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ABSTRACT: To address the randomness and nonlinearity of photovoltaic (PV) power caused by meteorological factors, this paper proposes
an ICEEMDAN-WOA-CNN-BIiLSTM prediction model integrated with fuzzy entropy clustering and a self-attention mechanism. First,
the original PV power sequence is decomposed into multiple multi-scale intrinsic mode function (IMF) components and residuals via
the Improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise ICEEMDAN). Subsequently, components with
similar complexity are merged using fuzzy entropy clustering to simplify the calculations. Then, the Whale Optimization Algorithm
(WOA) is adopted to optimize the hyperparameters of the CNN-BiLSTM model, and the self-attention mechanism is integrated into the
model to enhance the weights of key features. Comparative experiments demonstrate that the proposed model significantly outperforms
single and traditional hybrid models in terms of Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and Coefficient of
Determination (R?). This can effectively improve the accuracy of short-term PV power prediction and provide support for power station

dispatching and power grid stability.

1. INTRODUCTION

gainst the backdrop of global green and low-carbon devel-

opment, the global energy structure is accelerating its clean
transition. At the 2023 COP28 Conference, over 100 coun-
tries signed commitments to triple global renewable energy in-
stalled capacity by 2030, demonstrating their resolve for this
shift [1]. Thanks to its abundant, clean, and pollution-free ad-
vantages, global cumulative PV installed capacity has surged
from 714 GW in 2020 to 1865 GW in 2024 [2]. However, PV
power output is susceptible to meteorological factors like irra-
diance, temperature, and cloud cover, showing significant non-
linearity, non-stationarity, and randomness. This challenges
power system stability and restricts the efficient integration and
large-scale deployment of PV energy [3,4]. Therefore, devel-
oping a high-precision and robust PV power prediction model is
highly practical for optimizing power dispatching, cutting cur-
tailment rates, and enhancing grid economy [5, 6].

To address PV power volatility challenges to power system
stability, researchers have extensively studied high-precision,
robust PV power prediction models. Relevant methods have
advanced from traditional statistical models to machine learn-
ing and deep learning algorithms, with prediction accuracy con-
tinuously improving [7-9]. Traditional methods have clear lim-
itations: persistence models are simple but only suitable for
ultra-short-term prediction and are weather-sensitive; autore-
gressive moving average (ARMA) models have a concise struc-
ture, yet only applied to stationary sequences, failing to capture
nonlinearity and sudden weather changes; regression analysis is
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interpretable but relies on linear assumptions inconsistent with
actual PV power variations, leading to limited applicability and
accuracy [10, 11]. Despite their strengths in interpretability and
low computational cost for low-data, low-precision scenarios,
traditional methods cannot meet practical demands in accuracy
and robustness when dealing with PV power’s inherent nonlin-
earity, non-stationarity, and randomness.

Photovoltaic power prediction methods based on machine
and deep learning have gradually become mainstream ap-
proaches in recent years. In the field of photovoltaic power
prediction using machine learning, Ref. [12] adopted a stacked
machine learning model (integrating Random Forest (RF),
eXtreme Gradient Boosting (XGBoost), and Multiple Linear
Regression (MLR)) to analyze the input historical electrical
and meteorological data, thereby achieving photovoltaic
power prediction. In the research field of photovoltaic power
prediction based on deep learning, Ref. [13] proposed a
novel hybrid model by combining Neural Prophet (NP),
Convolutional Neural Network (CNN), and Long Short-Term
Memory (LSTM) for photovoltaic power prediction. Ref. [14]
employed a dual-branch fine-grained segmentation network
that integrates a CNN and Transformer architecture to extract
local texture features and global contextual representations
from ground-based cloud images, enabling high-precision
photovoltaic power prediction.

To further improve prediction accuracy, the research on pho-
tovoltaic power prediction has gradually shifted toward direc-
tions such as decomposing and clustering input data and op-
timizing the hyperparameters of the models. To address the

Published by THE ELECTROMAGNETIC ACADEMY


https://doi.org/10.2528/PIERC25122407

PIER C

Yu et al.

problem of low photovoltaic power prediction accuracy under
different weather conditions, Ref. [15] proposed a secondary
decomposition method combining Variational Mode Decom-
position (VMD) and Complete Ensemble Empirical Mode De-
composition with Adaptive Noise (CEEMDAN) by consider-
ing the decomposition of original signals, which successfully
reduces signal volatility and the complexity of feature mapping
for photovoltaic data. Ref. [16] adopted the Fuzzy C-Means
(FCM) clustering method to conduct clustering analysis on his-
torical meteorological data, classifying the historical data into
four categories (sunny, cloudy, rainy, and extreme weather) to
enhance the accuracy of photovoltaic power prediction.

To date, despite remarkable advances in photovoltaic power
prediction, existing models still have three key shortcomings:
(1) Coarse sequence processing — most models directly model
the original power sequence or use simple decomposition meth-
ods, which cannot effectively mitigate its nonlinearity and
volatility and thus impairs feature extraction; (2) Incomplete
parameter optimization — single network parameters are often
optimized separately, while key parameters, such as the self-
attention mechanism, are excluded from the optimization pro-
cess, limiting overall model performance; (3) Insufficient fea-
ture focus — these models poorly capture long-term dependen-
cies and lack differentiated weighting for key features, resulting
in large prediction errors under complex conditions.

