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ABSTRACT: To address the aperture fill time problem in broadband arrays, this study proposes an efficient delay compensation algorithm
based on a variable fractional delay (VFD) filter with high numerical stability. A low-complexity Newton structure was introduced into the
VFD Lagrange interpolation algorithm, and the numerical stability was significantly enhanced by centrally offsetting the element delay
parameters and avoiding the explicit inversion of the transformation matrix. Subsequently, the robust Newton-VFD was applied to the
implementation of the broadband array aperture fill time correction algorithm. The algorithm utilizes a cascaded architecture consisting
of coarse integer-delay compensation and fine fractional-delay correction via Newton-VFD. Simulation results demonstrate that the
proposed low-complexity Newton-VFD significantly reduces hardware complexity while maintaining excellent magnitude-frequency
characteristics, which enables efficient and high-precision correction of the broadband array aperture fill time.

1. INTRODUCTION

With the rapid evolution of modern communication and
radar technologies, narrow-band arrays can no longer sat-

isfy the requirements for information transmission rate, pre-
cision, and reliability, which has led to the widespread appli-
cation of broadband arrays in fields, such as communication
and radar. Because of the physical size of the antenna array,
echo signals cannot arrive simultaneously at the receiving end,
and the resulting aperture fill time has a non-negligible influ-
ence [1]. Particularly in array radar signal processing, the aper-
ture fill time induces antenna beam pointing deviation, main-
lobe broadening after pulse compression, and a reduction in
effective bandwidth, thereby constraining radar performance.
Therefore, aperture fill time [2] has emerged as a significant
research direction in the field of modern array signal process-
ing.
To address the issue of aperture fill time, researchers have

proposed various methods that can be primarily categorized
into time and frequency-domain approaches. Time-domain
methods are fundamentally based on the True Time Delay
(TTD) and include techniques such as delay lines and Frac-
tional Delay Filters (FDF) [3]. Specifically, the implementa-
tion of FDFs mainly involves the window function method,
Lagrange interpolation (LI) method [4], and Farrow structure-
based [5] Variable Fractional Delay (VFD) filter. Frequency-
domain methods primarily involve decomposing the broadband
signal into narrowband sub-bands, correcting them individually
via phase compensation, and recombining them to reconstruct
the broadband signal [6].
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This study focuses on an in-depth investigation of time-
domain fractional delay filters [7]. Conventional fractional de-
lay filters were designed for a pre-set fixed fractional delay
value [8]. They relied on a fixed set of filter tap coefficients
derived from a constant delay parameter. However, when the
delay parameter changes, the entire filter must be redesigned
and the coefficients reloaded, resulting in poor real-time per-
formance and flexibility, as well as high memory resource con-
sumption. In contrast, Variable Fractional Delay (VFD) fil-
ters effectively address these limitations [9]. Typically imple-
mented using the Farrow structure, VFD filters express filter
coefficients as polynomial functions of the delay parameter.
By simply updating the parameter, new coefficients are gen-
erated, achieving the dynamic tunability of the delay. The Far-
row structure is based on polynomial approximation [10, 11].
The Newton structure [12], proposed in recent years, is based
on Newton’s divided difference formula and can further reduce
complexity through state-space diagonalization. However, it
suffers from robustness issues. Therefore, this study aims to
optimize computational efficiency and enhance system robust-
ness while adopting a low-complexity Newton structure.
This study presents a novel aperture fill time correction algo-

rithm based on a low-complexity Newton-VFD. By integrating
Newton structure with Lagrange interpolation, the algorithm
achieves a significant reduction in computational complexity.
Furthermore, robustness is enhanced through delay parameter
centralization and an optimization strategy that circumvents ex-
plicit matrix inversion, effectively overcoming the numerical
instability issues associated with high-order filters. Finally, a
cascaded processing architecture integrating integer delay cor-
rection and fractional delay compensation is established to re-
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alize high-precision aperture fill time correction using the pro-
posed Newton-VFD.
The remainder of this paper is organized as follows. Sec-

tion 2 introduces the design of the Farrow structure filter based
on the Lagrange interpolation algorithm. Section 3 derives the
transformation matrix of the Farrow-Newton structure, central-
izes the delay parameters, and optimizes the inversion of the
transformation matrix to avoid numerical instability at high or-
ders. Section 4 proposes a broadband array aperture fill time
correction algorithm based on the designed low-complexity ro-
bust VFD. Section 5 presents the simulation verification of the
optimized Newton fractional delay filter and its application to
the aperture fill time correction of the array radar. Finally, the
conclusions are presented in Section 6.

