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4.1 Introduction

Scattering of electromagnetic waves from a randomly perturbed
periodic surface is of interest in the active remote sensing of plowed
field and ocean surface. The variations of the radar scattering coeffi-
cients due to the change in the look direction relative to the row direc-
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298 4. Scattering.from Randomly Perturbed Surfaces

tion have been well documented [Batlivala and Ulaby, 1976; Ulaby and
Bare, 1979; Fenner et al., 1980]. In the past, the problem of electro-
magnetic wave scattering from periodic [Waterman, 1975; Jordan and
Lang, 1979; Chuang and Kong, 1982] or random [Rice, 1951; Beck-
mann and Spizzichino, 1963; Stogryn, 1967; Valenzuela, 1967; Sancer,
1969; Leader, 1971; Tsang and Kong, 1980a] rough surfaces has been
extensively studied. The problem of scattering by randomly perturbed
surface has been studied by assuming that the periodic surface causes
a tilting effect [Ulaby et al.,, 1982]. In this approach the scattering
coefficients of the random rough surfaces obtained using the Kirch-
hoff approximation or small perturbation method is averaged over the
change in local incidence angle due to the periodic surface. This ap-
proach has also been used to solve the scattering from a composite
random rough surface with small and large variations [Semenov, 1966;
Wu and Fung, 1972].

In section 4.2, we use the Extended Boundary Condition (EBC)
method to formulate the scattering of electromagnetic waves from a
randomly perturbed dielectric periodic surface, and apply the small
perturbation method (SPM) to solve the surface currents and scat-
tered fields. The surface currents and the scattered fields are expanded
and solved up to the second order. The zeroth order problem which
is the scattering from periodic surface is solved exactly. This solu-
tion is then used in the small perturbation method to solve for the
higher order scattered field from a randomly perturbed periodic sur-
face. The random perturbation is modeled as a Gaussian random pro-
cess. The theoretical results are illustrated by calculating the bistatic
and backscattering coefficients and comparing these with the results
obtained using the Kirchhoff approximation.

In section 4.3, we use the Kirchhoff approximation to study the
scattering of electromagnetic waves from a randomly perturbed quasi-
periodic surface in order to more realistically model the plowed fields.
In the plowed fields there are some random variations on the period
and amplitude of the sinusoidal variation as we move from one row to
the next. This variation can be modelled by introducing the narrow-
band Gaussian random process on top of the basic sinusoidal variation,
which will cause the surface to be quasiperiodic. Therefore, we charac-
terize the rough surface as a composite surface with a Gaussian random
variation, a sinusoidal variation and a narrow-band Gaussian random
variation around the same spatial frequency. The physical optics inte-
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Figure 4.2.1 Geometric configuration of the problem.

gral obtained with the Kirchhoff approximation is evaluated to obtain
the coherent and incoherent bistatic scattering coefficients. In the ge-
ometrical optics limit, the stationary phase method is used to further
simplify the results. In this limit it can be shown that the bistatic
scattering coefficients are proportional to the probability of the occur-
rence of the slopes which will specularly reflect the incident wave into
the observation direction. The theoretical results are illustrated for the
various cases by plotting the backscattering cross sections as a function
of the angle of incidence with the incident wave vector either parallel
or perpendicular to the row direction. The appearances of peaks will
be explained in terms of the scattering patterns for sinusoidal surfaces.

4.2 Scattering by a Randomly Perturbed Periodic Sur-
face

a. Formulation

Consider a plane wave incident upon a periodic surface with rough-
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ness (Fig. 4.2.1). The electric field of the incident wave is given by
E; = &Eqexp(ik; - ) (1)

where o
ki = ki + 2k, = &koi 4 Gy + 2k, (2)

denotes the incident wave vector, and &; is the unit vector in the
polarization direction of the incident electric field. The rough surface
is characterized by a height function z = f(z,y), which is given by

f(z,9) = Hcos(%}z) + €(2,9) (3)

where £(z,y) is a small random perturbation on the top of a sinusoidal
surface and is modelled as a Gaussian random process with zero mean,

< E(z’y) >=0 (4)

From Huygens’ principle the electric field E(7) in the free space and
the transmitted field E,(7) in the dielectric medium satisfy the fol-
lowing equations [Tsang et al., 1985; Kong, 1986]:

E(7)+ /S ' dS'{iw;zoﬁ(F,F')-[ﬁ x H(7)|+V x G(F,7) - [ X E(r)]}

- {‘E(?) z> f(7.) (5a)
0 z < f(FL) (5b)

- ./s' dS’{iwylﬁl(F,F’)-[ﬁ x Hy(7)] + V x G1(F,7) - [ X E_I]}

_ {9_ z> f(7.) (6a)
E\(F) z< f(T1) (68)

where G(7,7) and G,(7,7') are the dyadic Green’s functions for free
space and the homogeneous dielectric of region 1 [Tsang et al., 1985],
respectively, and the surface integration is to be carried out over the
rough surface §’. The unit vector normal to the rough surface 7 points
into the free space o

C;ﬂ:- By +2 %
Vital+p?

n=
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where o and S are the local slopes in the z and y directions,

a ” !
o= EY) (80)
_0f(=",y')

Sinte tangential fields are continuous, we can define surface field
unknowns as

ds’ \/E" A x H(F) = dF La(r_,_)—dS'\/l_‘:“ Ax Hy(#)  (9a)
dS'a x E(7') = d¥' b(7,) = d§'n x E,(F) (90)

where d7, is the projection of dS' on the z-y plane, and the surface
fields are tangential to the surface. Thus

3»

(10a)
(108)

»

(71)
(FL)
Let fmin and fr... be, respectively, the minimum and maximum val-
ues of the surface profiles f(7). Evaluating (5b) for z < fni, and (6a)
for 2 > finaz , Wwe obtain

c-| QI

(Fy)-
(Fu)-

E ( /dk_._e"”- u_e—sk,z k /d—l e—sk_._ "J.e""f('_l.)
X {[B(—k,)ﬁ(—k,) + (k. )o(—k.)] - a7 )

+ [~ 0(=k:)a(=k.) + h(=k.)(—F.)] - E(F’_L)} (11a)
0 ZL/dELeih-ﬁeikhzﬁ/(ﬁ: e tELFY o—ikiaf(FY)
8x3 klz L
k - -
X {k—l[hl(ku)hdku) + D1 (k1. )01 (kas)] - (7))

+ [~ (kae )y (kre) + Ba (ks )oy(Re,)] - 5(’_‘1)} (118)
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k=ky + 2k, =&k, + k, + 2k, k=wype, (12a)
k 1L+ +gky + 2ki,, k= w6 (120)

2’61‘ = i:kz

ko= /B3 4E2, ko= k-, k= Rk (12¢)