To address the aforementioned shortcomings of existing pho-
tovoltaic power prediction models, this paper proposes a deep
learning-based photovoltaic power prediction model that inte-
grates multi-scale feature extraction of photovoltaic power data
and intelligent optimization. Firstly, key meteorological factors
are screened through correlation analysis. Subsequently, the
ICEEMDAN signal decomposition method is introduced to ini-
tially decompose the photovoltaic power data used in this study,
yielding 12 intrinsic mode functions (IMFs) of different scales.
Meanwhile, the fuzzy entropy calculation method is adopted to
compute the fuzzy entropy values of the 12 decomposed IMFs.
Based on the calculated fuzzy entropy values, the decomposed
modal components are further classified into five categories of
signals via K-means clustering, enabling refined extraction of
multi-scale features from the power sequence. These features,
together with the key meteorological factors, are input into a
CNN-BiLSTM model based on the self-attention mechanism,
and the WOA algorithm is introduced to optimize the model’s
hyperparameters for improved prediction performance. This
study aims to provide a high-precision and reliable solution for
photovoltaic power prediction under complex meteorological
conditions, thereby offering technical support for the sustain-
able development of the photovoltaic industry.

2. RESEARCH MODEL

2.1. Correlation Analysis

The Pearson’s correlation coefficient is a widely used statisti-
cal measure across multiple fields, as proposed by Karl Pear-
son. Its core purpose is to quantify the strength and direction of
the linear correlation between two continuous variables, with
a value range of [—1, 1]. The closer the absolute value is to
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1, the stronger the correlation is [17]. In photovoltaic power
prediction, photovoltaic output is affected by various factors
such as irradiance, temperature, and humidity, resulting in com-
plex types and large volumes of measured data. To accurately
screen key influencing factors, simplify the model’s computa-
tional complexity, and improve prediction accuracy, this study
introduces this coefficient to conduct a correlation analysis on
photovoltaic-related data. Finally, features highly correlated
with photovoltaic power are selected for inclusion in the subse-
quent prediction model. The formula for calculating the Pear-
son correlation coefficient r is as follows:

- E(XY)—- E(X)E(Y) )

" VEX?) - BP(X)/E(Y?) - B2(Y)

where r, ,, is the correlation between X and Y, and E repre-
sents the mathematical expectation.

2.2. ICEEMDAN Algorithm

ICEEMDAN (Improved Complete Ensemble Empirical Mode
Decomposition with Adaptive Noise), first proposed by Colom-
inas et al. in 2014, is a novel signal decomposition method with
notable improvements over EEMD (Ensemble Empirical Mode
Decomposition) and CEEMDAN [18]. Unlike these two meth-
ods, ICEEMDAN employs a new noise injection and extrac-
tion strategy: when extracting each mode, it calculates the local
mean of the sum of the raw signal and a specific modal compo-
nent derived from EMD-decomposed white noise, instead of di-
rectly applying EMD (Empirical Mode Decomposition) to the
signal. These upgrades nearly eliminate residual noise inter-
ference in decomposition results, while enhancing modal com-
pleteness and accuracy. Thus, this study uses ICEEMDAN to
decompose PV power prediction data for improved model ac-
curacy and precision. The detailed steps of ICEEMDAN are as
follows:

Step 1: Assume that the original signal to be decomposed is
x(n), define the noise as w(¥ (n), and initialize the residual as
ro(n) = x(n). Eg(x) denotes the kth IMF obtained by per-
forming EMD on the signal x.

Step 2: Calculate the first-order IMF, denoted as IMF.
First, compute £ (w(® (n)): perform EMD on each set of white
noise, and take the first IMF component of each set. Then, add
white noise to generate a noise-added signal. The specific for-
mula is as follows:

2@ (n) = 2(n) + 0 - B (w@) (n)) @)
Here, o denotes the noise standard deviation coefficient. Using
the noise-added signal, compute the local mean of this signal,
and then calculate the average value. The corresponding for-
mula is as follows:

IMFy(n) = <M(x<i>(n))>

3
% ZM (x(n) +o- El(w(i)(n))) A3)

Here, M (x) represents the local mean of signal z; £ denotes
the number of noise addition times; and (-) indicates taking the
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average of the expression inside. Therefore, the calculation for-
mula for solving the IMF in the first stage is:

IMFy(n) = x(n) — IMFy(n) @)
The formula for updating the residual is as follows:
ri(n) = x(n) — IMFy(n) %)

Step 3: Compute IMF,. Calculate E,(w((n)): perform
EMD on each group of white noise, and extract the second IMF
component from each group. Then, generate the noise-added
residual for the second-order IMF. The specific formula is as
follows:

ri7(n) = ri(n) + o - Ba(w (m)) (©)
The specific formula for calculating the local mean of the

noise-added residual of the second-order IMF and then taking
the average value is as follows:

IMF,(n) =

£
= %Z M (7’1(”) +o- E2(w(i)(”))> ™

Finally, the formula for solving the second-order IMF is
given as follows:

IMF5(n) = r1(n) — IMF5(n) ®)
The formula for updating the residual is:
ro(n) = r1(n) — IMFs(n) ©)