2. PRINCIPLE OF LI IN FARROW-VFD
The Lagrange interpolation method performs polynomial fit-
ting in the time domain [13] by using the Lagrange basis func-
tion hk(d) to form a linear combination of discrete sample
points. The expression for hk(d) is as follows:

hk(d) =

N∏
m=0
m ̸=k

d−m

k −m
, k = 0, 1, . . . , N (1)

where N represents the order of the filter; k represents the in-
dex of the k Lagrange basis function; d is the fractional delay
parameter; and m is the integer index variable in the product
operation.
The classical TappedDelay Line (TDL) fractional delay filter

requires the generation of distinct filter coefficients for varying
delay values, which result in poor real-time performance. In
contrast, the Farrow structure eliminates the need to recalcu-
late the coefficient matrix when the delay parameter changes.
The corresponding tap coefficients can be generated by substi-
tuting the updated delay parameters. Consequently, this struc-
ture effectively resolves the issue of real-time performance is-
sues. The architecture of the Farrow filter is illustrated in Fig. 1,
where the filter coefficient expression is expanded and repre-
sented in the form of a polynomial sum of dm as follows:

hk(d) =

M∑
m=0

cm(k) · dm, k = 0, 1, . . . , N (2)

FIGURE 1. Block diagram of Farrow filter structure.

where cm(k) is the coefficient of the m-th polynomial at the
k-th tap, and all cm(k) forms the coefficient matrix C. The
transfer function of the filter is expressed as follows:

Hd(z) =

M∑
m=0

(
N∑

k=0

cm(k)z−k

)
dm =

M∑
m=0

Cm(z) · dm (3)

whereM represents the number of filters, andN is the order of
the sub-filters. Usually, letM = N .

3. IMPROVED LI IN NEWTON-VFD

3.1. Transformation Matrix for Newton-VFD
In contrast to the Farrow structure, the Newton structure [14]
utilizes a forward difference operation mechanism, thereby
avoiding complex calculations associated with high-order poly-
nomials. Consequently, it demonstrates significant advantages
in low-power scenarios or applications with stringent real-time
requirements. This approach effectively reduces the computa-
tional load and substantially simplifies the complexity of the
hardware implementation. Its structure is illustrated in Fig. 2.

FIGURE 2. Block diagram of Newton filter structure.

This study aims to represent the transfer functions of Farrow
and Newton structures in vector form and to derive the transfor-
mation formula between them. The conversion from the Farrow
structure to the Newton structure was achieved using the trans-
formation matrix.
Transforming formula (3) into matrix form gives the Farrow

transfer function as:

HFarrow(z,D) = DTCz (4)

where the delay vector D = [1, d, d2, d3, . . . , dN ]T of the Far-
row structure; d is the delay parameter of the Farrow structure;
the discrete time domain z = [1, z−1, z−2, . . . , z−N ]T, and the
two are power-basis vectors.
Define the delay parameter d̃ = d− N

2 of the Newton struc-
ture. According to Fig. 2, the transfer function of the Newton
structure is defined as follows:

HNewton(z̃, D̃) = D̃TC̃z̃ (5)

where the delay vectors D̃ = [1, d̃(d̃ − 1), d̃(d̃ − 1)(d̃ −
2), . . . , d̃(d̃−1), . . . , (d̃−N +1)] of the Newton structure and
the discrete time domain z̃ = [1, 1− z−1, (1− z−1)2, . . . , (1−
z−1)N ]T are the basis vectors of the difference quotient.
To convert the delayed-domain power basisD to the divided-

difference basis D̃ of the Newton structure, which transforms
the Farrow transfer function into Newton form, the binomial
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coefficient matrixTd_0 and Stirling number matrixTd_1 are de-
fined. Both Td_0 and Td_1 are lower triangular matrices.
The elements of Td_0 are constructed using binomial coeffi-

cients and the delay offset −N
2 , and the general formula is as

follows:

Td_0[k][i] =

(
k

i

)(
−N

2

)k−i

, 0 ≤ i ≤ k ≤ N (6)

where
(
k

i

)
denotes a binomial coefficient, which represents

the number of ways to partition k elements into i circular per-
mutations. (−N

2 )
k−i is the power term of the delay offset. Tak-

ing N = 4 as an example, Td_0 is expressed by the following
matrix:

Td_0 =


1 0 0 0 0
−2 1 0 0 0
4 −4 1 0 0
−8 12 −6 1 0
16 −32 24 −8 1

 (7)

The elements of Td_1 are constructed from the first type of

unsigned Stirling number
[

k
i

]
, and its general formula is as

follows:

Td_1[k][i] = (−1)k−i

[
k
i

]
, 0 ≤ i ≤ k ≤ N (8)

where (−1)k−i is a symbol correction term. Taking N = 4 as
an example, Td_1 is expressed as the following matrix:

Td_1 =


1 0 0 0 0
0 1 0 0 0
0 −1 1 0 0
0 2 −3 1 0
0 −6 11 −6 1

 (9)

Therefore, the delay domain transformation matrix Td =
Td_0 · Td_1 is defined, where Td[k][i] is the sum of the prod-
ucts of the corresponding elements in the k-th row of Td_1 and
the i-th column of Td_0, as shown in the following formula:

Td[k][i] =

k∑
m=i

Td_1[k][m] · Td_0[m][i]

=

k∑
m=i

[
(−1)k−m

[
k
m

]]
·

[(
m

i

)(
−N

2

)m−i
]
(10)

To achieve mapping from the discrete-time domain power
basis z to the difference quotient basis z̃ of theNewton structure,
the discrete-time domain transformation matrix Tz is defined,
and its general formula is as follows:

Tz[k][m] = (−1)k−m

(
k

m

)
, 0 ≤ m ≤ k ≤ N (11)

Therefore, Tz can be expressed as the following matrix when
N = 4:

Tz =


1 0 0 0 0
1 −1 0 0 0
1 −2 1 0 0
1 −3 3 −1 0
1 −4 6 −4 1

 (12)

Moreover, the difference quotient basis satisfies D̃ = Td ·D,
and the discrete difference quotient basis satisfies z̃ = Tz · z.
Therefore, the Newton transfer function can be derived from the
Farrow transfer function through the following matrix transfor-
mation:

HFarrow(z,D) = DTCz = DT (TdT−T
d

)
C
(
T−1
z Tz

)
z

= (TdD)T
(
T−T
d CT−1

z

)
(Tzz)

= D̃TC̃z̃ = HNewton(z̃, D̃) (13)

where the filter coefficients of the Newton structure satisfy C̃ =
T−T
d CT−1

z .
As demonstrated by the proof, the Farrow structure can be

transformed into a Newton structure via a transformation ma-
trix, and the transfer functions of both structures are completely
equivalent. Consequently, given this equivalence, when pri-
oritizing filter robustness, the Farrow structure can be con-
verted into a Newton structure. By leveraging the reduced ill-
conditioning of the Newton structure matrix operations, the is-
sue of numerical instability in high-order designs is mitigated,
thereby enhancing the robust performance of variable fractional
delay filtering.

3.2. Robustness Optimization of High-Order LI in Newton-VFD
The Lagrange interpolation algorithm suffers from numerical
instability under high-order scenarios. With increasing order,
the condition number of the coefficient matrix deteriorates, and
the ill-conditioning intensifies, leading to significant errors dur-
ing the inversion of the transformation matrix. Therefore, to
enhance the robustness of the filter in high-order applications,
this study optimizes the Lagrange interpolation-based Newton-
VFD algorithm through a two-fold approach.
First, the time parameter centralization of the Lagrange inter-

polation method was studied. Ref. [15] utilized the convolution
method to avoid explicit inversion and split the Lagrange inter-
polation function expression into two parts: denominator and
numerator. The formula is as follows:

hm(d) =

N∏
i=0,
i ̸=m

d− i

m− i
= λmPm(d) (14)

where λm is the normalized coefficient.
For the molecular part Pm(d) =

∏N
i=0,
i ̸=m

(d− i), let the delay

parameter d = N
2 + d̃ and transform the Lagrange interpola-

tion polynomial from a polynomial related to d to one related
to d̃. Through mathematical reconstruction, numerical defects
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are avoided, and at the same time, coefficient symmetry is con-
structed to make the polynomial coefficients more stable as the
order N increases. The formula is as follows:

Pm(d) = Qm(d̃) =

N∏
i=0,
i ̸=m

(
N

2
+ d̃− i

)
(15)

when N is an even number and m ̸= N
2 , let i =

N
2 + i′, and

simplified Qm(d̃) can be obtained as follows:

Qm(d̃) =

N/2∏
i′=−N/2,
i′ ̸=m−N/2

(d̃− i′) (16)

Furthermore, during the conversion from the Farrow struc-
ture to the Newton structure, the inverse operation of transfor-
mation matrices such as Td_0, Td_1, and Tz is crucial. The
traditional explicit inversion method has a high computational
complexity. Therefore, this study adopts a method to avoid the
explicit inversion of the transformation matrix involved when
converting a Farrow structure to a Newton structure.
Let Td_0 be an N + 1-order lower triangular matrix that sat-

isfies the diagonal element Tii = ±1, and the symbols of the
non-diagonal elements are uniform. For any lower triangular
matrix, the inverse matrix remains a lower triangular matrix.
Therefore, the diagonal elements of the inverse matrixT−1

d_0 are:

(T−1
d_0)[i][i] =

1

Td_0[i][i]
= Td_0[i][i] (17)

The non-diagonal elements of T−1
d_0 can be obtained through

the recursive formula:

(T−1
d_0)[i][j] = − 1

Td_0[i][i]

i−1∑
k=j

Td_0[i][k] · (T−1
d_0)[k][j] (18)

Because the non-diagonal symbols of Td_0 are uniform, the
non-diagonal element symbols ofT−1

d_0 are consistent with those

of Td_0. Therefore, the absolute values of the elements in T−1
d_0

and Td_0 are exactly the same and can be simplified as follows:

T−1
d_0 = abs(Td_0) (19)

Td_1 is the sign correction matrix of the first type of Stirling
number, and its elements are defined by formula (8). The first
type of Stirling number matrix S and second type of Stirling
number matrix Sinv satisfy the orthogonal relationship S ·Sinv =
I, from which Sinv = S−1 can be obtained. The specific rela-
tionship is as follows:

j∑
m=i

[
j
m

]{
m
i

}
= δij (20)

where δij is the Kronecker function.

After the symbolic correction of Td_1, its inverse matrix can
be represented by the symbolic correction form of the second
type of Stirling number:

(T−1
d_1)[k][i] = (−1)k−i

{
k
i

}
(21)

Because all Stirling numbers are non-negative integers, and
(−1)k−i have the same sign pattern in Td_1 and T−1

d_0, the ab-

solute value form of T−1
d_0 is equivalent to the second type of

Stirling number matrix:

T−1
d_1 = abs(Sinv) (22)

where Sinv is the sign correction matrix of the second type of
Stirling numbers.
The transformation matrix T−T

d can be calculated by T−1
d_0

and T−1
d_1

T−T
d = (T−1

d_0 ∗ T
−1
d_1)

T (23)
The elements of Tz are defined in formula (11), and the ele-

ments of T2
z are calculated as follows:

(
T2
z

)
[k][i] =

k∑
m=i

Tz[k][m] · Tz[m][i] (24)

Substituting the properties of the binomial coefficients in for-
mula (24), the following can be obtained:

k∑
m=i

(
k

m

)(
m

i

)
(−1)k−m(−1)m−i = δki (25)

It can be proven that T2
z = I , that is, Tz conforms to the

characteristics of a pair matrix, and its inverse matrix satisfies
the following equation:

T−1
z = Tz (26)

The above-mentioned inverse matrix transform makes use
of the consistency of the lower triangular sign, orthogonality
of the Stirling number, and self-inverse transformation of the
connection matrix. This avoids the high computational load
of the general inverse transformation and effectively prevents
the numerical instability problem that occurs during the inverse
transformation of the transformation matrix.
The Newton structural coefficient matrix corresponding to

the Lagrange Farrow structural coefficientC is C̃ = T−T
d CT−1

z .
Its matrix form at N = 4 is expressed as:

C̃ = T−T
d CT−1

z =


1 −4 6 −4 1
0 −1 4 −6 4
0 0 1

2 −2 3
0 0 0 − 1

6
2
3

0 0 0 0 1
24

 (27)

In summary, this study derives the coefficient matrix trans-
formation formulation from the Lagrange-based Farrow struc-
ture to the Newton structure and verifies their functional equiv-
alence in variable fractional delay filtering. Furthermore, the
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numerical stability of the algorithm was significantly enhanced
by employing delay parameter centralization and avoiding ex-
plicit matrix inversion.