R Exz 1, R
h(k,) = x 2| = E(zkg ~ gk;) (12d)

- _ 1. o "‘kx a " kp,\

o(k,;) = khxlc— ¥, (2k, + §ky) + %2 (12¢)

Byxz 1, .
1(ky.) = m = E(tky - gk;) (12f)
o (k )--1-3 x£-‘k“(ék +*k)+-’fﬁs (129)
11;——k11 I-klk,, z 1 YRy ks g

The above equations are the Extended Boundary Conditions, and
are used to solve for the surface fields along with (10). Using (7), (10)
can be written as

o) = (750 4 5200y

a.(7L) (13a)

bu(ry) = (6200 4 6”‘ 1y 5, () (136)

where a, and b, are the z components of @ and b, respectively.
Once the surface fields are obtained, then the scattered field E, ()

in region 0 can be derived by evaluating (5a) for z > fna. - Thus, we

obtain

“E“(F) S _8__:‘;.; / djc"lei'k-_[.‘?.x. e"‘z‘f: / d‘?—.'le“’zl‘;‘i. e“i"ff(;tl.)
X {[ﬁ(k,)fz(k,) + 0(k:)o(k;)] - a(y)

+ [~ 9(ke k) + (k. )o(k.)] -3(“'*1)} (14)

Equations (11), (13) and (14) are exact, and the approach is to solve
for the surface fields using (11) and (13) and then to solve for the
scattered fields using (14).
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To solve for the surface fields by perturbation method, let

®_ om) (5
a(r,) = E '—"E! 1) (15a)
oo m) F,
B(r) = b () ng!*) (15b)

*

where @™ and 5™ are the mth order terms of @ and b, respec-
tively. We also have

exp[ik, f(7,)] = exp [ﬂ:ik,ﬂcos(?%”-)] 3 [—’5"“—;@3 (16a)

m=0

exp[tik., f(7,)] = exp [:tikl,H cos( 2:“’ )] Z [iikl:i(!ﬂ‘)]m (16d)

m=0

In the small perturbation method (SPM), £ and its derivatives are
regarded as small parameters. Thus we assume

0§ 0¢

kl&(?l)’ klzf("_"l)’ 3_22'-, —(9? L1 (17)

Substituting (15) into (13) and equating the same order terms, we have

dO(F,) = “211’” sin (2—;-2:) o) (180)
BO(F, ) = '2;H sin (313’5.1-) b (185)
a™(7 ) = _2;H sin <2?7r:c) a{™

+m (:c 65;;*) + f/a%(::l)) A IE) (18
b™(F,) = —Z;H sin (27::—::) (™)

OE(F)) . BE(F m-1),_,
+m(:c a(:c'l +9 a(y,*))-i‘l () (18d)
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Similarly, substituting (15) and (16) into (11) and equating the same
order terms, we can calculate the surface fields to different orders.
Then, from (14), the scattered fields can be calculated to each order.
In the following, we solve for the surface fields and scattered fields
up to the second-order. The zeroth-order solutions are just the Bragg
diffracted fields from a periodic surface. The first-order solution gives
the lowest order incoherent scattered intensities. When the incident
direction is perpendicular to the row direction of the periodic surface,
the first-order solution does not give the depolarization effect in the
backscattering direction. The second-order solution gives the depolar-
ized scattered fields even when the incident direction is perpendicular
to the row direction and also the lowest order correction to the coherent
fields.

Zeroth-order solution

Substituting only the lowest order terms in the expansion of (15)
and (16) into (11), the zeroth-order equations are given by
2re’
)
P

E(7) =32 / ch'_Le‘;";*e""“k— / d', e~ FL 7L exp [ik‘H cos(
X {[fl(—kz)ﬁ(—kz) + 9(—k.)o(—k.)] - @O (F,)

+ [~ (k. )h(~k,) + h(=k.)b(~k.)] *"’—*)} (190)

0=—o /dk_._e""‘ Ty shnz /d"_._e &y T exp [—zk“H cos( 2xe’ )}
{ (B (k1o)ha (Rae) + 02 (krs)o(krs)] - TO(F))

+ [“131(’31;);51(’31:) + ih(ku)‘ifl(kxz)] . 5(0)(?‘1)} (199)

To solve the above equations, the incident electric field is written as
__E"- (F) = éiEoe‘;«Ll"?.L —ikgiz

oo oL =, (20)
n 'k-’-"-'-_'k“/dF'_Le'h"'"J- iky )
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Since the zeroth-order solutions are exactly the scattered fields from
a periodic surface, the zeroth-order surface currents can then be ex-
panded by the Floquet modes [Chuang and Kong, 1981 and 1982]. Let

> -]
a® = Z afg.)e"."-*"'ﬁe'm’ (21a)
ﬂ—ww
» a§°) = Z asz‘)e’i“'ﬂe‘%'!’ (21d)
NnN=-00
hasd —
B = D7 et (21c)
n=—00
e —
B = D plleuTae e (214)
n=—00

where 7, = z&+yj, and a{?), af?, b(°) and b{®) are the correspond-

ing  and y components of @ _(°) and 5 . Substituting (20) and (21)
into (19), we have the following matrix equation:

al® P(—k..). &
o [aP] _ [5ke e
M( ) ﬁz’o) - nO 10m (22)
B 0

where a9, o, B and ,B(O) are the column vectors of (%), ag‘,’,) ,

AL and ,B(‘,’,) , respectlvely The matrix equation (22) is given explicitly
in Appendlx A,

Once (22) is solved, the zeroth-order scattered field E. (1') is
given by

E)(7) E e amiTL ghamis[fy(k, VE®) 4 (kumi) ECL] (230)
where

o h(=k.:) - &6,
[E’(S)] = H© ‘330) = HOp0)-1 v(—kng < &ibm (23b)
B 0
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af? h(—k.s) - &8,
al®) ~(-sz) il
Es?) = v:(o) ﬂ{o) — I/.(O)M(o)—l v zio €i0m (23(!)
B 0
EJ.mi = I.Li + 5:21;:"’ k:mi = 4/ k? - kimi (23d)

and E{? and E(? are the column vectors formed by E® and EQ ,
respectively. The explicit forms of H(®, V@, E{ and E(), are
given in Appendix A.

First-order solution

The first-order equation can be obtained by keeping Egs. (15) and
(16) up to the first order. Substituting the first-order expansion into
(11), the following first-order equation can be obtained:

1 T ik —ikez K —ik . 2r
0= gg/dkxe 17Lg ‘k_‘/dr-’le kL1 7) exp [sk,Hcos(-;-z')]

X {[ﬁ(‘kx)il("kz) + 9(—k, )o(~k.)]

