
Progress In Electromagnetics Research C, Vol. 165, 206–220, 2026

(Received 23 December 2025, Accepted 15 January 2026, Scheduled 31 January 2026)

Sensorless Composite Control of Permanent Magnet
Synchronous Motor Based on Fuzzy Adaptive EDS-PLL

Zhuang Qiu1, Zhonggen Wang1, *, and Wenyan Nie2

1School of Electrical and Information Engineering, Anhui University of Science and Technology, Huainan 232001, China
2School of Mechanical and Electrical Engineering, Huainan Normal University, Huainan 232001, China

ABSTRACT: To address the inherent chattering issue in traditional sliding mode observers for the sensorless control of permanent magnet
synchronous motors, an improved strategy combining a Fuzzy Adaptive Higher-order Sliding Mode Observer (HAFSMO) and a com-
posite logarithmic sliding mode locked loop (EDS-PLL) is proposed. First, a higher-order adaptive sliding mode observer is designed,
in which an exponential saturation smoothing function (ESSF) replaces the traditional sign function, and fuzzy control is employed to
dynamically adjust the boundary layer parameters, enabling a smooth estimation and convergence of the back electromotive force within
a finite time. Second, in the phase-locked loop stage, the exponential saturation smoothing function is integrated with the composite
logarithmic sliding mode control to construct a composite logarithmic sliding mode phase-locked loop, further enhancing the accuracy of
the rotor position observation. Finally, a simulation model was built on the MATLAB/Simulink platform for verification. Both the simu-
lated and experimental results demonstrate that this method effectively suppresses system chattering and improves the accuracy of rotor
position observation and overall system performance, thereby validating the effectiveness of the proposed sensorless control strategy.

1. INTRODUCTION

Permanent Magnet Synchronous Motors (PMSMs) are
widely applied in new energy vehicles [1], rail transporta-

tion [2], aerospace [3], and industrial automation [4] because
of their high-power density, high efficiency, excellent dynamic
performance, and speed regulation characteristics. To achieve
high-performance vector control of PMSMs, conventional
methods typically rely on mechanical position sensors such
as encoders or resolvers to acquire real-time rotor position
information. However, the introduction of such sensors not
only increases the system cost and size, but also reduces
the overall reliability. Furthermore, these sensors present
multiple challenges, including installation, maintenance,
and noise immunity under harsh operating conditions [5].
Consequently, sensorless control technology has become a
significant research direction in PMSM drive systems.
Currently, sensorless control strategies for PMSMs are pri-

marily divided into two categories: methods based on high-
frequency signal injection, which are suitable for zero- or very
low-speed operation [6], and methods based on the fundamen-
tal mathematical model of the motor, which are predominantly
used for medium-to-high-speed applications. The core of the
latter approach involves extracting rotor position and speed in-
formation by observing the back electromotive force (EMF) [7].
These methods include the Sliding Mode Observer (SMO) [8],
Model Reference Adaptive System (MRAS) [9], and Extended
Kalman Filter (EKF) [10] methods. Among them, SMO has
been widely adopted for sensorless control of PMSMs owing
to its simple structure and strong robustness against parame-
ter variations and external disturbances [11]. However, tradi-
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tional SMOs typically employ a discontinuous sign function as
the switching term, which leads to significant high-frequency
chattering in the estimated back EMF. This severely compro-
mises the accuracy of the rotor position and speed estimation
and degrades system stability [12].
To address these issues, several improved schemes have

been proposed. For instance, Ref. [13] replaces the traditional
switching term with an S-shaped function, improving the po-
sition estimation accuracy to some extent; however, its immu-
nity to load disturbances remains limited. Ref. [14] introduces
adaptive gains to construct an improved adaptive super-twisting
sliding-mode observer, enhancing system stability, albeit at
the cost of increased computational complexity, which affects
real-time performance. Ref. [15] designs a higher-order ter-
minal sliding mode observer using adaptive gains, effectively
suppressing chattering and reducing back-EMF estimation er-
rors; however, its capability to compensate for nonlinear dis-
turbances remains insufficient. Ref. [16] substitutes the sign
function with a hyperbolic tangent function, effectively reduc-
ing chattering and improving position estimation performance;
however, the effectiveness of the method is sensitive to bound-
ary layer parameters and sampling strategies. Ref. [17] pro-
poses a composite nonlinear super-twisting sliding mode ob-
server, mitigating chattering caused by switching control; how-
ever, there is still room for improvement in speed estimation
accuracy. Ref. [18] designs a boundary layer adaptive fuzzy
sliding mode observer, suppressing chattering via a sigmoid
continuous function and employing fuzzy logic to adjust the
boundary layer thickness online, combined with a phase locked
loop (PLL) for rotor position extraction. However, conven-
tional PLLs still exhibit shortcomings in terms of their estima-
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tion accuracy and disturbance rejection capability. Ref. [19]
compensates for phase lag by fusing SMO and PLL, improving
estimation accuracy; however, the inherent estimation perfor-
mance and disturbance rejection of traditional PLLs are lim-
ited. Ref. [20] combines an improved adaptive reaching law
with a higher-order PLL structure, enhancing noise immunity
and convergence speed; however, it leads to increased system
complexity and difficulties in parameter tuning. In [21], a high-
order logarithmic sliding mode observer is proposed by opti-
mizing the sliding surface design and control law. Furthermore,
an extended state observer based on a third-order super-twisting
slidingmode algorithm is introduced into the phase-locked loop
stage, which effectively suppresses speed chattering and signif-
icantly improves the estimation accuracy of both rotor position
and rotational speed. In [22], an ESO is embedded within the
PLL to replace the traditional proportional-integral (PI) regu-
lator and adds a position compensation module, significantly
improving the dynamic response and disturbance rejection of
speed estimation. However, the performance of this method
depends heavily on the accuracy of the front-end back-EMF
observation.
Unlike methods that combine traditional sliding mode ob-

