods, deep learning approaches can di-
rectly predict the thickness from raw signals, avoiding the un-
certainties of intermediate echo identification steps and pro-
viding new insights for thickness determination. Among deep
learning technologies, Long Short-Term Memory (LSTM) net-
works have unique advantages in ultrasonic time-series signal
analysis because of their ability to effectively process sequen-
tial data [21]. In recent years, hybrid models combining mul-
tiple deep learning structures have demonstrated stronger sig-
nal processing capabilities. Shang et al. applied a CNN-LSTM
hybrid model to ultrasonic guided wave signal processing in
metal pipelines, achieving effective identification of six differ-
ent defect types by extracting 29 time-frequency domain fea-
tures [22]. Yang et al. [23] proposed a Convolutional Neu-
ral Network-Bidirectional Long Short-Term Memory (CNN-
BiLSTM) hybrid model for ultrasonic signal thickness evalua-
tion in thin-walled structures, achieving a thickness prediction
accuracy of less than 0.05mm through the extraction of over-
lapping signal features. The CNN-BiLSTM structure demon-
strated superior performance in time-series signal processing by
combining the feature extraction capability of CNNs with the
sequence modeling capability of BiLSTMs.
Based on the above analysis, this paper proposes an EMAT

echo signal denoising and thickness determination method that
integrates an Adaptive Dual-Attention Fusion Autoencoder
(ADFAE) with a CNN-BiLSTM network. The proposed
method aims to address the issue of inaccurate thickness mea-
surement caused by weak signals and strong noise interference

in EMAT systems. The main contributions of this work are
summarized as follows:

1. An ADFAE is proposed for EMAT echo signal process-
ing, which jointly leverages channel attention and spatial
attention mechanisms to achieve effective multi-scale fea-
ture extraction and noise suppression.

2. An adaptive feature fusion strategy is introduced within
the ADFAE, which dynamically adjusts the contributions
of different attention branches based on feature impor-
tance, thereby enhancing the model’s robustness under
varying signal-to-noise ratio conditions.

3. An end-to-end joint framework for EMAT signal denois-
ing and thickness measurement is constructed by integrat-
ing the ADFAEwith a CNN-BiLSTM regression network,
enabling direct prediction from raw echo signals to thick-
ness values and avoiding error accumulation inherent in
conventional multi-stage approaches.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces the EMAT experimental platform and scheme.
Section 3 presents the ADFAE-based denoising algorithm and
CNN-BiLSTM-based thickness prediction algorithm. Sec-
tion 4 evaluates the denoising performance and thickness pre-
diction results, and Section 5 provides an overall analysis and
discussion of the algorithm performance.

2. DATA ACQUISITION AND SIGNAL PREPROCESS-
ING

2.1. Experimental Setup and Data Acquisition
To validate the proposed method, an EMAT inspection exper-
imental system was established to acquire echo signals. The
experimental system consisted of an EMAT device (METP20,
ZDJY Company, China), samples of various thicknesses, a data
acquisition unit, and a PC, as shown in Fig. 1. The data acqui-
sition computer was connected to the EMAT via Bluetooth and
used dedicated software to control thickness measurement pa-
rameters and display ultrasonic echo signal waveforms in real
time.
The sample used in the experiment was made of 45# steel

with dimensions of 60mm × 60mm × H mm. The thick-
ness value H , determined with reference to the typical pipe

FIGURE 1. EMAT experimental system.
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TABLE 1. EMAT raw signal dataset.

Specimen Nominal
Thickness (mm)

Actual
Thickness (mm)