: [5(1)(7"1.) +fk:§(7'4l )_dfo)(ﬁ. ]
+[=0(=k:)h(~k.) + h(~F,)o(~k.)]

B + ik (7O 1} (24a)
1 — - . k T R 2x
0= -8?/dk_l.e"’*"*e"‘"‘t/dv"’Le""*"* exp [—!kuH cos(;-x')}

x{{:[ﬁl(k,,)fq(ku)+?31(ku)131(k1z)]

(@) = ik (7 )a (7))
+ [-f’l(klx)hl(klz) + i”l(klz)i’l(klz)}

B - kg5 ml} (248)

To solve the first-order equations in the spatial frequency domain, we -
take the Fourier transform of the first-order surface currents @), 5(1) _
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and the roughness function £(z,y).

AVE) = o [dLaDF )T T (250
APE) = s [ aPE)e TRt (o)
BOR) = G [ a0 e i B (o5e)
B = s [ I e B (25g)

F(R) = s [ arigr)e ™ (26)

Substituting (18), (25) and (26) into (24), we have the following matrix
equation (The matrix equation is given explicitly in Appendix B.):

A?)
AQ) — —

Bl

where A(V, A(, B, and B{") are the column vectors formed by
fg)(kx —kimi)y AP(kL — Eimi), BO(kL — Eimi) and B (kL —
kimi), respectively.

The matrix R(") is dependent on the zeroth-order solution a9,
o), B and B . Once the zeroth-order solution is solved, the ma-
trix R can be determined. The above matrix equation accounts for
the coupling between the first-order surface fields and the roughness
function with the set of frequency components

- - - — . 2mr
kl—kJ.mt':k.L—kJ.i_z P

The above coupling equations are due to the Bragg scattering mecha-
nism of the large scale periodic surface. Thus, the first-order solution
can be solved in terms of the zeroth-order solution and the Fourier
components of the small random perturbation.

Keeping (14) to first order, we have the first-order scattered field.

BV () = [ df, st {a(k,) DB k)Y Es:z,.} (29)

M = —00,...,00 (28)
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where E,(jz,,_ and E(!), are linearly dependent on the Fourier compo-
nents Agl)(ki_ - klmi) 3 Agl)(kl - kJ_,ms‘) y B:s:l)(k.l. - k.!.mi) 3 B},l)(kl -
EJ.rm') ,and F(k, — kimi).

A
) o Al P [
Bl

- (H}i}M(l)"lR(l) + H}i)) [F(?EL - E.Lms')} (30a)

A%‘)
1) - -
o] v [20] 4o [ 5]

B

- (V,“)M(l)‘lR(i) + v;‘") [F(EJ, - }'_Lm,.)] (30%)

where E{ and E{!) are the column matrices formed by E{\) and
E() | respectively, and H}l) and Vf(l) are diagonal matrices [Ap-
pendix B]. Then we can obtain the following equations by summing up
all the components of E{) and E(V.

Y EQ. =S AL F(RL - Fim) (31a)
m m
SN EQ, =) AR F(ky — Eim) (31b)

If the roughness is modelled as a Gaussian random process with
zero mean (i.e., < F(ky — kym;) >= 0), the ensemble average of the
first-order scattered field is zero,

<EVF) >=0 (32)

This means that the first-order scattered field is an incoherent field.
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Second-order solution

By keeping the expansion of (15) and (16) up to the second order
and substituting the second-order expansion into (11), the following
second-order equations can be obtained:

V[ dimy ik K —iE T ; 2x ,
= s?/dkle"‘* Le~tk k—z/dF'J_e k171 exp [zk,Hcos(?z )]
X{[ﬁ(-kz)ﬁ(—kz) + 9(=k,)o(-k.)]

(53000 + g a) - S|
+[—v( k. )h( —k, )+h( —k,)o(—k,)]

-1*’*)+ ik, &7 )57, - kfezz‘” ﬂ)]} (33a)

8 2/dk eik_]_ 1 ik1‘£

X { Ay (kye oy (kue) + 9 (s )ou (k)

ks /dv""_,_e"'h';'l exp [—ikl,H cos(z—tz'):l
1z b

33 - k()R - ST, )|
+ [—vl(klz)hl(klz) + hl(klz)vl(klz)]

: H’“) ik 677, - kf,s“” )]} (335)

Taking the Fourier transform of the surface currents and the roughness
function £, we can solve the second-order equations in the spatial
frequency domain.

AP (kL) = )2 /dﬁ_a (7, JemFLiTLe= kLT (34a)
y)(kl) = (2 )? ./d—lJ.a(n)(rJ.)e_mu’.L LT (34b)
BOE) = s [0 BB (sac)

A 1 =1 \_—ik, ;-7 _—ik -
BOE) = g [ L6 )e T e BT (340
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Substituting (18), (21), (25), (26) and (34) into (33), we have the fol-
lowing matrix equation, which is given explicitly in Appendix C.

Al [ F % AQ')(EJ_ - ‘ic-_[_m,')
M@ ap | @ | F AP (R = Eim)
B%z) VL Fx BO(ky — kim)
‘B;) _F*Bs(‘l)(kl - k_]_m,')

+RP | FxF(ky - L,,,,-)]
-(kz - kxmi)F * AS;I)(E.L - E.Lmi)
- (ky — kymi ) F * Ag"({c_l - {c_.l.mi)
+ Ry (kz - kzmi)F * Bé"({c_l - fxmi) (35)
(ky . kymg)F * By)(kl — k.l.mt')

where A(), A(®, B{, and B{® are the column vectors formed by
A&”(R - —k-J.mi)’ Ag”(iﬁ - E.Lmt')’ B;”(EL - -E.Lmi) and B§,’>(7s=l -
Fimi), Tespectively, and '+’ denotes convolution.

The second-order equation is similar to the first order equation in
that only the spatial frequency components with integer times 2x/p
difference are coupled together. The second-order solution can be
solved in terms of the zeroth-order solution, the first-order solution,
and the Fourier components of the roughness function.