Step 4: Compute IMF),. For the kth order IMF, calculate
E)(w®(n)): perform EMD on each group of white noise, and
extract the kth IMF component from each group. The formula
for generating the noise-added residual is:

) (n) = -1 (n) + 0 - E(w(n)) (10)

The specific formula for calculating the local mean of the
noise-added residual of the kth order IMF and then taking the
average value is as follows:

3
IMFy(n) = 2 > M (ria(n) + 0 Ex(w@ () (1)

o=

Finally, the formula for solving the kth order IMF is given as
follows:

IMFy,(n) = rg—1(n) — IMF(n) (12)
The formula for updating the residual is:
re(n) = rg—1(n) — IMFy(n) (13)

Step 5: Repeat the calculations in Step 4 until the residual
ri(n) becomes a monotonic function, at which point the IMF
decomposition can no longer proceed, and the solution is ter-
minated. Finally, the original signal x(n) is decomposed into:

K
2(n) = IMFy(n) + rg(n) (14)
k=1

Here, K denotes the total number of IMFs obtained from the
final decomposition.
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2.3. Fuzzy Entropy Algorithm

Fuzzy entropy, a key metric for fuzzy set uncertainty, quanti-
fies the uncertainty of membership relations between elements
and reflects the dispersion of their membership degree distribu-
tion. In fuzzy systems, entropy increases as element member-
ship degrees approach 0.5 (higher fuzziness) and decreases as
they approach 0 or 1 (lower fuzziness) [19].

For the PV power prediction in this paper, the above analy-
sis confirms that ICEEMDAN is adopted to decompose the PV
power data. However, the number of derived IMFs is exces-
sively large. To improve model prediction accuracy and reduce
computational complexity, this paper uses fuzzy entropy to cal-
culate the entropy values of these IMFs, then reclassifies them
via K-means clustering to form new IMF groups for subsequent
modeling. The algorithm flow and calculation formula of fuzzy
entropy are presented as follows:

Step 1: Let the time series for fuzzy entropy calculation be
{u(i), : = 1,2,..., N}, with a length of N. The parameters
required for fuzzy entropy calculation are the embedding di-
mension «, similarity tolerance 3, and boundary gradient ~.

Step 2: Perform phase space vector reconstruction. The spe-
cific formula is as follows:

X(©@) = [u(@),u(@+1),. .,u(i+a—-1)], :=1,2,..,.N —«

5)

Step 3: Calculate the distance between vectors. The specific
formula is as follows:

d;j :maxz;é lu(i + k) —u(j + k)| (16)

Step 4: Compute the fuzzy similarity degree. The calculation
formula is as follows:

D;j = exp (—(di;)"/B) (17)

Step 5: Calculate the average similarity degree. First, solve
the average similarity degree of a single vector: for each a-
dimensional vector X (7), compute its average similarity degree
with all other vectors. The specific formula is as follows:

1 N—«o
ey a1 2 P 1

J=1,j7#i

After calculating the average similarity degree of individual
vectors, compute the average of the average similarity degrees
of all vectors. The specific formula is as follows:

1 N—«a
N_a§¢?

Step 6: Repeat the calculation steps from Step 2 to Step 5,
and solve for o 4+ 1 under the o 4+ 1-dimensional condition.

Step 7: Through the above steps, finally calculate the fuzzy
entropy value. The calculation formula is as follows:

FuzzyEn = In ®® — In > +!

v =

(19)

(20)

2.4. Whale Optimization Algorithm

The Whale Optimization Algorithm (WOA) is a meta-heuristic
optimization algorithm proposed by Mirjalili and Lewis in
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2016, which simulates the predation behavior of humpback
whales [20]. The WOA is designed to mimic the hunting strate-
gies of humpback whales during prey encirclement: swimming
around the prey and blowing bubbles to form a net-like struc-
ture. The WOA derived from these whale hunting strategies
exhibits strong global search capability and high convergence
performance.

The main purpose of introducing the WOA in this paper is to
utilize its strong global search capability and high convergence
performance to optimize the hyperparameters of the deep learn-
ing model during the subsequent photovoltaic power prediction
process using the deep learning model. The specific solution
model and formulas of the WOA are as follows:

(1) Strategy of the humpback whale’s prey encircling phase

When humpback whales encircle their prey, they converge
toward the current optimal position. The specific position up-
date formula is as follows:

X(t+1)=X,(1t) —A-|C-X,(t) — X ()] 21

Herein, X (¢) and X (¢ 4 1) denote the positions of the current
and next-generation humpback whales, respectively; X, ()
represents the position of the current optimal individual; A and
C are control coefficients, and their calculation formulas are as
follows:

A= 2\1 — A (22)
012'7"2 (23)

Herein, r; and r; are random numbers within the range of [0,
1]; A is a convergence factor, whose value decreases linearly
with the number of iterations. The corresponding calculation
formula is as follows:

a=2—2t/Thax (24)

Herein, ¢ denotes the current number of iterations, and 71« rep-
resents the maximum number of iterations.

(2) Strategy of the humpback whale’s bubble-net attacking
phase

The bubble-net hunting behavior is simulated by approach-
ing the prey along a spiral path, which enables local precise
optimization. The specific formula is as follows:

X(t+1)=D"-e" - cos(2nl) + X, () (25)

Herein, D’ = | X,,(t) — X (t)| denotes the distance between the
humpback whale and the prey; b is a constant used to control
the shape of the spiral; [ is a random number within the range
of [—1, 1], which determines the direction of the spiral.