4. APERTURE FILL TIME CORRECTION ALGORITHM
BASED ON NEWTON-VFD
The physical dimensions of the antenna array will introduce the
aperture fill time. In broadband systems, it is specifically mani-
fested as beam skew and pulse broadening phenomena. To mit-
igate these impairments effectively, a robust and efficient delay
compensation scheme is essential. Building on Section 3, this
section proposes a practical correction architecture centered on
the designed low-complexity, robust Newton-VFD filter. This
optimized structure ensures stable amplitude-frequency char-
acteristics while significantly reducing hardware costs. Con-
sequently, integrating this filter into a cascaded “integer-to-
fractional” architecture achieves high-precision aperture fill
time correction, along with optimal resource utilization.
In this study, an isotropic Uniform Linear Array (ULA) was

adopted as the signal receiving array model [16], as shown in
Fig. 3. The ULA consists of M array elements with an inter-
element spacing of l. It is assumed that a far-field plane wave
signal s(t) impinges on the ULA at a specific angle θ.

FIGURE 3. ULA receiving array model.

According to theM -element array shown in Fig. 3, the path
difference between the received signals of two adjacent ele-
ments is l sin(θ). Taking the rightmost element as the reference
and given the speed of light c = 3×108, the propagation delay
of the received signal at them-th element is:

τm = (m− 1)l sin θ/c, m = 1, 2, . . . ,M (28)

Therefore, the received signal at them-th array element is:

xm(t) = x(t− τm) (29)

Owing to the influence of the broadband array geometry [17],
the received signals at the remaining array elements have vary-
ing degrees of delay compared to the reference element. To
ensure that the signals received by all array elements can be
synchronized, enabling accurate and undistorted signal synthe-
sis during spatial processing such as beamforming, and to pre-
cisely estimate the azimuth angle of the signal source, aperture
fill correction must be performed. The correction process is
illustrated in Fig. 4.
Let τm denote the propagation delay of the received signal

at them-th array element. Upon digitization at a sampling fre-

FIGURE 4. Flowchart of the aperture fill time correction algorithm.

quency fs, the corresponding discrete delay Dm is typically
a non-integer, necessitating fractional delay compensation. To
address this, we propose a cascaded architecture based on delay
decomposition, in which the delay of each element is separated
into integer and fractional components and processed sequen-
tially.

Dm = τm · fs
Dm_int = floor(Dm)

Dm_frac = Dm −Dm_int

(30)

Specifically, regarding the integer delay component Dm_int,
coarse correction is performed using integer sample shifting.
For the fractional delay component Dm_frac, precise correction
is achieved by first computing the coefficient matrix based on
the Newton-VFD, and subsequently deriving the corresponding
filter tap coefficients according to the specific fractional delay
value.

5. SIMULATION RESULTS AND ANALYSIS
This section presents a model simulation analysis based on the
theoretical derivations in the preceding sections. First, it veri-
fies the performance equivalence between the Farrow andNew-
ton structures achieved using the transformation matrix. Sec-
ond, to address the issue of numerical instability in high-order
scenarios, it evaluates whether the combination of delay param-
eter centralization and avoidance of explicit transformation ma-
trix inversion effectively enhances system robustness.
The simulation initially compared the Lagrange interpolation

method with the cubic spline interpolation algorithm, as shown
in Fig. 5. The results demonstrate that the Lagrange method ex-
hibits superior amplitude-frequency characteristics, more pre-
cise fitting accuracy, higher passband flatness, and a closer ap-
proximation to the ideal frequency response. Consequently, all
the subsequent simulation analyses in this study were based on
the Lagrange interpolation method.
In the simulation, with the order set toN = 4, the amplitude-

frequency characteristic curves are plotted for both the La-
grange interpolation-based Farrow fractional delay filter and
the optimized Newton structure fractional delay filter. A com-
parison of these curves verifies the previously derived con-
clusion that the equivalence between the Farrow and Newton
structures can be achieved using a transformation matrix. This
provides experimental support for the convertibility of the two
structures from the perspective of the frequency domain char-
acteristics.
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FIGURE 5. Comparison of interpolation algorithms.