Keeping (14) to second order, we have the following expressions
for the second-order scattered field:

N LS L oL SR

(AN (kL — kimi)

52| _ o | AP —Fam)

Bgz)(é.l. - lc_.l.mi)

| B{ (kL — kimi)

[ F x A(zl)@i. - E.me’) v
(2) F*Aﬁ"(kx — kimi) (2) = T

tH Fx BM(ky — kimi) +H | Fox Flles = ami)

_F * Bgl)(-k-l —_ _E.Lms')
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(ks ~ kzmt')F * AQ)(E - El_mi)

2 (ky = kymi) F * A;"(R — kimi)

+ H | (k, = Boni)F % BO(EL = Fimi)
(ky - kymi)F * B!(Il)(kl - k.Lmi)

F % AQ)(‘E_L - E.Lms’)
F x Agl)(-’;J_ - E‘ng)
F * Bgl)(z_g_ - E.Lmt')
F % Bz(,‘}(?c}_ - Z.Lmi)

= (HOMO R + 1)

-

[ (ka - kzmi)F * AQ)(E.L - -,;J.mi)
(ky — kym,‘)F * Ag‘)(E_ — -E_j_m,')
+ (HI(Z)M(z)-lR?) + Hiz)) (ks - kzmi)F * B&l)(EJ_ - Elmi)
(ky = kymi ) F * Bé"(kL - ELms)

(37a)
Ag’)(fl e E_Lmi) Fx AQ)(E_ - EJ_,,,.‘)
AP (ky — Fim:) LY@ Fx A&”(E. — kimi)
BO (k) ~ kimi) * | FxBM (kL —Fimi)
B!(,’)(EJ_ - 7&‘f_.t.m.') F x B;”('l’cl - EJ.fm')

E

+ V& FxF(k, _-k..l.mi)]

[ (k:n - kzms’)F * Agl)(_z_.L — E.Lmi)
@) (ky — kymi)F * Ag”(@_ - ’iJ.mi)
+ V4 (ka - kzmi)F * BQ)(E.L - E.Lmi)
(ky - kymg)F * B!(,l)(k’l_ - k.l.mt’)

Fx AD(ky — Eimi)
F x A;l)('ic-_L - 70._]_"“')
Fx B,(,I)(‘E_L - -E.Lms')
F % BSL)(-E_L b -I;Jnm')

= (VMO RO + V)

n (Vl(z) M®-1 R?) + Vs(’)) { FxF(k — E.Lmi)]
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(kz - kmfm’)F * AQ)(E_L - E.L'mt')
(ky = kymi)F * A&"(’u = ki1mi)
+ (ﬂ(z)M(z)-‘lR(az) + V“(z)) (kz _ kzmi)F % B§;1)(EL — E.Lmi)
(ky = kymi) F # B (ks ~ kim:)
(370)
where E,(j) and E(?) are the column matrices formed by E,E?n and
Ef2) | respectively [Appendix C].

Thereafter (27) is solved and substituted into (37), we can express
_F_},(;‘;) and Eg) in terms of a sum of this kind of components, fF(k, —
k Lmi) * gF(kL — k1n:), where f and g are deterministic functions of
k, . If the roughness is modeled as a Gaussian random process, then
it can be shown that

< fF(E_L - EJ_,,,;)*QF(E_L - -E.Lm') >= 47?25(75_'. - E.Lms' + E.Lm‘)
x [ dEL Do (Fs - FIWE, ~Fum) (38)
where W (| —k.1m:]) is the spectral density of the random roughness

and is the Fourier transform of the correlation function. The spectral
density is given by

- 2 = E

W(k_L) = -(—%Ffd?ie’h"*(?(?l) (39) ‘,:

and satisfies the relation
(FERF (1)) = 8(F, - R)W(ELD (40)

Then from (36) and (37) the ensemble average of the second-order
scattered field reduces to a set of plane waves which propagate in the
directions of zeroth-order scattered fields. This implies that the coher-
ent second-order scattered fields are the correction to the zeroth-order”
solution in the Bragg diffraction directions of the periodic surface.

b. Bistatic and Backscattering Coefficients

The lowest order incoherent scattering coefficients can be derived
from the first-order scattered fields by considering the horizontally and
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vertically polarized incidence and calculating the horizontally and ver-
tically polarizgd scattered fields. The lowest order incoherent Poynting
power flow is averaged over one period and given by

50 /R{< x Y >}de

- [ > WEL - BumiD (AL + 48P) (41)

m"-—oo

For a Gaussian correlation function C(7,), the spectral density is
given by

- - 1 1- -
W(lkL —kiml) = '4;0212 exp[~7lk. — kom0 (42)

where o is the standard deviation of the random roughness, and ! is
the correlation length for £(7.) in the transverse plane.

The bistatic scattering coefficients ‘yba(fc,,i:) are defined as the
ratio of scattered power of polarization b, per unit solid angle in di-
rection k, and the intercepted power of polarization a; with amplitude
E,, in direction Ic.~ averaged over 47 radians. Thus, we have

- kcos?0, X0 1AD PW (kL — Eiml)
YooKy, ki) =47 cos 6;| E,,|?

a,b=h,v (43)
In the backscattering direction, k, = —k;, the backscattering cross

section per unit area is defined to be
o’ba(,;i) == CO$ 9,' 75‘,(—1},‘, ,::,) (44)

where

k; = sin 6; cos ¢;& + sin 6; sin ¢, — cos 6; 3 (45a)
k, =sinb, cos ¢,& + sin 0, sind,§ + cosh, 3 (45b)

In the next section, the numerical results of bistatic scattering coeffi-
cients and backscattering cross sections per unit area are illustrated as
functions of incident and scattered directions.
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Figure 4.2.2 Scattering pattern v, versus 6, for various correlation
lengths I = 0.02, 1.0, and 3.0\ with 8; = 18°, ¢; = 0°, o = 0.01), H = 100
nm, P = 1205 nm, A = 482 nm, and ¢; = (—7.29139 + 0.2943871)¢o

¢. Numerical Results and Discussions

The theoretical results obtained using the EBC/SPM method are
illustrated in this section by calculating the bistatic scattering coeffi- -
cients and the backscattering cross sections per unit area. In Figs. 4.2.2
and 4.2.3 the bistatic scattering coefficients ¥3,(0,,9,) are plottedin a
polar plot versus the scattering angle 8, for several correlation lengths
. The plane wave is incident perpendicular to the row direction of a
sinusoidal silver grating with random roughness. The scattering pat-
terns for horizontally and vertically polarized incident fields are given
in Figs. 4.2.2 and 4.2.3, respectively. The electromagnetic wave scat-
tering from this silver grating without roughness has been studied by
Chuang and Kong [1981].

In Fig. 4.2.2, the scattering pattern for horizontally polarized in- -
cidence is plotted on the incident plane with 8, varied. When the cor-
relation length is large, there is one peak associated with each Bragg
diffraction direction. As the correlation length decreases from [ = 3A
to I = 1), the beams become broader. This beam shape is determined
by (43). The beam width depends on the correlation length and the
function A{}) . The effect of correlation length on the beam width
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Figure 4.2.8 Scattering pattern 7v,, versus 8, for various correlation
lengths [ = 0.02, 1.0, and 3.0\ with 6; = 18°, ¢; = 0°, ¢ = 0.01\, H = 100
nm, P = 1205 nm, A = 482 nm, and €; = (—7.29139 + 0.2943871)¢o

can be explained as follows. Smaller correlation lengths means that
the standard deviation of the slope of the roughness is larger, and the
power can be scattered into wider directions. As shown in Fig. 4.2.2,
when the correlation length becomes small, say [ = 0.02), the power
seems to be scattered isotropically into all the directions.