(3) Strategy of the humpback whale’s random swimming
phase for searching prey

When the prey’s position is unclear (i.e., |A| > 1), the hump-
back whale will swim randomly to explore new areas, thereby
enhancing the global exploration capability. The specific cal-
culation formula is as follows:

X(t + 1) = Xrand(t) —A- |C . Xrand<t) - X(t)| (26)

Herein, X,,,,(t) represents the position of a randomly selected
individual in the current whale population.
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2.5. Self-Attention Mechanism

Self-attention mechanism, a specialized attention mechanism
variant, calculates interrelationships between sequence posi-
tions and captures internal dependencies via dynamic weight-
ing, making it ideal for addressing long-range dependency is-
sues [21]. Thus, this paper incorporates the mechanism, which
enables global comparison of each input feature (e.g., meteoro-
logical, illumination, irradiance data) in PV power prediction-
related information. It automatically adjusts attention weights
for different features to capture global information, thereby en-
hancing model accuracy. The implementation process of the
self-attention mechanism is as follows:

Step 1: Define the input sequence X = [z}, 2, ...,2,] €
R™*? where n denotes the length of the input sequence, and d
represents the feature dimension of the input sequence.

Step 2: Generate Query (denoted as @), Key (denoted as
K), and Value (denoted as V') via linear transformation. The
specific calculation formulas are as follows:

Q = XWwe (27)
K = XwX (28)
vV =xw" (29)

Herein, W®, WX and WV are learnable weight matrices.
Step 3: Calculate the attention weights. The calculation for-

mula is as follows:
KT
A = soft max (Q )
Vdy

Herein, v/d}, is a scaling factor, which is used to prevent the gra-
dient vanishing problem caused by excessively large dot prod-
ucts.

Step 4: Perform a weighted summation to obtain the final
output of the self-attention mechanism. The specific calcula-
tion formula is as follows:

Z=A-V

(30)

(€1Y)

2.6. Convolutional Neural Network

Convolutional Neural Networks (CNNs), deep learning archi-
tectures tailored for grid-like topological data, are widely used
in deep learning [22]. Comprising convolutional, pooling, and
fully connected layers, CNN reduces model complexity effec-
tively through local connectivity, weight sharing, and hierarchi-
cal feature extraction, while ensuring invariance to translation,
scaling, and distortion.

First, CNN uses convolution kernels in convolutional layers
to perform sliding convolution on local input data regions, ex-
tracting local spatial or temporal features of the data. The dis-
crete convolution operation expression for the input data and
convolution kernel is as follows:

k-1 C

Y(t)=> Y K(i,j)-X(t+i,5)+b

i=0 j=1

(32)

Herein, Y'(¢) denotes the output feature value at time ¢, k the
size of the convolution window, C' the feature dimension, K
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FIGURE 1. Structure diagram of CNN network.
stands for the convolution kernel, X the input data for convo- @
lution calculation, and b the bias term in the calculation. By X
inputting the processed photovoltaic power prediction data in —@— c c
this paper into the multi-channel convolution kernel and per- A A, /"\— Em/'\-
forming parallel computation, CNN can capture the fluctuation rsmt orem N e N

of the photovoltaic power prediction data at different frequen-
cies.

The pooling layer in CNN, a key component for feature di-
mensionality reduction, mainly compresses CNN output pa-
rameters via max pooling and average pooling. This drasti-
cally reduces parameter count and dimensions, thereby lower-
ing model computational complexity.

The fully connected layer of CNN realizes feature fusion
and outputs results via full neuron connectivity, with distinct
advantages in processing multi-dimensional and large-scale
data. Applied to PV power prediction, it extracts features from
PV power data; these multi-source features are then fed into
the Bidirectional Long Short-Term Memory (BiLSTM) Neu-
ral Network model, enhancing prediction accuracy and overall
model applicability. Figure 1 shows the CNN structure dia-
gram.

2.7. Bidirectional Long Short-Term Memory

BiLSTM, an enhanced variant of a traditional Long Short-Term
Memory Neural Network (LSTM), boosts sequence modeling
capability by simultaneously capturing contextual information
from both forward and backward directions [23]. LSTM inte-
grates a gating mechanism into a Recurrent Neural Network
(RNN), adding forget, input, and output gates to tackle the
RNN’s long-term dependency issue. BILSTM improves on this
with two independent LSTM layers (forward and backward)
that process input sequences in opposite directions, thus com-
prehensively capturing long-term dependencies in sequences.
Figure 2 shows the BILSTM network structure.

This paper introduces the BILSTM model: forward units
capture the feature information on how historical meteorolog-
ical data in the PV prediction dataset affects PV power, while
backward units learn future relevance (e.g., PV power varia-
tions under different weather conditions). The output results
are then rationally combined to enhance the overall PV predic-
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Bcakward '\ L\

FIGURE 2. BiLSTM structure.

tion model’s multivariate time-series modeling capability. The
calculation formulas of the LSTM model are as follows:

fo=0 (Wglhi—1;2:] + by)

ir = 0 (Wilhi—1;2¢] + b;)

C, = tanh (Welhe—1: 4] + be)
Co=f0C_1+i0C,

0; = 0 (Wolhi—1;2¢] + b,)

ht = oy © tanh(C})

(33)

where f; denotes the calculation formula of the forget gate; i;
represents the calculation formula of the input gate; C; and C}
refer to the candidate memory cell and the memory update cell
respectively; o, stands for the calculation formula of the output
gate; hy is the calculation formula of the hidden state output
gate; Wy, W;, W¢, W, are the parameter matrices shared by
the LSTM; by, b;, be, b, are the shared biases.