servers with phase-locked loops, this study proposes a novel
strategy for the sensorless position control of permanentmagnet
synchronous motors, which integrates a fuzzy adaptive higher-
order sliding mode observer with a composite logarithmic slid-
ing mode phase-locked loop. The main contributions of this
method are summarized as follows.
First, this paper integrates HAFSMO with EDS-PLL to con-

struct a novel sensorless control architecture with robust dis-
turbance rejection capability. At the observer level, the ar-
chitecture employs fuzzy logic to adaptively adjust the bound-
ary layer, significantly suppressing the inherent high-frequency
chattering of traditional sliding mode control. At the phase-
locked loop level, a composite logarithmic sliding surface is
introduced, enhancing the dynamic accuracy and robustness of
position tracking.
Second, compared with conventional SMO-PLL and exist-

ing improved schemes such as STASMO-NPLL, the proposed
method demonstrates notable improvements in chattering sup-
pression, dynamic response, and steady-state accuracy. Simu-
lated and experimental results show that under various operat-
ing conditions, including no-load and sudden load changes, the
proposed approach significantly reduces observation errors in
speed and position, validating its superior dynamic and steady-
state performance.
Finally, the strategy does not rely on high-precision position

sensors. While enhancing system reliability and reducing hard-
ware costs, it maintains high-precision control performance,
making it suitable for high-dynamic applications such as new
energy vehicles and industrial drives, with strong potential for
engineering implementation.

2. MATHEMATICAL MODEL OF PMSM
To simplify the analysis, this study assumes that the three-phase
windings of the permanent magnet synchronous motor are sym-
metrical, and core saturation, eddy current losses, and hystere-

sis losses are neglected. In the stationary reference frame (α-β),
the stator voltage equation of the PMSM can be expressed as[

uα

uβ

]
=

[
R+ pLs 0

0 R+ pLs

] [
iα

iβ

]
+

[
eα

eβ

]
(1)

In the equation, uα and uβ , iα and iβ , eα and eβ represent the
stator voltages, stator currents, and back electromotive forces
on the α-β axes, respectively; R is the stator resistance; Ls is
the stator inductance; and p = d/dt is the differential operator.
According to Equation (1), the state equation of the stator

current can be expressed as

d
dt

[
iα

iβ

]
= − R

Ls

[
iα

iβ

]
+

1

Ls

[
uα

uβ

]
− 1

Ls

[
eα

eβ

]
(2)

where the back electromotive force can be expressed as:[
eα

eβ

]
= ωeψf

[
− sin θe
cos θe

]
(3)

where ωe, ψf , and θe represent the electrical angular velocity,
permanent magnet flux linkage, and electrical angle, respec-
tively.
From Equation (3), it can be observed that the back electro-

motive force contains all the information regarding the rotor
position and speed of the motor. Therefore, an accurate calcu-
lation of the rotor position and speed can only be achieved by
accurately acquiring the back electromotive force.

3. DESIGN OF HAFSMO

3.1. Traditional Sliding Mode Observer
To obtain the estimated back electromotive force, the traditional
sliding-mode observer is designed as:

d
dt

[
îα

îβ

]
= − R

Ls

[
îα

îβ

]
+

1

Ls

[
uα

uβ

]

− 1

Ls

[
g ∗ sign(̃iα)
g ∗ sign(̃iβ)

]
(4)

In the equation, îα and îβ denote the estimated stator cur-
rents; ĩα = îα − iα and ĩβ = îβ − iβ denote the stator current
estimation errors; uα and uβ represent the control inputs of the
observer; sign( ) is the switching function; and g is the sliding
mode gain.
The sliding mode function is defined as:

s =
[
sα

sβ

]
=

[
ĩα

ĩβ

]
=

[
ĩα − iα

ĩβ − iβ

]
(5)

By subtracting Equation (4) fromEquation (2), the stator cur-
rent error state equation can be expressed as

d
dt

[
ĩα

ĩβ

]
= − R

Ls

[
ĩα

ĩβ

]
+

1

Ls

[
eα

eβ

]
− 1

Ls

[
g ∗ sign(̃iα)
g ∗ sign(̃iβ)

]
(6)
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FIGURE 1. Block diagram of the traditional sliding mode observer.

From Equation (6), it can be seen that when the system state
converges to the sliding surface (̃iα = ĩβ = 0), the back EMF
can be expressed as

[
eα

eβ

]
=

[
g ∗ sign(̃iα)
g ∗ sign(̃iβ)

]
(7)

According to Equation (7), the use of a sign function leads to
a discontinuous control law, causing high-frequency chattering
in the back electromotive force estimation. This, in turn, affects
the accuracy of the rotor position and speed observations, as
well as the system stability. To address this issue, a low-pass
filter must be introduced to suppress chattering. deα

dt =
(−eα+gsign(̃iα))

τ
deβ
dt =

(−eβ+gsign(̃iβ))
τ

(8)

The implementation principle of a traditional sliding mode
observer is illustrated in Fig. 1.