The corresponding scattering pattern for vertically polarized inci-
dence is shown in Fig. 4.2.3. The result is similar to horizontal polariza-
tion incidence for large correlation lengths. Again several beams show
up for I = 3). However, when the correlation length is I = 0.02), sev-
eral peaks at (6,,¢,) = (46°,180°),(18°,180°),(5°,0°),(18°,0°), and
(46°,0°) show up in the scattering pattern. As shown in [Chuang and
Kong, 1981], the scattered wave is strongly affected by the surface
plasmons at 6, = 18° and 46° which are related to the propagation
constants of the guided waves supportable by the periodic surface, and
the diffraction efficiencies of mode —1 and —2 show maximum and
minimum values, respectively, at §; = 5° . If we take a close look at Fig.
4.2.3, we notice that the scattering pattern shows somewhat unsmooth
behavior at (6,,4,) = (12°,180°),(36°,180°),(12°,0°) and (36°,0°).
These are related to the Rayleigh wavelength anomalies [Hessel and
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Figure 4.2.4 Backscattering cross section per unit area for various corre-
lation lengths ! = 10, 50, 100 cm with ¢ = 1 cm, H = 10 cm, P =100 cm,
f=1.4 GHs and €; = (6.0+10.6)¢,. (a) onn versus 6; with ¢; = 0° and 90°.
(b) oy versus §; with ¢; = 0°and 90°. (Curves A: 1 =100 cm, ¢; = 0%
B:l=50cm, ¢; = 0° C: I = 10 em, ¢; = 0° D: I = 100 em, ¢; = 90°
E:l =50 cm, ¢; = 90° F: I = 10 em, ¢; = 90°); ( EBC/SPM,
— — —Kirchhoff).
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Oliner, 1965]: Floquet mode 2 becomes evanescent, and Floquet mode
—3 becomes radiating at 11.5° and, similarly, for Floquet mode 1 and
Floquet mode —4 at 36.9° in Ref. 2. Because of the roughness on
the top of the periodic surface, even though the surface is illuminated
by a plane wave with single spatial frequency, the surface currents
and scattered fields of all spatial frequencies can be generated. The
scattered fields with the same spatial frequencies as those of Wood’s
anomalies [Hessel and Oliner, 1965] will interact strongly with the pe-
riodic surface. This shows that the first-order scattered field pattern
preserves every scattering characteristic of the periodic surface which
is slightly different from those of the horizontally polarized incidence
case as shown in Fig. 4.2.2.

The theoretical results for backscattering cross sections per unit
area are illustrated in Figs. 4.2.4 and 4.2.5. This case has also been
studied using the Kirchhoff approximation in [Shin and Kong, 1984],
and the parameters used correspond to a typical terrain plow field.

In Fig. 4.2.4, the backscattering cross sections per unit area are
plotted as a function of incident angle 8; for azimuth angles ¢; =
0° and 90° and for correlation lengths ! = 10, 50, and 100 cm.
The results obtained from Kirchhoff approximation [Shin and Kong,
1984] show very good agreement with the results obtained using the
EBC/SPM method at small angles of incidence. When the results in
Fig. 4.2.4(a) are compared with those in Fig. 4.2.4(b), the EBC/SPM
method gives different returns for o, and o,, while the Kirchhoff ap-
proximation gives the identical results for both like-polarized returns.
However, the difference between o4, and o,, is seen to be small. In
Fig. 4.2.4 we note that several peaks show up for the large correla-
tion length case where the incident angles satisfy the Bragg diffraction
condition [Shin and Kong, 1984]

2k,; = n2r /P (46)

When the above condition is satisfied, the backscattering direction is
coincident with the zeroth-order diffracted mode.

In Fig. 4.2.5, the backscattering cross sections per unit area are
plotted as a function of azimuth incidence angle ¢; for 6; = 25°.
The results for the horizontally and vertically polarized incidence are
shown in Figs. 4.2.5(a) and 4.2.5(b), respectively. Again, we note a
good agreement for ou, and o,, between Kirchhoff approximation
and EBC/SPM method. However, the Kirchhoff approximation does
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Figure 4.2.5 Backscattering cross section per unit area for various cor-
relation lengths [ = 10, 50, 100 em with 0 = 1 emy, H = 10 cm, P = 100
cm, f = 1.4 GHz and €; = (6.0 + i0.6)¢,. (a) onn and o,p versus ¢; with
8; = 25°, (b) 0yy and op, versus ¢; with §; = 25°, (Curves A: { = 100
cm, Opp OF Oyei B: I = 50 cm, oy or 0ye; C: 1 = 10 cm, oxp or 04y Dt
1 = 100 cm, oyp Or Ope3 Bt [ = 50 cm, o,p Or Ony3 F: l = 10 cm, oyx or
The )5 ( EBC/SPM, ~ — —Kirchhoff).
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not give cross-polarized returns o,, in Fig. 4.2.5(a) and o}, in Fig.
4.2.5(b). The reason is that Kirchhoff approximation [Shin and Kong,
1984] makes use of the tangent plane approximation where the original
rough surface can be seen as being approximated by many connected
and locally perturbed tangent planes. Since it is well known that there
is no cross-polarization in the first-order backscattering return from
a randomly perturbed planar surface [Tsang et al., 1985], therefore
Kirchhoff approximation predicts no depolarization in the backscatter-
ing direction. In this paper, the EBC/SPM method takes into account
the curvature and tilting effect of the large-scale periodic surface ex-
actly, and does give cross-polarized returns which can be significant
when the incident wave vector is not perpendicular to the row direc-
tions. At ¢; ~ 41° and ¢; ~ 83° in the cross-polarized return (curve
D: I = 10 cm), we can see two drops which correspond to the Rayleigh
wavelength anomalies [Hessel and Oliner, 1965]: Floquet modes 3 and
4 become radiating modes at ¢; = 41.32° and ¢; = 83.13°, respec-
tively. Finally we note that the cross-polarized returns o,, and o,
presented in Figs. 4.2.5(a) and 4.2.5(b) are equal, which is consistent
with the principle of reciprocity for the backscattering of electromag-
netic wave from a reciprocal medium.