3. THE MODEL IN THIS PAPER

In this paper, a modeling solution is proposed for the prob-
lem of photovoltaic power prediction, and a photovoltaic power
prediction model named ICEEMDAN-WOA-CNN-BiLSTM
based on fuzzy entropy clustering and a self-attention mech-
anism is established. The overall solution process of this study
is as follows:

First, for the various weather parameters contained in the
photovoltaic dataset, this study adopts the Pearson correla-
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tion coefficient to conduct a correlation analysis. By calculat-
ing the correlation coefficients between features and setting a
reasonable threshold, the key weather influencing factors that
are strongly correlated with photovoltaic power are accurately
screened out, thus providing high-quality input features for sub-
sequent modeling.

Subsequently, the ICEEMDAN signal decomposition
method is introduced to perform preliminary decomposition

32

on the photovoltaic power time-series data adopted in this
study, yielding a series of intrinsic mode functions (IMFs) with
different scales. To further classify the obtained intrinsic mode
functions of varying scales, this study adopts the fuzzy entropy
calculation method to compute the fuzzy entropy value of each
derived intrinsic mode function, and the decomposed mode
functions are further categorized into five types of signals via
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K-means clustering, thus achieving a refined extraction of
multi-scale features of the power sequence.

Finally, the multi-scale feature signals obtained via ICEEM-
DAN and fuzzy entropy clustering are fused with the key
weather factor data screened in the earlier stage, which are
jointly fed as input variables into the CNN-BiLSTM model
based on the self-attention mechanism for training. During
the model training process, the WOA is introduced to per-
form global optimization of the hyperparameters of the self-
attention-based CNN-BiLSTM model. The optimal combina-
tion of hyperparameters is obtained through iterations, thereby
constructing a photovoltaic power prediction model with supe-
rior prediction performance. Figure 3 shows the comprehen-
sive architecture of the photovoltaic power prediction model
proposed in this study.

4. CASE ANALYSIS

4.1. Data

The comprehensive dataset adopted in this study is derived
from Hebei Province, China. This dataset integrates detailed at-
mospheric monitoring data and photovoltaic system operation
performance data, specifically including seven dimensions of
indicator information: solar irradiance, air temperature, relative
humidity, wind speed, wind direction, atmospheric pressure,
and photovoltaic output power. Given that the photovoltaic
power is close to zero during nighttime periods, which has no
practical significance for research and analysis, this study ex-
cludes all nighttime observation data. Meanwhile, targeted pro-
cessing is performed on the abnormal values and missing data
points existing in the dataset, and 6,150 valid sample data are
finally obtained. To screen out the meteorological factors with
significant impacts on photovoltaic power, the study adopts the
Pearson correlation analysis method to test each meteorologi-
cal data feature, and the results of the correlation analysis are
shown in Figure 4.
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The results indicate that among the various factors affecting
photovoltaic power output, global solar irradiance, air temper-
ature, wind speed, and atmospheric pressure are positively cor-
related with photovoltaic power, while wind direction and rel-
ative humidity are negatively correlated. From the perspective
of the degree of correlation, global solar irradiance exhibits the
highest correlation with photovoltaic power, followed by rela-
tive humidity and air temperature. Based on these analysis re-
sults, global solar irradiance, relative humidity, and air temper-
ature are identified as the core factors restricting photovoltaic
power output, and these key variables are incorporated into the
prediction model as basic input features.

4.2. Data Decomposition and Reconstruction

The original photovoltaic power data is decomposed via the
ICEEMDAN method, yielding 10 intrinsic mode functions
(IMF1-IMF10) and one residual component (Res). The de-
composition results are shown in Figure 5. As observed from
the figure, the high-frequency IMFs (e.g., IMF1-IMF3) ex-
hibit frequent waveform oscillations, which correspond to the
short-time-scale fluctuations of the photovoltaic power. Such
fluctuations are mainly induced by factors such as rapid cloud
drift and local shading on the surface of photovoltaic pan-
els, characterized by fast power variations and strong random-
ness. The intermediate-frequency IMFs (e.g., IMF4-IMF6) fea-
ture moderate oscillation frequencies, reflecting medium-time-
scale variations in photovoltaic power. In contrast, the low-
frequency IMFs (e.g., IMF7-IMF10) and residual component
(Res) show smooth waveforms, which are associated with the
long-term trends of photovoltaic power.