3.2. HAFSMO
Conventional SMObased on the constant-rate reaching law suf-
fers from issues such as a relatively slow system response and
long convergence time. By contrast, higher-order sliding-mode
observers offer faster dynamic responses and shorter conver-
gence times. To this end, this study employed a higher-order
super-twisting sliding-mode observer for the design. The fun-
damental form of the second-order super-twisting algorithm is
as follows:{

dx̂1

dt = −k1 |x̄1|0.5 sign(x̄1) + x2 + ρ1
dx̂2

dt = −k2sign(x̄2) + ρ2
(9)

where xi represents the estimated value of the state variable;
x̄i = x̂i − xi denotes the observation error; ki is the gain pa-
rameter of the observer; and ρi denotes the system disturbance.
Although second-order super-twisting sliding-mode ob-

servers effectively mitigate the chattering phenomenon
inherent in traditional sliding-mode observers, they still exhibit
certain limitations in terms of convergence speed and resis-
tance to external disturbances. To address these shortcomings,
this study proposes an adaptive higher-order super-twisting
algorithm. By incorporating a nonlinear feedback mechanism,
designing adaptive gains, adding compensatory terms, and
increasing the system order, this algorithm significantly
accelerates the convergence process and enhances disturbance

rejection capabilities. Consequently, it has effectively im-
proved the dynamic response and robustness of the system.
The fundamental formulation is expressed as follows:



dx1

dt = −k1
(

2
1+(|x̄1|+1)−zx̄1

)
sign(x̄1)− k2 ˙̄x1

−k3x̄1 + x2 + ρ1
dx2

dt = −k4
(

2
1+(|x̄1|+1)−zx̄1

)
sign(x̄1)− k5 ˙̄x1

+x3 + ρ2
dx3

dt = η [tanh(k6x̄1) + tanh(k7 ˙̄x1)] + ρ3

η = k10
1+|x̄1|+| ˙̄x1|

1+k8|x̄1|2+k9| ˙̄x1|2

(10)

where ki is the observer gain parameter (ki > 0); z is a positive
constant (0 < z < 1); η is the adaptive gain; and ρi is the
system disturbance.
Owing to its dynamic adjustment capability,

−k1( 2
1+(|x̄1|+1)−zx̄1

)sign(x̄1) can provide appropriate control
gains under different states, thereby improving the conver-
gence speed. The additional compensation term−k2 ˙̄x1−k3x̄1
enables the system to respond better to external disturbances,
enhancing its anti-interference capability and stability. The
adaptive gain η is used to dynamically adjust the gain of the
control input x3, allowing the system to adapt to different
state magnitudes and optimize the convergence characteristics.
When |x̄1| decreases, η can still maintain a relatively large
control gain, accelerating the convergence speed. When |x̄1|
increases, the nonlinear term in the denominator modulates
the control gain, preventing excessive control action and
improving stability.
Increasing the system order significantly enhances the finite-

time convergence properties of the algorithm, achieving a faster
dynamic response and higher steady-state accuracy. Simultane-
ously, the higher-order framework endows the system with an
inherent ability to suppress bounded-rate disturbances, effec-
tively improving the robustness in dynamically disturbed envi-
ronments.

3.3. Exponential Saturation Smoothing Function-ESSF
A sign function was employed as the switching function in
the higher-order sliding-mode observer described in the pre-
vious section. Although this function is simple to design and
easy to implement, its discontinuity near the origin introduces
significant high-frequency chattering. To effectively suppress
this chattering, we designed an exponential saturation nonlinear
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(a) (b)

FIGURE 2. Switching functions under different parameter values. (a) Graph of h(x) under different values of α. (b) Graph of h(x) under different
values of C.

(a) (b) (c)

FIGURE 3. Membership function graphs of the input and output. (a) Membership function of input s; (b) Membership function of input ds/dt; (c)
Membership function of output C.

transition function, expressed as follows:

h(x) =


1 x ≥ C

1−e−αx

1−e−αC 0 < x < C

− 1−e−α|x|

1−e−αC −C < x < 0

−1 x ≤ −C

(11)

where α is a positive constant, and C represents the boundary
layer.
In the equation, the selection of α and C is crucial during

the design process, as it directly affects the chattering suppres-
sion effect and control precision of the system. The functions
h(x) corresponding to different values of α and C are shown
in Fig. 2.
To further optimize system performance, fuzzy control was

introduced in this study for adaptive parameter adjustment.
Fuzzy control exhibits good adaptability to nonlinear systems
and can dynamically adjust relevant parameters based on the
real-time system state, thereby effectively matching the non-
linear characteristics of the system and enhancing overall sta-
bility. The designed fuzzy controller takes the error change rate
as inputs, with the fuzzy linguistic sets for the input variables
defined as {NB (Negative Big), NM (Negative Medium), NS
(Negative Small), ZO (zero), PS (Positive Small), PM (Positive

Medium), and PB (Positive Big)}. The fuzzy linguistic sets for
the output variable are defined as {MM (minimum), S (small),
MS (Medium Small), M (medium), MB (MediumBig), B (big),
and Extra Large (EX)}. The membership functions for the in-
puts and outputs are shown in Fig. 3, and the control rules are
listed in Table 1. The fuzzification process employed a trian-
gular membership function, whereas defuzzification was per-
formed using the centroid method. The sliding surface model
adjusted via fuzzy control is illustrated in Fig. 4.

TABLE 1. Fuzzy control rules.

S\Ṡ NB NM NS ZO PS PM PB
NB PB PB PM PM PS PS PS
NM PB PM PM PS PS PS PS
NS PM PM PS PS PS PS PM
ZO PM PS PS ZO PS PS PM
PS PM PS PS PS PS PM PM
PM PS PS PS PS PM PM PB
PB PS PS PS PM PM PB PB

This fuzzy controller dynamically adjusts the boundary layer
thickness C based on the magnitude of the error, with its de-
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FIGURE 4. Input-output relationship.