Training
Sample Size

Testing
Sample Size

9.0 9.10 80 20
12.0 12.08 80 20
15.0 15.04 80 20
18.0 18.06 80 20
21.0 21.04 80 20
24.0 24.07 80 20

wall thickness ranges specified in API 5L and ASME B36.10
standards and in consideration of engineering practices in the
petroleum, natural gas, and chemical industries, was set to six
values: 9mm, 12mm, 15mm, 18mm, 21mm, and 24mm. The
actual thickness of each specimen was calibrated using a high-
precision digital vernier caliper; the calibration data are listed in
Table 1. These calibrated thickness values were used as train-
ing and testing labels for the deep learning model. To construct
a complete training and testing dataset, multi-point measure-
ments were performed on a sample of each thickness to ensure
data diversity and representativeness. The EMAT was used to
scan clockwise along the upper surface of each specimen, with
100 measurements obtained for each specimen. Upon comple-
tion of all scans, a sample database containing 600 A-scan sig-
nals was created. The first 150 points of each signal were re-
moved to avoid the influence of the excitation signal. Subse-
quently, 80% of the data were randomly selected for training,
and the remaining 20% were used for independent testing. The
original dataset is presented in Table 1.

2.2. Data Augmentation and Noise Simulation

The high cost of EMAT equipment makes experimental data
acquisition expensive, requiring substantial material samples
and time investment. Moreover, various noise sources in real-
world industrial environments significantly affect signal qual-
ity, severely compromising thickness measurement accuracy.
To approximate real-world application scenarios, this study
employs data augmentation techniques to construct training
datasets with complex noise interference. A multi-component
noise model was established to simulate the signal charac-
teristics in real-world EMAT thickness measurement environ-
ments, considering the combined effects of three primary noise
sources [24]: (1) electronic noise, modeled as additive white
Gaussian noise to simulate random disturbances in circuits; (2)
material structural noise, modeled as modulated noise to simu-
late scattering effects of material microstructures on ultrasonic
propagation; (3) environmental background noise, modeled as
low-frequency noise to simulate external disturbances such as
electromagnetic interference and mechanical vibrations in in-
dustrial environments.
This experiment employs 5-fold cross-validation for perfor-

mance evaluation. Each fold contains 480 training signals,
which are partitioned into training and validation sets at a 4:1

ratio. After dataset partitioning, each original EMAT signal
undergoes amplitude scaling transformation (scaling factor be-
tween 0.8 and 1.2) to simulate variations in the signal un-
der different excitation intensities. Composite noise is then
added to generate training samples at six different SNR lev-
els (−12,−10,−8,−6,−4, and −2 dB), as shown in Fig. 2.
To control noise power, an iterative optimization algorithm is
applied to ensure that the actual SNR of each augmented sam-
ple deviates no more than ±0.1 dB from the target value. Ul-
timately, each fold consists of 2304 training samples and 576
validation samples.

3. METHODS

3.1. Denoising Network Architecture Design
This paper proposes an ADFAE designed to improve denoising
and thickness accuracy in EMAT echo signal processing. As
shown in Fig. 3, the ADFAE adopts a dual-path parallel pro-
cessing architecture and incorporates two specially designed
denoising modules: a multi-scale convolutional autoencoder
with channel attention (MCACA) and a spatial attention-guided
denoising autoencoder (SAGDA). The MCACA module cap-
tures local temporal features through an optimized encoder-
decoder structure, whereas SAGDA models global dependen-
cies to enhance pattern recognition.
The core of this architecture lies in the seamless integra-

tion of two complementary attention mechanisms: the chan-
nel attention mechanism, which identifies and enhances key
frequency components in the signal, and the spatial attention
mechanism, which locates and preserves important temporal
features. First, the input signal is passed through a multi-scale
preprocessing layer for the initial feature decomposition. This
layer adopts a dual-branch convolutional structure with kernel
sizes of 1 × 5 and 1 × 9, respectively, to extract features at
different scales. The preprocessed features are then fed into
the MCACA module for preliminary denoising. The output of
the MCACA is subsequently passed to the SAGDAmodule for
further semantic learning and feature extraction. Finally, the
output of SAGDA is fused with the feature representation from
the MCACA. To fully exploit the complementary strengths of
both modules, the network employs an adaptive weight fusion
strategy based on learnable parameters, which is mathemati-
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FIGURE 2. EMAT signals with simulated composite noise at different SNR levels.