The complexity differences between the components can be
clearly observed after calculating the fuzzy entropy for each
IMF and Res. IMF3 has the highest fuzzy entropy value, indi-
cating that it contains the most disordered photovoltaic power
fluctuations. From IMF1 to IMF10 and Res, the fuzzy entropy
generally shows a decreasing trend, which reflects the complex-

WWwWw.jpier.org



PIER C

Yu et al.

oA

0)

0)

o

5
105577

e

§

Res IMF10IMF9 IMF8 IMF7 IMF6 IMF5 IMF4 IMF3 IMF2 IMF1 Signal

N Y Y ¥ S | Y Y S B

3000

Sampling points/1 Smins

FIGURE 5. Results of ICEEMDAN decomposition.

ity of photovoltaic power decreasing with an increase in the
time scale. High-frequency components are more complex due
to their “rapid and random variations,” while low-frequency
components and residual trends are simpler due to their “slow
and stable variations.”

Normalization is required to eliminate the dimensional dif-
ferences in the fuzzy entropy of different components. After
normalization, the complexity characteristics of each compo-
nent can be compared on a unified scale, providing a fair fea-
ture dimension for subsequent clustering. The fuzzy entropy
ranking results for each component are shown in Figure 6.

A clustering algorithm is adopted to cluster the normalized
fuzzy entropy into five categories, with the core objective of
grouping components with similar fuzzy entropy (complexity)
into the same category. The results of the component clustering
are presented in Figure 7.

Through data decomposition and reconstruction, a multi-
scale and complexity-stratified deconstruction of the photo-

Fuzzy entropy

IMIF3

1M
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1M1
IMF6
IMF7
IMF8
IMF9
IMF10
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i

I I 1 1
0.0 0.2 0.4 0.6 0.8 1.0

Normalized value

FIGURE 6. Ranking of fuzzy entropy.
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voltaic power signal is achieved. This process not only pre-
serves the full-scale information of photovoltaic power, ranging
from “high-frequency random fluctuations” to “low-frequency
stable trends,” but also realizes the effect that “components in
the same category have similar characteristics while those in
different categories show distinct feature differentiation” via
clustering, laying an accurate input foundation for the subse-
quent analysis of photovoltaic power.

4.3. Model Evaluation Indicators

To verify the effectiveness of the model, Mean Absolute Error
(MAE), Mean Squared Error (MSE), Root Mean Squared Error
(RMSE), and Coefficient of Determination (R?) are selected as
evaluation metrics. The specific formulas are as follows:

1 M
M Z ‘ytrue,j - yfore,j| (34)
j=1

MSE =

M
! (35)

2
M Z (ytrue,j - yfore,j)

Jj=1

RMSE

M
! (36)

2
M Z (ytrue,j - yfore,j)

Jj=1

TABLE 1. Main parameters of each model.

Model Parameters
SVM C = 1.0, Kernel = RBF, Gama = 0.1,
LSTM Learning rate =1e-4,
BiLSTM Number of neurons = 50,
CNN-BIiLSTM  Regularization parameter = 1.00e-5
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TABLE 2. Optimal hyperparameter.

CO-IMF  Learning rate  Number of neurons Key dimension  Regularization parameter
1 0.001871 10 47 0.000173
2 0.00194 66 15 0.000446
3 0.001488 69 14 0.000429
4 0.001291 18 0.00027
5 0.001129 41 0.000114
M .
> (Yurue,j — Yrore, j)2 TABLE 3. Results of different models.

=1

R> = 1- (37)

(ytrue,j — Ymean,j )2

Mz

J

Il
_

where M is the number of predicted points, ¥, ; the actual
value of power generation, and s ; the predicted value of the
power generation.

4.4. Analysis of Prediction Results

To verify the performance advantages of the model proposed in
this study for photovoltaic power prediction, eight typical pre-
diction models are selected for comparison. They include the
traditional machine learning model SVM, basic deep learning
models LSTM and BiLSTM, hybrid deep learning model CNN-
BiLSTM, and four decomposition-integration models: EMD-
CNN-BiLSTM, VMD-CNN-BIiLSTM, and CEEMDAN-CNN-
BiLSTM. The abbreviations of each model are shown in Ap-
pendix A. Table 1 lists the main parameter configurations of
each model. The optimal hyperparameters of the model in this
paper are presented in Table 2, and the prediction performance
is displayed in Table 3.

From the perspective of the overall trend, the prediction ac-
curacy of decomposition-integration models is generally supe-

35

Model MAE MSE RMSE R2
S 1.632424 3.784133 1945285 0.879956
L 1.435246 3.42396 1.850394 0.928726
BI 1.273387 2.724824 1.650704 0.929893
CBI 0.971451 1.994037 1.412104 0.949959
E-CBI 0.913335 1.748736 1.322398 0.955557
V-CBI 0.993061 1.447189 1.202992 0.965141
CE-CBI 0.866932 1.280264 1.131487 0.968181
Proposed Model ~ 0.468358  0.585213  0.764992  0.986442

rior to that of single models, whereas the model proposed in this
paper achieves the best performance across all metrics.

At the level of single models, as a traditional machine learn-
ing model, SVM struggles to capture complex temporal de-
pendencies when processing high-dimensional, nonlinear time-
series data, such as photovoltaic power, thus yielding the largest
prediction errors. LSTM mitigates the gradient problem in
long sequences through its gating mechanism, but it can only
model temporal features unidirectionally and lacks sufficient
capability to capture the bidirectional dependencies of photo-
voltaic power, achieving higher accuracy than SVM. BiLSTM
incorporates backward LSTM and enables simultaneous bidi-
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FIGURE 8. Results of sunny day forecast.