(a) (b)

FIGURE 6. VFD amplitude-frequency characteristic curves with different structures. (a) Farrow structure. (b) Newton structure.

Figure 6 shows that the Farrow and Newton structures can
achieve fully equivalent filtering results with the help of the
transformation matrix. However, when N > 14, the coeffi-
cient matrix of the Lagrange interpolation method itself will
have a catastrophic cancellation problem at a higher order, and
the transformation matrix will be accompanied by numerical
instability and accuracy loss problems. These factors jointly
lead to significant ill-conditioned matrix problem in the New-
ton structure. Taking N = 18 and N = 22 as examples, as
shown in Fig. 7, the amplitude-frequency characteristic curves
are clearly displayed. At this point, the numerical instability
problem of the fractional delay filter has become prominent,
and the fractional delay function cannot be precisely realized.
To solve the above numerical instability problem, based on

the original method, the delay parameter of the fractional delay
filter is centralized, and the explicit inversion of the transfor-
mation matrix is avoided by combining the formula derivation,
which improves numerical instability to a certain extent. Af-
ter optimization, as shown in Fig. 8, the amplitude-frequency
characteristic curves of the filter performed well whenN = 18
and N = 22.

Figure 9 shows the magnitude response of Newton-VFD un-
der different delay parameters when N = 20. From the image,
it can be seen that the amplitude response surface within the
effective passband shows extremely high flatness, proving that
the Newton-VFD proposed in this study not only has a lower
complexity but also maintains excellent passband characteris-
tics and numerical stability.
Table 1 compares the condition numbers of the transforma-

tionmatricesTu,Tz and the sum under different filter ordersN ,
as well as the errors of the traditional method and the method
proposed in this paper compared to the ideal filter. From Ta-
ble 1, it can be seen that the condition number of the trans-
formation matrix increases rapidly with the increase in order.

TABLE 1. Robustness index.

N Cond (Tu) Cond (Tz)
Error of

traditional methods
Error of
this article

4 1.91× 104 9× 101 7.88× 10−15 4.44× 10−16

18 5.57× 1040 1.21× 1010 5.27× 10−2 1.52× 10−6

22 2.65× 1053 2.79× 1012 6.93× 102 1.00× 10−2
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(a) (b)

FIGURE 7. Amplitude-frequency characteristic curves of the nonrobust algorithm. (a) N = 18. (b) N = 22.

(a) (b)

FIGURE 8. The amplitude-frequency characteristic curves after robust optimization. (a)N = 18. (b) N = 22.

FIGURE 9. 3D magnitude response plot.

Due to the presence of ill-conditioned characteristics, the tra-
ditional method relying on explicit matrix inversion generates
catastrophic numerical errors. In contrast, even at N = 22, the
method proposed in this paper can still keep the error at a rela-
tively low level, thereby demonstrating the excellent robustness
of the Newton-VFD proposed in this paper.
Building upon the performance analysis and optimization of

the Newton-VFD, this study further validates the engineering

implementation of the filter for aperture fill time correction in
broadband array radars. Assume that the number of array el-
ements is M = 32, taking the 1st, 16th, and 31st elements as
array elements as examples for plotting. As shown in Fig. 10,
with the 1st element serving as the reference, the echo signals
of the 16th and 31st elements exhibited varying degrees of time
delay. As illustrated in Fig. 11, the aperture fill time effect be-
came more pronounced following the range pulse compression
of the received signals. The peak echo energy for distinct ele-
ments is distributed across different range cells, thereby mani-
festing the aperture fill time phenomenon.
To address the issue of delays caused by non-integer sam-

pling periods encountered in the simulation, the broadband ar-
ray aperture fill time correction algorithm based on the low-
complexity robust VFD, proposed in the preceding section, is
employed. A quantitative analysis of the delay parameters dur-
ing the correction process is shown in Fig. 12. The blue trace
depicts the initial delay values of the individual array elements,
exhibiting a linearly increasing trend, consistent with the array
wavefront arrival model. The red trace indicates the residual
fractional delays that remain after integer compensation. Fi-
nally, the green trace demonstrates that the delay values for all
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FIGURE 10. Raw echo signal. FIGURE 11. Echo signal after pulse compression.