sign logic outlined in Table 1. When the error is large, a larger
C is set, at which point, the system operates far from the slid-
ing surface. By combining a wider boundary layer with ESSF,
high-frequency chattering can be effectively suppressed while
maintaining stability, thereby preventing amplified chattering
during startup or sudden load changes from compromising the
accuracy of back-EMF observation. Despite the wider bound-
ary layer, HAFSMO ensures rapid convergence without signif-
icantly degrading dynamic performance, thanks to its adaptive
gain and nonlinear compensation mechanisms. When the error
is small, a moderate or smallerC is output. In this state, the sys-
tem approaches the sliding surface, and reducing the boundary
layer helps improve control precision, enabling the observer to
more accurately track variations in the back-EMF, thereby en-
hancing the accuracy of rotor position and speed estimation.
This strategy essentially achieves a coordinated approach of
“smoothing under large errors, precision under small errors.”
It not only strengthens the system’s robustness during large dy-
namic processes but also ensures observation accuracy under
small-signal conditions. Moreover, smooth switching is real-
ized via ESSF, avoiding the hard-switching chattering associ-
ated with traditional sign functions.
In Fig. 4, the sliding surface function “s” is defined as the

current estimation error, which characterizes the deviation be-
tween the observer output and the actual system state. “ds/dt”
denotes the time derivative of the sliding surface function, i.e.,
the rate of change of the current estimation error, reflecting the
dynamic behavior of the system state as it approaches the slid-
ing surface. To further enhance the adaptability and regulation
performance of the observer, the quantization ranges of both
input variables s and ds/dt are set to [0, 1], and the quantiza-
tion range of the output variable C is also set to [0, 1]. This
range assignment is designed to ensure that the fuzzy rules ex-
hibit good adaptability in practical systems, thereby effectively
adjusting the dynamic response of the observer.

3.4. Performance Analysis
Based on Equations (4), (10), and (11), the mathematical model
of HAFSMO can be obtained. A structural diagram of HAF-

SMO is shown in Fig. 5.

d
dt

[
îα

îβ

]
= − R

Ls

[
îα

îβ

]
+

1

Ls

[
uα

uβ

]
− 1

Ls k1

(
2

1+(|̄iα|+1)−zīα

)
h(̄iα) + k2

˙̄iα + k3īα + Yα

k1

(
2

1+(|̄iβ |+1)−zīβ

)
h(̄iβ) + k2

˙̄iβ + k3īβ + Yβ

 (12)



Yα =
∫ (

k4

(
2

1+(|̄iα|+1)−zīα

)
h(̄iα)− k5

˙̄iα

+
∫ (
k10

1+|̄iα|+|˙̄iα|
1+k8 |̄iα|2+k9

∣∣∣˙̄iα∣∣∣2
[
tanh(k6īα) + tanh(k7 ˙̄iα)

]))

Yβ =
∫ (

k4

(
2

1+(|̄iβ |+1)−zīβ

)
h(̄iβ)− k5

˙̄iβ

+
∫ (
k10

1+|̄iβ |+|˙̄iβ |

1+k8 |̄iβ |2+k9

∣∣∣˙̄iβ∣∣∣2
[
tanh(k6īβ) + tanh(k7 ˙̄iβ)

]))
(13)

To validate the effectiveness of the designed HAFSMO,
it is compared with the traditional sliding mode observer
(SMO) and the super-twisting algorithm sliding mode observer
(STASMO) [23] under a speed condition of 300 r/min. The
estimated back electromotive force waveforms are shown in
Fig. 6, where Fig. 6(a), Fig. 6(b), and Fig. 6(c) correspond to
the results of SMO, STASMO, and HAFSMO, respectively.
Fig. 7(a), Fig. 7(b), and Fig. 7(c) show the Fast Fourier Trans-
form (FFT) analysis for the three methods. At the fundamental
frequency of 58Hz, the total harmonic distortion (THD) for
SMO and STASMO was 48.75% and 26.76%, respectively,
while the THD for HAFSMO was 25.85%. This represents
reductions of 46.97% and 3.4% compared to the former two
methods, respectively. These results indicate that the higher-
order harmonics in the rotor flux are effectively suppressed
owing to the inherent filtering characteristics of HAFSMO,
thereby significantly improving the output waveform quality
of the observer.

3.5. Stability Analysis
Define the Lyapunov function:

V =
1

2

(
i2α + i2β

)
(14)

Take the derivative of V :

V̇ = iαi̇α + iβ i̇β (15)

Substituting Equation (10) yields:

V̇ = iα

(
− R

LS
iα +

1

LS
uα − 1

LS

[
k1

(
2

1 + (|̄iα|+ 1)−zīα

)

h(̄iα) + k2
˙̄iα + k3īα + Yα

])
+ iβ

(
− R

LS
iβ +

1

LS
uβ

− 1

LS

[
k1

(
2

1 + (|̄iβ |+ 1)−zīβ

)
h(̄iβ) + k2

˙̄iβ + k3īβ
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FIGURE 5. Block diagram of the HAFSMO.

(a) (b) (c)

FIGURE 6. Estimated back electromotive force waveforms. (a) SMO; (b) STASMO; (c) HAFSMO.

(a) (b) (c)

FIGURE 7. Back electromotive force harmonic analysis. (a) SMO; (b) STASMO; (c) HAFSMO.

+Yβ

])
(16)

Simplifying this gives:

V̇ = − R

Ls
(i2α + i2β) +

1

Ls
(iαuα + iβuβ)−

1

Ls
iα

[
k1

(
2

1+(|̄iα|+1)−zīα

)
h(̄iα) + k2

˙̄iα + k3īα + Yα

]
+iβ

[
k1

(
2

1+(|̄iβ |+1)−zīβ

)
h(̄iβ) + k2

˙̄iβ + k3īβ + Yβ

]

(17)

Given that the h(x) function within the nonlinear term pos-
sesses boundedness and smoothness, by designing appropriate
ki control parameters to manage its nonlinear influence, it can
be ensured that V̇ ≤ 0, thus guaranteeing the global asymptotic
stability of the system.