FIGURE 3. Architecture diagram of ADFAE.

cally formulated as:

Ffusion = α⊙ FMCACA + β ⊙ FSAGDA (1)

where the weight coefficients are dynamically learned through
a normalization operation:

α =
WMCACA

WMCACA +WSAGDA + ϵ
(2)

where FMCACA and FSAGDA represent the feature outputs from
the MCACA and SAGDA modules, respectively; Ffusion de-
notes the fused feature representation; α and β are adaptive
weight coefficients; ⊙ denotes element-wise multiplication;
WMCACA and WSAGDA are learnable weight parameters gener-
ated by the respective weight branches (Conv2D + Sigmoid);
and ϵ is a small constant to prevent division by zero. Note that
β = 1 − α due to the normalization constraint. Finally, high-
quality denoised output is generated through multi-scale con-
volutional branches and residual connections, effectively im-
proving the signal-to-noise ratio and feature fidelity.

3.1.1. MCACA Module Architecture

The MCACA module adopts an improved encoder-decoder
structure (as shown in Fig. 4). This module constructs a multi-
scale feature extraction mechanism through dual-branch paral-
lel convolution layers, where convolution kernels k1 = (1, 5)
and k2 = (1, 9) capture local features at different temporal
scales. The same stride (1, 1) and padding strategies are em-
ployed to maintain the feature map size. In the encoding stage,
dilated convolutions with a dilation rate of (1, 2) and a kernel
size of (1, 5) are introduced to enhance the modeling capability
for long-range dependencies. The decoding process utilizes a
symmetric upsampling strategy, and skip connections are used
to transfer detailed information, thereby preserving more tran-
sient features in the electromagnetic ultrasound signal. Addi-
tionally, an enhanced channel attention mechanism is incorpo-
rated, which aims to strengthen the channel responses related
to key signal features adaptively. Unlike traditional methods
that rely solely on global average pooling (GAP), this mech-
anism integrates global maximum pooling (GMP) to capture
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FIGURE 4. Architecture diagram of MCACA.

Output

(1,L,C)
×

Reshape

(1,L,C)

A
v
g
P
o
o
l

S
td
P
o
o
l

M
ax
P
o
o
l

C
o
n
ca
te
n
at
e

C
o
n
v
d
+
L
ea
k
y
R
eL
U

C
o
n
v
d
+
S
ig
m
o
id

Reshape

(L×C)

Dense

(512)

Dense

(256)
Dense

(L×C)

Dense

(512)

Dense

(256)

Dense

(128)

FIGURE 5. Architecture diagram of SAGDA.

richer statistical features. The calculation of channel attention
weights follows the following mathematical framework:

Ac = σ (W2 · δ (W1 ·GAP(F ))+W2 ·δ (W1 ·GMP(F ))) (3)

where GAP(·) and GMP(·) denote the global average pooling
and global maximum pooling operations, respectively;W1 and
W2 are the shared fully connected layer weight matrices; δ(·)
denotes the ReLU activation function; and σ(·) represents the
sigmoid activation function. The final feature enhancement is
achieved through Fenhanced = Ac ⊙ F , where ⊙ indicates the
element-wise multiplication operation.

3.1.2. SAGDA Module Architecture

The SAGDA architecture is depicted in Fig. 5, focusing on
modeling global dependencies and complex nonlinear mapping
patterns in the EMAT signals. This module adopts a progres-
sive dimensionality reduction strategy, achieving a compact
feature representation through a 512→256→128-dimensional
encoder, followed by precise reconstruction via a symmetric
256→512→original dimension decoder. Batch normalization
and dropout regularization techniques are integrated into each
fully connected layer. This module proposes an enhanced spa-
tial attention mechanism. Unlike traditional methods that rely
solely on average or max pooling, this mechanism further intro-
duces standard deviation pooling operations to capture higher-
order statistical characteristics of signal distributions. Spatial
attention uses two-stage convolutions with kernel sizes k1 =
(1, 7) and k2 = (1, 3), both with the same padding, to generate

spatial weight maps. The spatial attention weights are com-
puted as follows:

As =

σ
(
Conv(1×k2)

(
δ
(
Conv(1×k1)(Concat(Favg, Fmax, Fstd))

)))
(4)

The definitions of each item are as follows:

Favg =
1

C

C∑
c=1

Fc (5)

Fmax = max
c∈[1,C]

Fc (6)