4.3 Scattering by a Randomly Perturbed Quasiperi-
odic Surface

a. Formulation

Consider a plane wave incident on a randomly perturbed quasi-
periodic surface (Fig. 4.3.1). The electric field of the incident wave is
given by

E.,(?") = é,‘Eo exp(i7c-.~ . F) (1)

where k; denotes the incident wave vector and é; the polarization of
the incident electric field vector. The rough surface is characterized by
a height distribution Z = f(z,y), which is given by

2 2
f(z,y) = &(=,y) + A(z) cos (%z + 1/)(::)) + B cos (Fﬂ.z + ¢) (2)
Where £(z,y) is a Gaussian random variable with zero mean

(€(z,y)) =0 (3)
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Figure 4.3.1 Geometrical configuration of the problem.

A(2) cos[(27/ P)z +13(z)] is described by a narrow-band Gaussian ran-
dom process [Davenport and Root, 1958; Appendix D] centered around
the spatial frequency of 2x/P where the variations of the envelope
A(z) and the phase y(z) are slow compared to those of cos(2xz/P),
and B and ¢ are assumed to be constants. Using the vector Kirch~
hoff approach, the scattered electric field E,(F) can be expressed in
the following form [Stogryn, 1967; Sancer, 1969; Leader, 1971; Tsang
and Kong, 1980a):

ik exp(ikr)

E(r) = 4rr

EJ(T - kb)) / Fay B) exp(ifs - 7)d7,  (4).

4o :
where A, is the area of the rough surface projected onto the z ~ y.
plane, k, is the unit vector in the observation direction, and ‘

Ei=F —E, (5)

i

F(eof) = (140 + £/ {~(1 - Ra)(n- k(& 20
+ (& D)X &)1+ By) + (8- &)k, x (2 X &))(1+ Ra)
(& B) (- ki) (o x 8)(1 - By)}
(6)
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In (6), a and ﬁ are the local slopes in the ¢ and y directions,

8 I, ’
a= ——————f(azzly ) (7(1)

of(=',y')
= ——" 70
=5 (™)
# is the local normal to the rough surface,
—ta—-gB+2 (8)
(1 + a? + ﬂz)l/z
p; and §; are, respectively, the unit vectors in the directions of the
local parallel and perpendicular polarizations of the incident wave,

n =

l:!,' X N
¢ = —= 9a
P =& x ks (99)

R, and R, are the Fresnel reflection coefficients for TM and TE waves
with local incidence angle:

_ (k) — [n2 -1+ (a- k)Y
(k) + [nd - 14 (A k)2
—nd(h- k) — [nd = 1+ (A - k)2

R, = . ; (108)
—ni(f- ki) + [nf — 1+ (- k;)?]H/2

R» (10a)

with
ng = kl/k
ki = w16
k = w/pse, (11)

afld the orthonormal system for the incident and scattered fields are
given by

k=2 sin 6; cos ¢; + §sin ; sin ¢; — 2 cos 6, (12a)
h; = — zsin ; + 9 cos ¢; (120)
0; = — & cos §; cos ¢; — § cos b; sin ¢; — 2 sin 6, (12¢)
/:!, =&sinf, cos ¢, + ¥sin b, sin @, + 2 cos b, (13a)
h, = — #sin ¢, + i cos @, (130d)
¥, =% cos b, cos ¢, + §cosf, sin¢p, — zsin, (13¢)
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The Kirchhoff approximated diffraction integral in its present form
is still difficult to evaluate, and further approximation is necessary. One
commonly used approximation is to expand F(c,B) in the power series
of slope terms about the zero slope and to keep only the first few terms
[Leader, 1971; Tsang and Newton, 1982). However, in this section we
shall expand F(a,3) about the slopes at the stationary phase point
a, and B,,

kda:
@ = - (14a)
k
ﬂo = -2 (14b)
kdz
where
ke = k(sinb; cos ¢; — sin é, cos ¢,) (15a)
k4, = k(sin; sin ¢; — sin 0, sin ¢,) (158)
ky; = —k(cos8; + cosb,) (15¢) -
Therefore, we expand F(a,f3) as follows: |
_ _ oF oF |
F(a,p) = Flao fo) t+ 5 s, (a—ao)+ e (B~Bo)+--- (16).
Keeping only the first term in the above equation, we obtain from (4),
E,(7) = i?’gr—(:’"—)Eo(T — k,k,)F(a,, Bo)T a7y

where the integral I is given by ,’
I= / exp(iFy - 7)dF, (18),

Then the scattered field E, (7) is s_epa.rated into a mean field _E-,,.('F)'
and a fluctuating part of the field £(7)

E,(F) =En(7) + £) (19)
with
(E(7)) =0 (20)

and
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(E:(F)) =_E_M(F) (21)

so that the total scattered intensity is a sum of coherent and incoherent
scattered intensities.

(B = [Ba® + (E®[) (22)

From (17) and (18), we have

(BnI = S [0 Pl + by Flaw] 0P (29
and
(EO) = Sommr (152 Fearf)” + |- Flams[| 01 (29)
where
Dy = (1) - | (25)

The explicit expressions for |(I)|*> and D; for the randomly perturbed
quasiperiodic surface are derived and expressed in terms of the statisti-
cal moments of the height distribution [Appendix E]. The advantage of
expanding F(a,B) around the stationary phase point (a,,B,) is that
the bistatic scattering coefficients derived from (24) and (25) satisfy
the principle of reciprocity, and at high frequency limit the geomet-
rical optics solutions can be obtained from (25) without making any
modifications [Stogryn, 1967]. Also, since F(a,f) is evaluated at the
stationary phase point, the same solution is obtained using total or
reflected field on the surface [Holzer and Sung, 1978].

b. Coherent and Incoherent Scattering Coefficients
The bistatic scattering coefficients are defined as [Peake, 1959]

PR 4rr2l,
7¢b(k,, k,) = m (d,b = v, h) (26)
where I,, and I;, are, respectively, the intensity of the scattered wave
in polarization a and the intensity of the incident wave in polarization
b. From (23) and (24) we first calculate the vertically and horizontally
polarized coherent and incoherent scattered intensities for the cases
of vertically and horizontally polarized incident fields. For an incident
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field with polarization b;, the scattered intensities with polarization
a, are given by [Stogryn, 1967]

—\12 k2 |.E¢,|2 N — 2
|Em(1')| = 1672r2 |aa * Fb(ao,ﬂo)l |<I>Iz (27)
g_z_kz‘Eolz R —_ 2
l (T)l - 167292 |a! * Fb(ao’ ,Bo)| DI (28)
where
Fb(aoa ,Bo) = F(ao’ﬂo)'é‘=5‘, (29)
and
_ . &
!as . Fb(ao’ﬂo)l = R 4 .fba (30)
ko |k x | B2,
with
“ “ R " R n 2
Joo = |(hy < k)(hi < k) Ry + (D, - k;)(9; - k,)R, (31a)
N R “ . " " 2
fvh = (ha ° k,)(’i)‘ -k, )Rh - (fl, . k,)(h, . k,)R" (31b)

” ” ” " N N 2
fhv = (’i), . k,)(h, . k,)Rh - (h, . k,)('i’, . k,)Rv (310)

fhh = ('i): * éi)(f)t ¢ kc)Rh + (i"n ¢ fct)( 4 kc)Ru (31d)
and R, and R;, which are given by (10), are evaluated at

ikdz/kdz + gkdy/kdz + 2
(k3 /K3, + K3,/ kY, +1)1/2

(32)

n=

In view of (27) and (28), the bistatic scattering coefficients can be
decomposed into a coherent part ¢, and an incoherent part 7i,.
Substituting in the expressions for |(I)|* and D;, (E10) and (E18),
into (27) and (28), we have

7¢b(fcn ’:") = 7&(/},, /::,) + 715(’}0, i’-) (33)
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where
s s |ka|?