4. ROTOR POSITION EXTRACTION AND COMPENSA-
TION

4.1. Traditional Phase-Locked Loop
In the high-performance control of permanent-magnet syn-
chronous motors, the phase-locked loop achieves the precise
adjustment of speed and torque through closed-loop feedback.
It continuously compares the actual rotor position with the ref-
erence value and dynamically adjusts the output using the error
signal, thereby suppressing speed fluctuations, enhancing the
torque response, and ensuring the stable command tracking of
the system. A block diagram of the conventional PLL structure
is shown in Fig. 8.
In Fig. 8, Êα and Êβ represent the estimated values of the

motor’s back electromotive force on the α and β axes, respec-
tively; kp and ki are the proportional and integral coefficients of
the PI regulator; ω̂e and θ̂e are the estimated values of the mo-
tor’s electrical angular velocity and rotor angle, respectively.
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FIGURE 8. Traditional PLL block diagram.

The following relationship can be derived from the figure:

θ̃e = −êα cos θ̂e−êβ sin θ̂e=es
(
sin θe cos θ̂e − cos θe sin θ̂e

)
= es sin

(
θe − θ̂e

)
(18)

When the rotor position error is small, after normalization
using the above Equation, the rotor position error can be ex-
pressed as

θ̃e = sin
(
θe − θ̂e

)
= θe − θ̂e (19)

4.2. EDS-PLL
In the sensorless control of permanent magnet synchronousmo-
tors, the traditional phase-locked loop with a PI regulator, de-
spite its simple structure and ease of implementation, often
struggles to balance the dynamic response speed and steady-
state accuracy during high-speed motor operation or during ex-
ternal disturbances. In particular, tracking the rotor position
and speed is susceptible to chattering and noise interference.
To further enhance the observation performance of the phase-
locked loop under complex operating conditions, this study in-
troduces a composite logarithmic sliding surface, as shown in
Equation (20).

s1 =
˙̃
θe +m ln

(
n|θ̃e|p + 1

)
sign(θ̃e) (20)

where θ̃e represents the rotor position error; ˙̃θe is the derivative
of the variable;m, n, and p are constants.
Because the logarithmic function exhibits high sensitivity to

minute errors, it enables a rapid and precise response to devi-
ations, whereas the power-law function provides a smooth ad-
justment of the convergence process when errors are large, pre-
venting overly aggressive system reactions. Integrating both
functions into the sliding surface design of the phase-locked
loop allows the system to approach the sliding surface swiftly
when errors are small while maintaining smooth and stable reg-
ulation characteristics even under large error conditions. This
significantly suppresses the chattering problem inherent in tra-
ditional sliding-mode designs and simultaneously enhances the
robustness against parameter variations and disturbances.
To verify the convergence of the proposed sliding surface,

assuming that the system converges to the sliding surface, that
is, s1 = 0 in Equation (20), the following can be derived:

˙̃
θe = −m ln

(
n|θ̃e|p + 1

)
sign(θ̃e) (21)

Thus, the Lyapunov function is selected as:

V =
1

2
θ̃2e (22)

Taking its derivative yields:

V̇ = θ̃e · ˙̃θe = θ̃e

[
−m ln

(
n|θ̃e|p + 1

)]
sign(θ̃e)

= θ̃e · sign(θ̃e) ·
[
−m ln

(
n|θ̃e|p + 1

)]
(23)

Since −m ln(n|θ̃e|p + 1) < 0 and θ̃e · sign(θ̃e) > 0, it can
be concluded that V̇ ≤ 0. This indicates that Equation (20) can
achieve finite-time stable convergence, and both its reaching
process and stability satisfy the fundamental requirements for
sliding surfaces in the sliding mode control theory.
The motor motion equation is shown in Equation (24):

θ̇e = ωe

ω̇e = ai∗q + z

ż = 0

(24)

where z represents the lumped disturbance, a the angular ac-
celeration, and iq the reference current along the q axis. Based
on the above equation, an extended state sliding-mode phase-
locked loop is designed as follows:

˙̂
θe = ω̂e + γ1s2
˙̂ωe = ai∗q + ẑ + γ2s2
˙̂z = γ3sign(θ̂e)

(25)

where γ1, γ2, and γ3 are the gain coefficients of the phase-
locked loop, and s2 = m ln(n|θ̂e|p + 1)sign(θ̂e) represents the
integral term. Since the controller includes an integral compo-
nent, it can, on one hand, attenuate chattering phenomena and,
on the other hand, eliminate steady-state error in the system,
thereby enhancing the overall control quality.
To further enhance the tracking accuracy of the speed and

rotor position, as well as to improve the system’s robust-
ness, the composite nonlinear transition function h(x) proposed
above was introduced to replace the switching function sign( ).
By leveraging the piecewise characteristics of the nonlinear
function, a sine function is employed in small-error regions
for smooth processing to reduce high-frequency oscillations,
whereas a logarithmic function is used in large-error regions to
amplify the error effect and accelerate the convergence speed.
This approach improves dynamic performance and disturbance
rejection capability. Thus, Equation (25) can be rewritten as

˙̂
θe = ω̂e + γ1s3
˙̂ωe = ai∗q + ẑ + γ2s3
˙̂z = γ3f(θ̂e)

(26)

where s3 = m ln(n|θ̂e|p + 1)f(θ̂e).
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From Equations (24) and (26), the error state equation is ob-
tained as: 

˙̃
θe = ω̃e − γ1sε
˙̃ωe = z̃ − γ2sε
˙̃z = −γ3f(θ̃e)

(27)

where sε = m ln(n|θ̃e|p + 1)f(θ̃e); ω̃e represent the angular
velocity estimation error, and z̃ denotes the lumped disturbance
estimation error.
The fundamental principle of the EDS-PLL proposed in this

study is illustrated in Fig. 9.

FIGURE 9. Block diagram of the EDS-PLL.