Fstd =

√√√√ 1

C

C∑
c=1

(Fc − Favg)
2 (7)

where Favg, Fmax, and Fstd represent the cross-channel av-
erage, maximum, and standard deviation operations, respec-
tively; Concat(·) denotes the feature concatenation operation;
and Conv1×k(·) represents the two-dimensional convolution
transformation with kernel size (1 × k). The spatial attention
mechanism precisely identifies critical temporal positions in
the signal through Fattended = As ⊙ F , significantly enhanc-
ing the model’s capability for global feature learning and sig-
nal reconstruction quality, thereby providing robust support for
high-quality denoising of ultrasonic guided wave signals.
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FIGURE 6. Architecture diagram of CNN-BiLSTM.

3.2. Training Configuration
The key hyperparameters, including convolutional kernel sizes,
latent dimensions, and loss function coefficients, were deter-
mined through preliminary comparative experiments based on
validation set performance.
This study employs a hybrid loss function that combines

mean squared error (MSE) and gradient terms [25] to ensure
signal reconstruction accuracy while preserving the structural
characteristics of the signal. The mathematical expression for
this hybrid loss function is as follows:

Lhybrid = α · LMSE + β · Lgradient (8)

where the MSE loss is defined as:

LMSE =
1

N

N∑
i=1

(yi − ŷi)
2 (9)

and the gradient preservation loss is defined as:

Lgradient =
1

N − 1

N−1∑
i=1

[(yi+1 − yi)− (ŷi+1 − ŷi)]
2 (10)

where yi represents the true signal, ŷi the reconstructed sig-
nal, and N the signal length. The weight coefficients are set
as α = 0.8 and β = 0.2 to balance the contributions between
reconstruction accuracy and gradient preservation. The weight-
ing coefficients are set as α = 0.8 and β = 0.2 by referring to
commonly used configurations in related literature [25] and are
verified to yield stable convergence and satisfactory denoising
performance in preliminary experiments.
The model is trained using the Adam optimizer with a gradi-

ent clipping mechanism, where the clipping threshold is set to
0.5 to prevent gradient explosion. The learning rate scheduling
adopts the ReduceLROnPlateau strategy with an initial learn-
ing rate of η0 = 1× 10−4, which monitors the validation loss.
When no improvement is observed for 10 consecutive epochs,
the learning rate is reduced to half of its current value:

ηnew = 0.5× ηcurrent (11)

The minimum learning rate is limited to ηmin = 1 × 10−7.
This adaptive adjustment mechanism enables the model to con-
verge rapidly during the early training phase while achieving
fine parameter tuning through reduced learning rates in later
stages. Additionally, an early stopping mechanism is imple-
mented, which terminates training when validation loss shows

no improvement for 30 consecutive epochs, effectively pre-
venting overfitting and ensuring the model converges to an op-
timal solution.

3.3. Thickness Determination Algorithm
In thickness determination tasks, traditional methods generally
employ the TOF method [26], which estimates thickness by
identifying characteristic peaks in signals and calculating time
differences. Ultrasonic waves generate echoes after reflection
within the specimen, and the time interval between adjacent
echoes is defined as the TOF. Given a constant ultrasonic wave
velocity, the specimen thickness can be calculated through the
following equation:

Thickness = Velocity · TOF
2

(12)

To further enhance prediction performance, this paper intro-
duces a CNN-BiLSTM hybrid architecture that combines the
strengths of CNNs in local feature extraction with the sequence
modeling capability of BiLSTM. This design maintains high
prediction accuracy under complex noise conditions and pro-
vides an efficient and adaptive intelligent solution for electro-
magnetic acoustic thickness determination.
As shown in Fig. 6, the constructed CNN-BiLSTM model

first reshapes the signal into the form of (n, 1850, 1) and in-
puts it into a three-layer convolutional cascade network. Each
convolutional layer uses the same kernel size but employs an
increasing number of filters (32, 64, 128), with each convolu-
tional layer followed by a max-pooling layer to achieve signal
downsampling and feature compression. The features extracted
by the convolutional layers are subsequently fed into the BiL-
STM network component, which comprises two BiLSTM lay-
ers. The first layer returns all sequences, and the second layer
returns only the final state. The final output of the model is
calculated as:

ŷ = Wo · ReLU (Wh · BiLSTM2 (BiLSTM1(CNN(x)))
+bh) + bo (13)

where CNN(x) denotes the output of the convolutional layers,
and BiLSTM1 and BiLSTM2 represent the outputs of the first
and second BiLSTM layers, respectively. This hybrid architec-
ture fully leverages the advantages of CNN in local feature ex-
traction and BiLSTM in long-term dependency modeling, en-
abling the model to process complex one-dimensional signal
data more effectively.
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FIGURE 7. Post-denoising SNR of different models under various ini-
tial SNR conditions.

4. EXPERIMENTAL RESULTS

4.1. Evaluation Metrics
To comprehensively evaluate the performance of the pro-
posed denoising algorithm, signal-to-noise ratio improvement
(SNRI), relative peak position error (RPPE), coefficient of
determination (R2), and peak signal-to-noise ratio (PSNR) [27]
are employed as evaluation metrics for assessing the denoising
algorithm’s performance in denoising tasks. For thickness
determination tasks, mean squared error (MSE), mean absolute
error (MAE), root mean squared error (RMSE), and mean
relative error (MRE) are adopted to quantify the magnitude
and distribution of measurement errors [28]. In Table 2, Ps and
Pn represent the power of signal and noise, respectively. SNRd

and SNRn denote the signal-to-noise ratios of the denoised
and noisy signals, respectively. xi represents the original
signal; x̂i represents the denoised signal; pi and p̂i represent
the peak positions in the original and denoised signals for
the i successfully matched peak pair, respectively; and K is
the number of successfully matched peak pairs. x̄ denotes
the mean value of the original signal; MAX represents the
maximum value of the reference signal; yi is the true thickness
value; ŷi is the predicted thickness value; and n is the number
of samples.

TABLE 2. Evaluation metrics.

Denoising Metrics Thickness
Determination Metrics

SNR=10 log10
(

Ps
Pn

)
MAE= 1

n

∑n
i=1 |yi − ŷi|

SNRI=SNRd − SNRn MSE= 1
n

∑n
i=1(yi − ŷi)

2

RPPE= 1
K

∑K
i=1

∣∣∣ pi−p̂i
pi

∣∣∣×100% RMSE=
√

1
n

∑n
i=1(yi−ŷi)2

PSNR=10 log10
(

MAX2

MSE

)
MRE= 1

n

∑n
i=1

∣∣∣ yi−ŷi
yi

∣∣∣
R2=1−

∑N
i=1(xi−x̂i)

2∑N
i=1(xi−x̄)2

4.2. Model Complexity Analysis
To evaluate the computational cost and inference efficiency
of the proposed method, the model complexity of each sub-
module and the overall framework is analyzed in terms of pa-
rameter count, model size, and inference time. The ADFAE
module contains 91.58M parameters, with a model size of
349.4MB, and requires 76.63ms to process a single EMAT sig-
nal. The CNN-BiLSTM module has 1.28M parameters and
a model size of 4.9MB, with an average inference time of
166.01ms per signal. Overall, the proposed framework com-
prises 92.86M parameters and achieves an average inference
time of 242.64ms per signal, corresponding to a throughput of
approximately 4 signals/s. These results indicate that the pro-
posed method is suitable for offline or quasi-real-time EMAT
thickness measurement applications.

4.3. Comparison of Denoised Signal Evaluation
To systematically evaluate the effectiveness of the proposed
ADFAE model, we select the Convolutional Autoencoder
(CAE) [29] and U-Net [30] as baseline models. These
architectures are widely used in denoising and feature re-
construction tasks, and are highly relevant to our research
problem. The proposed method can be regarded as an im-
provement and extension of these architectures. Implementing
the baselines under identical experimental conditions allows
us to demonstrate the performance gains achieved by our
method. Moreover, the comparative experiments ensure
fair evaluation under the same dataset, data augmentation,
and noise conditions, thereby progressively validating the
effectiveness of the model. The CAE achieves denoising by
learning a compressed representation of the signal through
an encoder-decoder architecture, representing a fundamental
deep learning approach for signal denoising. On the other
hand, U-Net utilizes skip connections to integrate multi-scale
features, providing an advanced feature fusion strategy. For
the ablation study, we designed variants of the proposed model
without SAGDA (NSA), without the attention mechanism
(NAT), and without adaptive fusion (NAF) to independently
assess the contribution of each core component.
This paper employs a five-fold cross-validation approach,