TABLE 4. Results under different weather conditions.

Weather Model MAE MSE RMSE
S 1.334104 2.184809 1.47811
L 1.120237 2.120001 1.456022
BI 0.919037 1.163465 1.07864
Sunny CBI 0.778891 0.680161 0.824719
E-CBI 0.476661 0.416512 0.645378
V-CBI 0.52131 0.390454 0.624863
CE-CBI 0.399628 0.261262 0.511138
Proposed Model  0.17253  0.047502  0.21795
S 1.517867 3.008864 1.734608
L 1.22561  2.787269 1.669512
BI 1.029906 1.711299 1.308166
Cloudy CBI 1.036036 1.552426 1.245964
E-CBI 0.752877 1.025776 1.012806
V-CBI 0.938001 1.306638 1.143083
CE-CBI 1.023823  1.63801 1.279848
Proposed Model  0.593793  0.686937 0.828817
S 2.337861 8.306885 2.882167
L 2.034842  7.450644 2.729587
BI 2.037813 5996526  2.44878
Rainy CBI 1.695751 4.791903 2.189041
E-CBI 1.014547 1.926506 1.387986
V-CBI 1.360033  2.753552 1.659383
CE-CBI 1.169082 2.337725 1.528962
Proposed Model 0.858772 1.704592  1.3056

rectional modeling of photovoltaic data. However, none of
these three models specifically address the multi-scale fluctua-
tion characteristics of photovoltaic power, resulting in limited
overall accuracy.

36

At the level of hybrid deep learning models, CNN-BiLSTM
combines the local feature extraction capability of the CNN
with the temporal modeling capability of BILSTM. It can cap-
ture the local fluctuation patterns and bidirectional temporal de-
pendencies of photovoltaic power, achieving higher accuracy
than standalone BiLSTM. However, this model directly per-
forms modeling on raw non-stationary signals without address-
ing the issue of multi-scale feature coupling, leaving room for
improvement in fitting high-frequency random fluctuations.

At the level of decomposition-integration models, EMD-
CNN-BIiLSTM decomposes photovoltaic power signals via
EMD. However, owing to the mode mixing problem inher-
ent in EMD, some high-frequency and low-frequency compo-
nents interfere with each other, leading to a limited improve-
ment in prediction accuracy. VMD-CNN-BIiLSTM is based on
variational mode decomposition, which further enhances the
accuracy. CEEMDAN-CNN-BIiLSTM suppresses mode mix-
ing through complete ensemble empirical mode decomposition
with adaptive noise.

At the level of the proposed model in this paper, the model
achieves more accurate multi-scale decomposition via ICEEM-
DAN and groups components with similar complexity through
fuzzy entropy clustering to reduce model redundancy. The
CNN-BIiLSTM-Attention module focuses on local features,
bidirectional temporal dependencies, and key nodes, while the
WOA is employed to optimize hyperparameters for enhanced
generalization capability. Ultimately, the model delivers opti-
mal prediction accuracy, and the results fully verify the effec-
tiveness of the full-process optimization strategy.

To further verify the effectiveness of the proposed model, the
prediction results under sunny, cloudy, and rainy conditions are
extracted for comparison, with the prediction performance de-
tails presented in Table 4. For an intuitive demonstration of the
prediction performance, the visualization results corresponding
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to sunny, cloudy, and rainy conditions are illustrated in Fig-
ures 8 to 10.

On sunny days, the photovoltaic power sequence exhibits
strong regularity. Decomposition-integration models outper-
form single models as they can effectively capture stable trends
and weak fluctuation characteristics. The proposed model
in this paper achieves the accurate decomposition of low-
frequency trend components and slight high-frequency fluctu-
ations via ICEEMDAN, and eliminates redundant information

37

through fuzzy entropy clustering, further improving prediction
accuracy and achieving extreme fitting of stable sequences.
The core challenge of cloudy weather lies in the power
fluctuations caused by sudden changes in irradiance. The
self-attention mechanism of the proposed model can accu-
rately identify key nodes of fluctuations and strengthen the
weight assignment for mutation features. Meanwhile, the hy-
perparameter combination optimized by WOA enhances the
model’s adaptability to dynamic changes. In contrast, some
decomposition-integration models (e.g., CE-CBI) overfocus on

Www.jpier.org



PIER C

Yu et al.

high-frequency components, which instead introduce redun-
dant information and lead to performance degradation.

On rainy days, irradiance is low and fluctuates drastically,
resulting in raw sequences with prominent nonlinear character-
istics that are difficult for traditional models to capture com-
plex dependencies from. The proposed model decomposes the
highly stochastic sequences into multiple stationary IMF com-
ponents via ICEEMDAN, and merges components with sim-
ilar fluctuation characteristics through fuzzy entropy cluster-
ing, thereby reducing nonlinear complexity. Meanwhile, CNN
extracts local fluctuation features; BILSTM captures bidirec-
tional temporal dependencies; and the self-attention mechanism
strengthens the response to key factors, such as precipitation in-
tensity and cloud cover changes. Ultimately, the model main-
tains excellent performance even in this high-difficulty sce-
nario, which verifies its robustness.