4.3. Compensation Mechanism
The closed-loop speed in this study uses the value filtered by a
low-pass filter (LPF), whereas the speed in SMO is unfiltered.
Consequently, there is an inevitable deviation between the es-
timated rotor position and the actual rotor position. This devi-
ation, denoted as ηerror, is given by

ηerror =

∫
ω̂pdt−

∫
ω̂edt (28)

Additionally, to compensate for the rotor-position estimation
errors caused by components such as LPF and PLL, the expres-
sion for the error quantity δ is defined as

δ = −iα sin θ̂e + iβ cos θ̂e =
√
i2α + i2β sin

(
θe − θ̂e

)
(29)

From Equation (29), it can be seen that δ contains rotor posi-
tion error information. The error compensation value, l, can be
obtained by utilizing the closed-loop phase-tracking principle
of the PLL.
Based on the above analysis, the rotor position error com-

pensation can be composed of two parts: error compensation
quantity l and deviation quantity ηerror. The final rotor position
can be expressed as:

θ̂e = l + ηerror + θ̂SMO (30)

where θ̂SMO represents the rotor position output from the phase-
locked loop.
The fundamental principle of the compensated EDS-PLL

proposed in this study is illustrated in Fig. 10.

FIGURE 10. Block diagram of the compensated EDS-PLL.

4.4. Stability Proof
Select the Lyapunov function:

V =
1

2
θ̃2e (31)

Substituting Equation (27) into Equation (31) and differenti-
ating, the Lyapunov function can be expressed as:

V̇ = θ̃e · ˙̃θe = θ̃e (ω̃e − γ1sε) (32)

Because sε and θ̃e have the same sign, when γ1 > ω̃e/sε is
satisfied, the following can be derived:

V̇ = θ̃e · ˙̃θe < 0 (33)

Equation (33) ensures that the system reaches the sliding sur-
face; however, it does not guarantee convergence to the sliding
surface within a finite time. When the system converges to the
sliding surface, the following is obtained:

ω̃e = γ1sε (34)

Substituting Equation (34) into Equation (27), we obtain:
ω̃e = γ1sε
˙̃ωe = z̃ − γ2sε
˙̃z = −γ3f(θ̃e)

(35)

When the system reaches the vicinity of the sliding surface,
the error equations for the angular velocity and lumped distur-
bance are given by Equation (35). When conditions γ1 > 0,
γ2 > 0, and γ3 > 0 are satisfied, it can be derived from Equa-
tion (35) that when θ̃e > 0, then sε > 0, ω̃e > 0, and ˙̃z < 0,
which leads to the conclusion ˙̃ωe < 0, that is, ˙̃ωe · ω̃e < 0, θ̃e
gradually tends to 0, and z̃ gradually tends to 0. When θ̃e < 0,
then sε < 0, ω̃e < 0, and ˙̃z > 0, which leads to ˙̃ωe > 0, that is,
˙̃ωe · ω̃e < 0; θ̃e gradually tends to 0, and z̃ gradually tends to 0.

5. SIMULATION ANALYSIS
To validate the effectiveness of the combination of HAFSMO
and EDS-PLL proposed in this study, three schemes are pro-
posed for comparison: Scheme 1 is SMO-PLL; Scheme 2 is
STASMO-NPLL [23]; and Scheme 3 is HAFSMO-EDS-PLL.
Based on the system control block diagram shown in Fig. 11,
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FIGURE 11. Block diagram of the PMSM system control.

FIGURE 12. No-load speed waveform of SMO-PLL. FIGURE 13. No-load speed waveform of STASMO-NPLL.

simulations were conducted using MATLAB/Simulink soft-
ware. The current loop and speed loop employ conventional
PI control with a DC bus voltage of 311V and a sampling pe-
riod of 10µs.

5.1. No-Load Speed Analysis

To validate the speed control effectiveness of the different slid-
ing mode observer schemes, a reference speed of 300 r/min was
set. Figs. 12, 13, and 14 present the speed waveforms under
three schemes: SMO-PLL, STASMO-NPLL, and HAFSMO-
EDS-PLL, respectively. The comparative simulation results
are as follows. For SMO-PLL, the chattering in the estimated
speed versus the actual speed is 29 r/min and 6.5 r/min, respec-
tively, with a steady-state speed error chattering of 26.7 r/min
and an initial oscillation range of 261 r/min to−18.1 r/min. For
STASMO-NPLL, the chattering in the estimated speed versus
the actual speed is 2 r/min and 1.2 r/min, respectively, with a
steady-state speed error chattering of 1.6 r/min and an initial
oscillation range of 66.1 r/min to−139.1 r/min. For HAFSMO-

EDS-PLL, the chattering in the estimated speed versus the
actual speed is 0.4 r/min and 0.3 r/min, respectively, with a
steady-state speed error chattering of 0.56 r/min and an initial
oscillation range of 48 r/min to−108 r/min. The simulation re-
sults indicate that the HAFSMO-EDS-PLL demonstrates opti-
mal performance in terms of chattering in both estimated and
actual speeds, steady-state error chattering, and initial oscilla-
tion amplitude, which effectively validates the comprehensive
advantages of this method in suppressing chattering, reducing
steady-state error, and enhancing disturbance rejection capabil-
ity.

5.2. Load Speed Analysis

To evaluate the disturbance rejection performance of differ-
ent control strategies under dynamic load conditions, a ref-
erence speed of 300 r/min was set, with a sudden load in-
crease of 10N·m applied at 0.2 s and an equal load decrease
at 0.4 s. The speed waveforms under the three schemes, SMO-
PLL, STASMO-NPLL, and HAFSMO-EDS-PLL are presented
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FIGURE 14. No-load speed waveform of HAFSMO-EDS-PLL. FIGURE 15. SMO-PLL load speed waveform diagram.