with the overall denoising results evaluation presented in Ta-
ble 3. The evaluation demonstrates that the proposed model
achieves superior performance with an average SNR improve-
ment of 22.93 dB, outperforming other methods by a significant
margin, representing a 46.8% improvement over the baseline

TABLE 3. Comparison of overall denoising results across different
models.

Model SNRI (dB) RPPE (%) PSNR (dB) R2

CAE 15.61±1.80 0.09±0.31 35.68±3.64 0.823±0.130
U-Net 17.31±1.78 0.12±0.35 37.36±4.38 0.859±0.133
NSA 17.81±2.07 0.13±0.37 37.87±4.41 0.878±0.114
NAT 21.02±1.72 0.05±0.11 41.08±2.78 0.952±0.032
NAF 21.08±1.77 0.05±0.10 41.15±2.77 0.953±0.032

Proposed 22.93±2.28 0.04±0.09 43.00±3.52 0.965±0.037
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(a) (b)

(c) (d)

FIGURE 8. Denoising evaluation of different models under three SNR conditions: (a) SNRI, (b) RPPE, (c) PSNR, (d) R2.

CAE model and a 32.5% improvement over U-Net. In terms
of the RPPE metric, the proposed model achieves the lowest
value of 0.045%, while CAE and U-Net achieve 0.093% and
0.113%, respectively, demonstrating the superiority of ADFAE
in preserving signal peak details. The performance of abla-
tion experiment groups shows a progressive relationship: NSA
(17.81 dB)<NAT (21.02 dB)<NAF (21.08 dB), with the con-
tribution of each module clearly visible, where the attention
mechanism contributes approximately 1.91 dB improvement,
the adaptive fusion strategy contributes approximately 1.85 dB,
and the SAGDA module contributes the final 5.12 dB perfor-
mance enhancement.
Figure 7 intuitively demonstrates the performance gradient

variations of each model under different initial SNR conditions.
As the initial SNR increases from −12 dB to −2 dB, the post-
denoising SNR values of all models exhibit varying degrees
of upward trends, with performance differences between mod-
els being more pronounced under low SNR conditions, fully
demonstrating the advantages of the proposed method in harsh
noise environments.
The denoising results of the model under high, medium,

and low initial signal-to-noise ratio conditions (−4 dB, −8 dB,
−12 dB) are shown in Fig. 8, where the proposed model
demonstrates optimal performance across all evaluation met-
rics. Fig. 8(a) indicates that, in terms of SNR improvement,
the proposed model achieves 23.48 dB, 23.89 dB, and 23.66 dB
under the three initial SNR conditions, respectively, signifi-
cantly outperforming other comparative models. The RPPE
metric in Fig. 8(b) shows that the proposed model maintains an

extremely low level of 0.04–0.05%, demonstrating excellent
signal peak position fidelity. The PSNR results (Fig. 8(c))
further validate the model’s denoising capability, with the
proposed model reaching the highest value of 46.33 dB at
−4 dB. The correlation coefficient R2 achieves the highest
values under different initial SNR conditions, indicating high
correlation between the denoised signals and the original
signals. The ablation study results show that the performance
of the three variants, NSA, NAT, and NAF, increases sequen-
tially, confirming the effectiveness of the SAGDA module,
attention mechanism, and adaptive fusion strategy.
Figure 9 presents a comparison of denoised signal wave-

forms from various models under high, medium, and low initial
signal-to-noise ratio conditions (−4 dB, −8 dB, −12 dB). Un-
der extremely low SNR conditions (−12 dB), the original sig-
nal is almost completely submerged in noise, and while CAE
and U-Net can recover the main signal structure, they exhibit
obvious waveform distortion and amplitude errors. The NSA
model shows limited improvement, whereas the NAT and NAF
models demonstrate better waveform preservation capability.
The proposed model not only accurately recovers the peak po-
sitions and amplitudes of the signal but also maintains the de-
tailed characteristics of the waveform. As the SNR increases
to −8 dB and −4 dB, the denoising performance of all models
improves; however, the proposed model consistently maintains
the best signal reconstruction quality, with its denoised wave-
forms highly consistent with the original signals, confirming
the robustness and adaptability of ADFAE under different noise
levels.
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FIGURE 9. Post-denoising SNRs of different models under various initial SNR conditions.