4.5. Comparative Experiment of Fuzzy Entropy Clustering

To further verify the unique value of fuzzy entropy clustering in
multi-scale feature extraction, comparative experiments are de-
signed with frequency-based K-means clustering and variance-
based K-means clustering as baseline methods. The experi-
ment focuses on analyzing the impact of different clustering
criteria on the final prediction performance, with the same
ICEEMDAN decomposition, CNN-BiLSTM-Attention model,
and WOA hyperparameter optimization applied to all groups to
eliminate interference from other factors. The prediction per-
formance of the three clustering methods is shown in Table 5.

TABLE 5. Results of different clusterings.

Clustering Method MAE MSE RMSE
Frequency 0905132  1.595609 1.263174
Variance 0.845762  1.258361 1.121767
Proposed Model 0.468358  0.585213  0.764992

Fuzzy entropy clustering outperforms frequency/variance-
based methods in photovoltaic power feature extraction. It cap-
tures the intrinsic dynamic complexity of power sequences, en-
abling more meaningful component grouping and laying a high-
quality foundation for subsequent model training. This supe-
riority is particularly prominent under complex weather con-
ditions, further confirming the rationality of integrating fuzzy
entropy clustering into the proposed prediction framework.

4.6. External Dataset Validation

To further verify the model’s generalization ability, measured
data from a photovoltaic power station in Ningxia Hui Au-
tonomous Region in January 2020 is selected as the exter-
nal validation dataset. Located in the arid northwest region,
Ningxia has distinct climatic characteristics (low humidity,
strong irradiance volatility) compared with the original Hebei
dataset, which can effectively test the model’s cross-regional
adaptability. The results are shown in Table 6.
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TABLE 6. Validation results with external dataset.

Model MAE MSE RMSE
V-CBI 0.8127 1.2228 1.1058
CE-CBI 0.7532  1.0870 1.0426
Proposed Model  0.4128 0.4751  0.6893

The proposed model still maintains optimal performance on
the Ningxia dataset, with an MAE of only 0.4128. This con-
firms that the model can effectively adapt to the climatic char-
acteristics and irradiance fluctuation patterns in the arid regions
of Northwest China.

4.7. Optimizer Selection Analysis

To verify the rationality and superiority of WOA in hyper-
parameter optimization of the model, two mainstream meta-
heuristic algorithms Particle Swarm Optimization (PSO) and
Grey Wolf Optimizer (GWO) are selected for comparison. The
comparison results of the three optimization algorithms are pre-
sented in Table 7.

TABLE 7. Comparison results of different algorithms.

Optimizer =~ MAE MSE  RMSE
PSO 0.5984 0.7667 0.8756
GWO 0.5102 0.6780 0.8234
WOA 0.4683 0.5852 0.7650

WOA outperforms PSO and GWO in optimization perfor-
mance. Its unique predation strategy enables it to accurately
match the multi-scale features and complex network structure
of the proposed model, effectively improving the prediction ac-
curacy and stability of the model. Therefore, it is fully reason-
able to select WOA as the hyperparameter optimization algo-
rithm in this study.

5. CONCLUSION

PV power generation shows significant randomness and
nonlinearity due to meteorological factors, hindering accurate
power output prediction and challenging PV plant dispatching
and grid stability. To resolve this issue, this study proposes
an ICEEMDAN-WOA-CNN-BiLSTM integrated predic-
tion model with targeted technical innovations. The main
conclusions are as follows:

1. The ICEEMDAN-fuzzy entropy clustering preprocessing
provides a high-quality data foundation. ICEEMDAN adap-
tively decomposes the original power sequence into multi-
frequency IMF components and residuals, fully preserving
multi-scale fluctuation characteristics; fuzzy entropy clustering
further merges similar components, removes redundant infor-
mation, simplifies calculations, avoids signal aliasing interfer-
ence from single decomposition, and enhances preprocessing
pertinence and efficiency.
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2. The self-attention mechanism enhances the feature focus-
ing capability. On the basis of CNN extracting local spatial fea-
tures and BiLSTM capturing long-term temporal dependencies,
the self-attention mechanism can adaptively calculate the im-
portance weights of different features and moments, focusing
on key meteorological features and temporal inflection points
that influence power changes. This mechanism addresses the
issue of insufficient capture of key information by traditional
models and improves the prediction sensitivity of power fluc-
tuations under complex working conditions.

3. The WOA realizes the global optimization of hyperparam-
eters. Aiming at the problems of low efficiency and easy falling
into local optimum in manual debugging of CNN-BiLSTM hy-
perparameters, WOA adaptively optimizes hyperparameters by
virtue of its global search and convergence speed advantages,
enabling the model structure to accurately match the prepro-
cessed data features. While ensuring prediction accuracy, it ef-
fectively improves the stability and generalization ability of the
model.

We objectively summarize areas for improvement, includ-
ing certain dependence on data volume, insufficient integration
of PV module status impacts, and slightly high computational
complexity. Future work will explore few-shot learning, inte-
grate equipment status data, optimize model lightweight, and
further dig into the intrinsic connection between electromag-
netic propagation of irradiance and PV power, providing more
references for related research.
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APPENDIX A.
Full form Abbreviations

SVM S

LSTM L

BiLSTM BI

CNN-BIiLSTM CBI

EMD-CNN-BIiLSTM E-CBI
VMD-CNN-BIiLSTM V-CBI
CEEMDAN-CNN-BIiLSTM CE-CBI
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