Vas(kas ki) = AI dIA 3 fbanP[—kZ;("z‘*'”:)]

cos6; Ik,— X k,| k2,
had 5 2r

X Y |Ja(ke:B)* 6 kas + g | 6(kay)  (34)

i h Ry |kal*

Yar(kay ki) = T foa (D1, + Dy,) (35)
cos ; kzlk.- x k| k2,

In (34), J, is the nth-order Bessel function, and § is the Dirac delta
function. It can easily be shown that the bistatic scattering coefficients
satisfy the principle of reciprocity,

cos §; ‘yab(k,, ic.) = cos ¥, ‘Yba(’:?i, ’E:) (36)

When the incident wave vector is not perpendicular to the row
direction of the periodic surface (k,; # 0), the coherent scattering co-
efficient, (34), gives rise to scattered intensities along the directions of
Floquet modes, forming a cone. This conical diffraction is a character-
istic of scattering from a periodic surface [Chuang and Kong, 1982].
A part of incoherent scattering coefficient will also give rise to conical
diffraction. The second term on the right-hand side of (35) has &§(k4y)
dependence, and this will give rise to scattered intensities only in the
direction k,, = k,; forming a cone shape. However, unlike the coher-
ent term, which only scatters into a set of discrete directions, this term
will scatter intensities in all k,, directions.

In the backscattering direction 6, = 6; and ¢, = ¢; + x. The
backscattering cross sections per unit area are defined to be

aab(i’i) = €os 0; 7ab(_ki’ kt) (37)
From (33)-(35) we obtain
Too(k:) = onn (ki) = o°(k:) + oi(ks) + ob (ki) (38)

Ulw(fci) = U’vh(ic.') =0 (39)
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where
. 4wk?|R| =
o (k) =W'.é_LexP [4k4(0* + 03] 3 Va(2kaB)P
X § (Zk,. +n— ) §(2ky:) (40)
iy IR & 2 202 2
al(ki)zcosz 9. Z |Jﬂ(2kl'B)| exp [‘4"":6(0’ +0'=)]
(4k 03)"‘ » R AN R
(4k33 E)m 1
+,,ﬁ‘;,,z_o2""( ) m! g
ko + (p+m' —2n)x]? P : B
X exp (- [ P ma kg — ~ (41)
with
zm’
1=\t 5y

z

. A

0;(k¢)—2k IR| 6(2’%) z | T (2’“::3)' exp[ 4k3.~(0’+03)]

X;g;”( )\/> (4knz
X exp (— [k" T (o +Pm = 2n)w] %) (42)

and R is the Fresnel reflection coefficient at normal incidence. We
note that there is no depolarization in the backscattering direction,
and because of the §(2k,;) dependence, o°(k;) terms contribute only

when the incident wave vector is perpendicular to the row direction of
the periodic surface.



4.3 Scattering by a Randomly Perturbed Quasiperiodic Surface 327

c. Geometrical Optics Solution

Under the geometrical optics limit as k& — oo, further simpli-
fications can be made for the expressions of |(I)|* and D;. Since
ka0 k4.0, > 1, the coherent component of the scattered fields are
negligible, and only the incoherent scattering coefficients will remain.
Under the stationary phase approximation the bistatic scattering co-
efficients simplify to

kql* 1 [ 1
T
coso,.lk.- x k,| k8 0 =Sy
k B s 1 2 ka 2

(;:: - 2r3 sm¢) (FJ:')

il 252 B 2s} (43)

7ab(i7n I;t) =

where s} and s} are, respectively, the mean square surface slopes in
the z and y directions

s; = a’|C"(0)| + o2[(27/P)* + [C2(0)(] (44a)
2 = a*|C"(0)] (44b)

In the above equations, C" and C! are the second derivatives of the
correlation functions and for Gaussian correlation functions assumed

lc"(0)] = 2/ (45a)
1C2(0)] = 2/1; (458)

The probability of finding slopes (c, B) at point 7, on the surface
can be calculated to be

Pla(7,),8(FL)] =

[a + 278 sin (322 4+ ¢)]" g2
=P (‘ 25 "2
(46)
Averaging the above expression over one period we obtain the averaged
PDF for a,f

P(mﬂ):%/opdz L e <_ [a + 273 sin (32 + 4)] _ﬂ_’)

273, s, 2s3 2s?
(47)

27 s, s,
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Figure 4.3.2 a(l;.-) as a function of §; for different frequencies with o =
1cm,! =10 cm, B =10 cm, P =100 cm, 0, = 0, and €1 = (6.0 + ¢0.6)eo.

which is proportional to the geometrical optics solution. Therefore, the
geometrical optics result states that the scattered intensity is propor-
tional to the probability of the occurrence of the slopes which will
specularly reflect the incident wave into the direction of the scattered
wave [Barrick, 1968). We also note that in the geometrical optics limit
there is no difference between the above solution and the solution ob-
tained using the incoherent model [Ulaby et al., 1982] except for the
factors due to quasiperiodicity.

d. Results and Discussion

The backscattering cross sections per unit area oi(k;) are calcu-
lated and illustrated for various cases. The conically diffracted coherent
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Figure 4.3.3 a(f;,-) as a function of §; for different values of B at 5.0 GHz
with P =100 cm, 0 = 1 cm, [ = 10 cm, .0, = 0, and €; = (6.0 + $0.6)¢,.

and incoherent components, o<(k;) and ¢%(k;), which only contribute
when the incident wave is perpendicular to the row direction of the pe-
riodic surface, are not included in the calculations. In order to correctly
incorporate the contributions from these components, the characteris-
tics of the antenna used to make the measurements must be taken into
account.