4.4. Evaluation of Thickness Determination Results

After signal denoising, the signals are input into CNN-BiLSTM
for thickness determination. This paper compares the overall
average regression performance metrics of TOF and CNN-
BiLSTM in thickness measurement tasks. The CNN-BiLSTM
method employs five-fold cross-validation, and the results are
shown in Table 4. The CNN-BiLSTM method significantly

outperforms the TOF method across all evaluation metrics.
These results indicate that CNN-BiLSTM, by combining the
local feature extraction capability of convolutional neural
networks with the temporal modeling advantages of bidirec-
tional long short-term memory networks, can more effectively
capture complex spatiotemporal features in signals, thereby
achieving higher accuracy and more stable performance in
thickness prediction tasks.
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FIGURE 10. Evaluation of thickness determination results under different initial SNR conditions.

TABLE 4. Comparison of thickness determination evaluation between
traditional methods and CNN-BiLSTM.

Evaluation Metrics TOF CNN-BiLSTM
MAE 0.081 0.044293±0.007192
MSE 0.00765 0.003866±0.002138
RMSE 0.087 0.059992±0.016336
MRE 0.48% 0.2898%±0.0350%

Figure 10 demonstrates the thickness prediction performance
of the CNN-BiLSTM hybrid model for six different thickness
materials under various signal-to-noise ratio conditions. The
results indicate a significant negative correlation between
model performance and signal-to-noise ratio. Under low SNR
conditions, the 9.100mm thickness sample exhibits the largest
prediction error, with MAE reaching 0.075mm, MSE of
0.015mm2, RMSE of 0.12mm, and the highest MRE of 0.8%.
As the SNR increases, the prediction errors for all thickness
samples show a decreasing trend. When SNR ≥ −8 dB, all
error metrics tend to stabilize, with MAE stabilizing within the
range of 0.02–0.04mm and MRE decreasing to below 0.2%.
Thinner materials exhibit higher prediction errors and greater
performance fluctuations in low SNR environments, while
medium and thicker materials demonstrate stronger noise im-
munity, maintaining relatively stable prediction performance
under different SNR conditions.

4.5. Comprehensive Application Testing
To evaluate the thickness determination performance of the
proposed method, we conducted cascade testing by combining
the optimal denoising model and the optimal thickness predic-
tion model from five-fold cross-validation. The experimental
test set employed the same data augmentation and noise addi-
tion techniques, simulating different initial signal-to-noise ratio
conditions of −12 dB, −9 dB, −7 dB, −5 dB, and −2 dB, with
each SNR level containing 120 samples. The overall average
test results are presented in Table 5, demonstrating excellent
performance of the cascade system on the entire test set. The
denoising module achieved an SNRI of 23.12± 2.20 dB and a
PSNR of 43.75 ± 3.28 dB, with a coefficient of determination
R2 reaching 0.9906. The thickness predictionmodule exhibited
even more outstanding performance, with an MRE of 0.25%
and a RMSE of 0.042129. Analysis across different SNR con-
ditions reveals that the system maintains stable, high-precision
performance under various noise levels.
Based on the heat map analysis results, the system main-

tains high-precision measurement performance under all test
conditions. As shown in Figs. 11(a) and (b), MSE values are
distributed within the range of 0.001–0.005mm2, and RMSE
is controlled between 0.030–0.071mm, achieving optimal
performance under medium thickness conditions (15.040–
18.060mm) and high SNR conditions (−7 dB to −2 dB).
Fig. 11(c) shows that MRE exhibits an inverse relationship
with thickness, with the thin sample (9.100mm) showing
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FIGURE 11. Heatmap of thickness determination results under different SNR conditions.