FIGURE 16. STASMO-NPLL load speed waveform diagram. FIGURE 17. HAFSMO-EDS-PLL speed waveform diagram.

in Figs. 15, 16, and 17, respectively. The comparative sim-
ulation results are as follows: For SMO-PLL, upon load in-
crease, the estimated and actual speeds decrease by 46 r/min
and 60 r/min, respectively, with the speed error varying be-
tween 31.5 r/min and 16.2 r/min; upon load decrease, the es-
timated and actual speeds increase by 46 r/min and 62 r/min,
respectively, with the speed error ranging from 27 r/min to
43.4 r/min. For STASMO-NPLL, upon load increase, the esti-
mated and actual speeds decrease by 48.8 r/min and 57.3 r/min,
respectively, with the speed error varying between 21.5 r/min
and 27.2 r/min; upon load decrease, the estimated and actual
speeds increase by 47.2 r/min and 56.4 r/min, respectively, with
the speed error ranging from 26.2 r/min to 20.9 r/min. For
HAFSMO-EDS-PLL, upon load increase, the estimated and ac-
tual speeds decrease by 45.3 r/min and 52.4 r/min, respectively,
with the speed error varying between 15.4 r/min and 20.8 r/min;
upon load decrease, the estimated and actual speeds increase

by 45 r/min and 52.8 r/min, respectively, with the speed error
ranging from 21 r/min to 15.2 r/min. The simulation results in-
dicate that the HAFSMO-EDS-PLL exhibits the smallest mag-
nitude of speed drop and rise, along with the narrowest fluc-
tuation range in the speed error during sudden load changes.
This demonstrates its strong load-carrying capability, superior
robustness, and dynamic regulation performance, thereby con-
firming that it provides the best overall control effectiveness
among the three schemes.

5.3. Rotor Position Analysis
In the rotor position analysis of this section, the simulation con-
ditions remain consistent with Section 5.1 (no-load speed anal-
ysis): the motor reference speed is set to 300 r/min under a no-
load operating condition. Figs. 18–20 present the observed ro-
tor position waveforms and their corresponding errors for the
three schemes SMO-PLL, STASMO-NPLL, and HAFSMO-
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FIGURE 18. SMO-PLL rotor position waveform diagram. FIGURE 19. STASMO-NPLL rotor position waveform diagram.

FIGURE 20. HAFSMO-EDS-PLL rotor position waveform diagram.

EDS-PLL under this operating condition. A comparison of the
rotor position observation accuracy for each scheme is as fol-
lows: For SMO-PLL, the steady-state rotor position error is
approximately 0.43 rad; the error is about 0.61 rad in the ini-
tial stage and decreases to 0.26 rad by the end of the simulation.
For STASMO-NPLL, the steady-state rotor position error is ap-
proximately 0.063 rad; the error is about 0.09 rad in the initial
stage and around 0.06 rad at the end. For HAFSMO-EDS-PLL,
the steady-state rotor position error is only 0.0002 rad; the error
is approximately 0.018 rad in the initial stage, and further is re-
duced to 0.0001 rad by the end. The simulation results demon-
strate that the HAFSMO-EDS-PLL exhibits significantly supe-
rior accuracy in rotor position estimation. Both its steady-state
error and the error magnitude during the dynamic process are
markedly lower than those of the other two schemes, validat-
ing the effectiveness of the HAFSMO-EDS-PLL in enhancing
system control precision and overall performance.

FIGURE 21. Experimental platform for motor drive control system.

6. EXPERIMENTAL ANALYSIS
To validate the feasibility and effectiveness of the proposed
HAFSMO-EDS-PLL method and to compare its performance
with that of SMO-PLL and STASMO-NPLL, an experimental
platform for a motor drive control systemwith TMS320F28335
at its core was established. The structure of the platform is
illustrated in Fig. 21. The experimental setup primarily con-
sisted of an upper computer, permanent magnet synchronous
motor, torque sensor, power drive module, and DC brushedmo-
tor. The nameplate parameters of the PMSM are as follows:
rated power 400W, rated speed 3000 r/min, stator resistance
0.25Ω, inductance 0.5mH, moment of inertia 0.00003 kg·m2,
back-EMF coefficient 6.8V/(m/s), pole pairs 4, rated voltage
48V, rated current 12.5A. The sampling frequency of the sys-
tem was set to 10 kHz. The load torque was simulated using
a direct-current (DC) brushed motor. Simultaneously, a 2500-
line incremental encoder was installed on the motor shaft end
to detect the actual position and speed of the PMSM rotor and
to provide feedback for calculating the estimation errors.
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FIGURE 22. No-load experimental speed waveform of SMO-PLL. FIGURE 23. No-load experimental speed waveform of STASMO-
NPLL.

FIGURE 24. No-load experimental speed waveform of HAFSMO-EDS-
PLL.

FIGURE 25. Load experimental speed waveform of SMO-PLL.

Regarding the computational complexity issue, this
study conducted an analysis based on the hardware exper-
imental platform DSP TMS320F28335 (main frequency
fCPU = 150MHz). In MATLAB/Simulink, the simulation
duration was set to 0.5 s, and the Auto (ode45) solver was
selected for simulation.
According to the measurements, the total number of simu-

lation steps for the HAFSMO-EDS-PLL algorithm is Nstep =
142957, while that for the comparative algorithm SMO-PLL
is Nstep = 50297. Based on the DSP machine cycle cal-
culation formula tstep = 1/fCPU, the single instruction cy-
cle is obtained as 6.67 × 10−9 s. Further calculations yield:
the total execution time of HAFSMO-EDS-PLL on the DSP is
142957 × 6.67 × 10−9 = 9.5352319 × 10−4 s, and that of
SMO-PLL is 50297× 6.67× 10−9 = 3.3548099× 10−4 s.
The results show that the number of simulation steps for

HAFSMO-EDS-PLL is 2.84 times that of SMO-PLL, and its
execution time on the DSP is correspondingly 2.84 times that
of the latter. However, thanks to the powerful real-time pro-
cessing capability of the TMS320F28335, the actual execution
times of both algorithms are on the same order of magnitude
(seconds), fully meeting the real-time requirements of the sys-
tem. Moreover, the performance improvements brought by
HAFSMO-EDS-PLL in terms of observation accuracy, chatter-
ing suppression, and dynamic response significantly outweigh

the increased computational overhead, verifying the effective-
ness and advantages of this algorithm in engineering practice.