FIGURE 12. Raw echo signal. FIGURE 13. Array beam pattern.

the array elements were reduced to zero, thereby confirming the
completeness of the correction process.
According to the two-stage aperture fill time correction al-

gorithm proposed in this study, integer sample shifting is first
performed to address the integer delay component, as depicted
in Fig. 14. Compared to Fig. 11, the echo signals following
integer delay compensation have achieved coarse correction;
however, minor delay errors persist, corresponding to the red
trace representing the fractional delay in Fig. 12. Consequently,
the experiment was conducted to correct the fractional delay
component. The resulting corrected echo signals are shown in
Fig. 15, where the echo energy is more precisely concentrated
within the same cell range. At this stage, the delay magnitude
corresponds to the zero-out green trace shown in Fig. 12. Thus,
the aperture fill time correction was completed, providing an
optimized signal foundation for subsequent beamforming and
parameter estimation.
Figure 13 shows the beam patterns in three states: without

correction, integer delay correction, and fractional delay cor-
rection. The main lobe of the uncorrected beam is severely
broadened, and the amplitude attenuation is severe. Through
quantitative analysis of Fig. 13, it can be seen that the uncor-
rected wideband beam has a serious pointing deviation. When
the simulation sets the target direction to 30◦, the actual point-

ing is 15.6◦, with an error of 14.4◦. After the Newton-VFD cor-
rection proposed in this study, the beam points to 30.0◦. At the
same time, the peak side-lobe ratio (PSLR) was calculated in
the simulation. Due to the defocusing effect of the uncorrected
beam, the side-lobe level is high, and the PSLR is −3.54 dB.
At this time, the interference suppression ability is poor, which
will lead to false alarms in actual radar applications. In con-
trast, after the Newton-VFD correction, the PSLR improves to
−13.23 dB, demonstrating the superiority of the algorithm in
suppressing side lobes.
The experiment analyzed and compared the hardware com-

plexity of VFD. Because the coefficient matrix C̃ in the Newton
structure exhibits the characteristic form of an upper triangular
matrix, it significantly reduces the usage of adders and multi-
pliers compared with the Farrow structure. This effectively en-
hances the overall operational efficiency and resource utiliza-
tion of the system. Table 2 provides a comparison of adder and
multiplier usage for N = 18 and N = 22.
The simulation implementation validates robust processing

optimized through parameter centralization and matrix inver-
sion. This demonstrates that, while maintaining equivalence
with the Farrow structure, the Newton structure significantly
reduces the computational complexity and conserves computa-
tional resources.
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FIGURE 14. Integer delay compensation of the echo signal. FIGURE 15. Fractional delay compensation of the echo signal.

TABLE 2. Hardware complexity.

Farrow Newton
N Add Mult Add Mult
18 333 352 189 208
22 459 482 275 298

6. CONCLUSION
To address the aperture fill time in broadband array radar and
its efficient, high-precision correction, this study investigates a
correction algorithm based on a low-complexity robust Variable
Fractional Delay (VFD) filter. This study prioritized the design
of a low-complexity robust fractional delay filter based on a
Newton structure. Specifically, to address the issues of com-
putational complexity and numerical stability encountered by
VFD filters in high-order applications, a robust low-complexity
architecture was proposed. The Newton forward difference
mechanism is introduced into the Lagrange interpolation type
VFD to replace the traditional Farrow structure. By implement-
ing delay parameter centralization and optimizing the transfor-
mation matrix inversion process, the Lagrange interpolation-
based Newton structure VFD was enhanced. The delay pa-
rameters were shifted to the center of the interpolation interval,
and the Lagrange interpolation polynomial was reconstructed,
which alleviated the problem of the divergence of high-order
polynomial coefficients. This optimization improves the sys-
tem’s robustness while simultaneously reducing the computa-
tional complexity. Furthermore, the mapping relationship be-
tween the geometric positions of array elements and delay pa-
rameters was established. It has constructed a comprehensive
cascaded correction architecture, achieving coarse compensa-
tion through integer sampling shifting, and then performing
fine correction on the remaining fractional delay using an opti-
mized Newton-VFD. Future research could further explore the
extended application of alternative interpolation algorithms and
optimize the filter design architecture. By balancing computa-
tional complexity, system robustness, and practical feasibility,
such work aims to provide more efficient and precise solutions
for real-time signal processing systems.
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