FIGURE 12. Boxplot of overall relative errors on the test set.

TABLE 5. Evaluation of denoising and thickness determination results on the test set.

SNR (dB) SNRI (dB) PSNR (dB) RPPE (%) R2 MSE MAE MRE (%) RMSE

Overall 23.12±2.20 43.75±3.28 0.03±0.05 0.9906 0.001775 0.035190 0.25 0.042129
−12 24.46±1.90 39.89±2.30 0.04±0.05 0.9794 0.001830 0.036893 0.26 0.042776
−9 24.22±1.51 42.70±1.95 0.04±0.05 0.9914 0.002272 0.035857 0.24 0.047661
−7 23.11±1.99 43.64±2.21 0.03±0.05 0.9923 0.001585 0.033611 0.24 0.039813
−5 22.49±1.88 44.91±2.26 0.03±0.05 0.9938 0.001649 0.036265 0.26 0.040603
−2 20.88±2.12 46.33±2.35 0.03±0.04 0.9953 0.001539 0.033324 0.23 0.039232

MRE of 0.41%–0.53%, while the thick sample (24.070mm)
demonstrates reduced MRE of 0.10%–0.16%. SNR has a

more significant impact on thin samples, with the 9.100mm
sample showing MRE decreasing from 0.53% to 0.41% across
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the −12 dB to −2 dB range. Fig. 11(d) indicates that MAE is
primarily concentrated within the range of 0.017–0.048mm,
achieving the best absolute accuracy at 18.060mm thickness
with MAE as low as 0.025mm. The results confirm the
stability and effectiveness of the proposed method under
different thickness and noise conditions.
Figure 12 presents the absolute errors of all test results,

which are primarily distributed within the range of 0.01–
0.08mm. Under the 18.060mm thickness condition, the
system achieves optimal performance with a median error of
0.030mm, and 75% of the measurement results exhibit errors
less than 0.035mm. Thin samples (9.100mm) show relatively
larger errors with a median of approximately 0.045mm, while
thick samples (21.040–24.070mm) maintain stable median
errors around 0.035mm. Measurement errors under almost
all thickness conditions are controlled within 0.08mm, with
extremely few outliers. This demonstrates that the proposed
cascade denoising-thickness determination method can achieve
high-precision measurements across different thickness ranges,
with optimal performance particularly in the medium thickness
range.

5. CONCLUSION
This paper addresses the challenges of weak signals and strong
noise leading to low thickness determination accuracy in low-
power EMAT used for industrial nondestructive testing. A
novel method combining an ADFAEwith a CNN-BiLSTM net-
work is proposed for denoising electromagnetic ultrasonic echo
signals and calculating material thickness. By introducing the
adaptive dual-attention mechanism, the model’s denoising ca-
pability under low SNR conditions is significantly enhanced,
improving the SNR of the denoised signals by more than 23 dB
and reducing the RPPE to below 0.05%. Subsequently, the
CNN-BiLSTM network predicts the material thickness with a
relative measurement error of less than 0.25%, meeting the re-
quirements of safety-critical fields such as petrochemical indus-
tries. This approach avoids the conventional reliance on TOF
methods for echo peak identification, thereby reducing mea-
surement uncertainty. The method achieves end-to-end thick-
ness measurement without the need for explicit echo recogni-
tion.
Despite achieving promising results, several limitations of

this study should be acknowledged. First, the validation pri-
marily relies on synthetically noise-augmented data, whichmay
not fully capture the complexity of actual industrial noise en-
vironments. Second, the study is conducted solely on 45#
steel, and the generalizability to materials with different acous-
tic properties requires further investigation. Third, as a data-
driven approach, the model’s reliability for EMAT configura-
tions or thickness values significantly beyond the training range
necessitates the supplementation of corresponding training data
and subsequent model fine-tuning. Future work will focus on:
(1) validation with real industrial data, (2) extension to multiple
materials and thicknesses, (3) exploration of the transferability
of the approach to other EMAT applications, such as defect de-
tection, and (4) exploration of model compression strategies to
enhance inference efficiency in real-time applications.
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