6.1. Experimental Analysis of No-Load Speed

With the motor speed set to 300 r/min, Figs. 22, 23, and 24
present the estimated speed and speed error waveforms under
no-load conditions for three control schemes: SMO-PLL,
STASMO-NPLL, and HAFSMO-EDS-PLL, respectively.
The experimental results show that the chattering range of
the estimated speed for the SMO-PLL is approximately 280–
323 r/min, with a speed error of 44 r/min. For STASMO-NPLL,
the chattering range is approximately 290–318 r/min, with a
speed error of 26 r/min. In contrast, for the HAFSMO-EDS-
PLL, the chattering range is approximately 295–315 r/min, and
the speed error is only 17 r/min. The comparison indicates that
the HAFSMO-EDS-PLL method not only exhibits the smallest
chattering amplitude but also significantly reduces speed error.
This demonstrates the superior performance of this method
in suppressing chattering, enhancing the system stability, and
improving the speed accuracy.

6.2. Load Experiment Speed Analysis

Under the operating condition of a motor speed of 300 r/min,
a sudden load increase was applied at the 5th second and a
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FIGURE 26. Load experimental speed waveform of STASMO-NPLL. FIGURE 27. Load experimental speed waveform of HAFSMO-EDS-
PLL.

FIGURE 28. Experimental results of rotor position error for SMO-PLL. FIGURE 29. Experimental results of rotor position error for STASMO-
NPLL.

sudden load decrease at the 10th second to validate the dy-
namic response capability of the control system. Figs. 25,
26, and 27 show the estimated speed and speed error wave-
forms of the three methods-SMO-PLL, STASMO-NPLL, and
HAFSMO-EDS-PLL under sudden load changes. From the fig-
ures, it can be observed that during the sudden load increase,
the speed of the SMO-PLL drops by approximately 55 r/min,
with a speed error fluctuation range of −26 r/min to 25 r/min;
the speed of STASMO-NPLL drops by approximately 43 r/min,
with an error range of−14 r/min to 27 r/min, whereas the speed
of the HAFSMO-EDS-PLL drops only by 30 r/min, with an er-
ror range of −10 r/min to 26 r/min. During the sudden load de-
crease, the speed of the SMO-PLL increases by approximately
61 r/min, with an error range of −32 r/min to 29 r/min; the
speed of STASMO-NPLL increases by approximately 53 r/min,
with an error range of −16 r/min to 23 r/min; and the speed of
the HAFSMO-EDS-PLL increases by approximately 43 r/min,
with an error range of −18 r/min to 19 r/min. The compari-
son indicates that the HAFSMO-EDS-PLL exhibits the small-
est amplitude of speed fluctuation during sudden load changes,
demonstrating that thismethod exhibits stronger load adaptabil-
ity, superior dynamic performance, and higher control preci-
sion.

6.3. Experimental Analysis of Rotor Position Error

To compare the rotor position estimation accuracy of the dif-
ferent methods, Figs. 28, 29, and 30 present the rotor position
error waveforms for the three schemes: SMO-PLL, STASMO-
NPLL, and HAFSMO-EDS-PLL, respectively. The exper-
imental results show that the rotor position error of SMO-
PLL is approximately 2 rad, and because of the chattering ef-
fects, it can fluctuate up to 3 rad during dynamic processes.
STASMO-NPLL stabilizes the error at approximately 2 rad,
whereas HAFSMO-EDS-PLL further reduces the error to ap-
proximately 1 rad, demonstrating the best performance. The
experimental findings indicate that the SMO-PLL suffers from
relatively large position errors and insufficient stability owing
to the inherent chattering issue caused by sliding-mode switch-
ing. By combining STASMO with NPLL, STASMO-NPLL
effectively suppresses chattering and enhances disturbance re-
jection capability. The HAFSMO-EDS-PLL further improves
the dynamic response and steady-state accuracy by introduc-
ing EDS-PLL on the basis of HAFSMO, thereby achieving the
smallest rotor position error.
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FIGURE 30. Experimental results of rotor position error for HAFSMO-
EDS-PLL.

7. CONCLUSION
This paper proposes a composite control strategy that com-
bines a fuzzy adaptive higher-order sliding mode observer with
a composite logarithmic sliding-mode phase-locked loop. The
main outcomes were as follows:
First, an adaptive higher-order sliding-mode observer (HAF-

SMO) was designed to replace the traditional sliding-mode ob-
server. By introducing an exponential saturation smoothing
function, adaptive gains, a compensation term, and increasing
the system order, the dynamic response and disturbance rejec-
tion capabilities of the sliding-mode observer are significantly
enhanced. Furthermore, fuzzy control was employed to dynam-
ically adjust the boundary layer thickness, effectively suppress-
ing the high-frequency chattering problem caused by discontin-
uous switching control.
Second, a composite logarithmic sliding-mode phase-locked

loop (EDS-PLL) was proposed to replace the traditional PLL
structure. This method integrates the exponential saturation
smoothing function with a logarithmic sliding surface and in-
corporates a position compensation mechanism to reduce the
rotor position error. It not only improves the estimation per-
formance of the rotor position and speed, but also maintains
an accurate observation performance under various operating
conditions.
Finally, the performance of the SMO-PLL, STASMO-NPLL,

and the proposed HAFSMO-EDS-PLL method are compared
under various conditions, such as no-load and sudden load
changes, using both a MATLAB/Simulink simulation platform
and an experimental motor drive control platform based on
TMS320F28335. The results demonstrate that the proposed
method exhibits significant advantages in terms of chattering
suppression, estimation accuracy, and dynamic response, thus
fully validating its effectiveness and advanced nature.
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