The results of randomly perturbed sinusoidal surface cases, o, =
0, are first illustrated in Figs. 4.3.2-4.3.12. In Fig. 4.3.2, the backscat-
tering cross sections per unit area o(k;) are plotted as a function of
incidence angle for different frequencies. As the frequency is increased,
the solution approaches the geometrical optics result as expected. The
difference between the cases where the incident wave vector is parallel,
¢; = 90°, or perpendicular, ¢; = 0°, to the row direction is seen to
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Figure 4.3.4 cr(l;.-) as a function of §; for different values of [ at 1.4 GHz
with ¢ = 1 ecm, B = 10 cm, P = 100 cm, o, = 0, and €; = (6.0 + i0.6)¢,.

be large. For the ¢; = 0° case the maximum value of o(k;) is shown
to be not at normal incidence. In Fig. 4.3.3 the effect of change in the
amplitude of sinusoidal variation B is illustrated for 5.0 GHz. As B
is decreased the results of ¢; = 0° and ¢; = 90° cases approach each
other, and when B = 0 we reproduce the random rough surface result
which is independent of azimuthal incident angle ¢; .

In Fig. 4.3.4 the effect of the correlation length ! at 1.4 GHz is
illustrated. As  is increased, the o(k;) falls off faster as a function of
6; for ¢; = 90°, and there is an appearance of peaks for ¢; = 0°. The
change in o(k,) as ¢; is varied is shown in Fig. 4.3.5. The appearance
of the peaks for ¢; = 0° can be explained as follows.

The result for a randomly perturbed sinusoidal surface is related to
the convolution of the results for the sinusoidal surface with those of the
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Figure 4.3.5 a(l:',;) as a function of §; for different azimuthal angles of
incidence ¢; at 1.4 GHz with c = 1 cm, [ = 50 cm, B = 10 cm, P = 100
cm, 0 = 0, and €; = (6.0 + 10.6)e,.

random rough surface. For a sinusoidal surface, we have contribution
in the backscattering direction only when it coincides with one of the
Floquet modes direction.

27
kyi = n— 48
2k =07 (48)

As [ is increased the scattering pattern from a random rough surface
is sharply peaked around the specular direction. Therefore, by making
[ sufficiently large, we obtain the result which is sharply peaked at
the mode directions given by (48). This is illustrated in Fig. 4.3.6(a).
The locations and amplitudes of the Floquet modes are plotted in Fig.
4.3.6(a). Notice that for the cases of [ = 100 cin, we see from Fig.
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Figure 4.3.6 (a) a(i:.-) as a function of 6; for different values of [ at
1.4 GHz with o = 1 cm, B = 10 cm, P = 100 cm, 0, = 0, and €; =
(6.0 + i0.6)¢,. (b) Locations and amplitudes of the modes for B = 10 cm.
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Figure 4.3.7 (a) a(fc;) as a function of §; for different values of B at 1.4
GHz witho =1 cm, ! = 50 cm, P = 100 cm, 0, = 0, and €; = (6.0+10.6)¢,.

4.3.6(a) that the peaks are visibly illustrated. When [ is smaller the
scattering pattern of the random rough surface becomes broader, and
we do not reproduce all the peaks. However, the peaks around the two
dominant modes, n = 1 and n = 4, are still reproduced for [ = 50 cm.
When [ is further decreased none of the peaks are reproduced, and we
have a fairly flat behavior.

In Fig. 4.3.7(a), the effect of change in B at 1.4 GHz is illustrated.
N.ote that as B is decreased, there seems to be a shifting of the peaks.
Since the period P is not changed, the locations of the modes do not
change, However, as we can see from Fig. 4.3.7(b), the amplitude of
each mode is changed as B is changed. The location of the mode with
tlfe maximum amplitude is shifted as B is varied, and the results in
Fig. 4.3.7(a) reflect this effect. When B = 0 only the amplitude of
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Figure 4.3.7 (b) Locations and amplitudes of the modes for B=7Tcm
and B = 5 cm.

the n = 0 mode is nonzero, and the random rough surface result is
reproduced.

The effect of change in the period P is illustrated in Fig. 4.3.8. The
locations of the modes will change as P changes, while the amplitude
of each mode will not change since B is the same. As can be seen from
Fig. 4.3.8, when P is increased the modes are spaced closer together,
and when P is decreased the modes become further apart.

The effect of change in o is shown in Fig. 4.3.9(a). Initially, as o
is increased, the backscattering cross section a(l::.-) is increased. Then,
as o is further increased, there is a decrease near normal incidence and
a disappearance of one of the peaks. This is due to the change in the
scattering characteristics of the random rough surface in the absence
of sinusoidal variation. In Fig. 4.3.9(b) the backscattering cross section
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Figure 4.3.8 o(k;) as a function of 6; for different values of P at 1.4

GHz witho = 1 em, l = 50 cm, B = 10 cm, P = 100 cm, 0, = 0, and
€1 = (6.0 + i0.6)e,.

for the random rough surface is plotted. Note that for ¢ = 5cm there

is a decrease near normal incidence and a broadening of the scattering
pattern which explains the trends in Fig. 4.3.9(a).

In Fig. 4.3.10(a) and 4.3.10(b) we illustrate the results for ran-
domly perturbed quasi-periodic surfaces, B = 0 and o, # 0. In Fig.
4.3.10(a) the backscattering cross sections are plotted for different cor-
relation lengths I. Again, as [ is increased, there is an appearance
of peaks. But unlike the sinusoidal case, the values of the peaks are
monotonically decreasing with increasing angle of incidence. It is in-
teresting to look at the solution in the limit I, — o5 since we obtain
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Figure 4.3.9 (a) a(l‘é;) as a function of §; for different values of o at
1.4 GHz with [ = 50 cmy B = 10 cm, P = 100 cm, 0, = 0, and €; =
(6.0 + 0.6) ¢,

a much simpler analytical solution. From (E14) we obtain, for B =0,

2L, 3L, o
(Ir) = / dz / dye*erT1[2L, — |z[)[2Ly — |yl]
-3L,

~aL,
exp [—-I'c:‘l;,a'2 + k:,ozC(Fl)]
X exp [—k3, 03 + k3,02C.(2)] (49)

In the limit I, — oo, we obtain
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Figure 4.3.9 (b) a(l;.') as a function of §; for different values of o at 1.4
GHz with [ = 50 cm, B= 0, ¢, = 0, and ¢; = (6.0 + i0.6)e,.

2L, 2L, oo
(Ir) = / dz / d
) =~2L, —2Ly Y n:E—:oo

exp [—k:zvz] I(k3,02) exp [i (kﬂ_ + i:n%r) .FLZI

X [2L= - Iz”[2Ly - 'yl] exp [_k:zuz + k:z”2C(F1)] (50)
where I, is the nth order modified Bessel function. This is similar
to the randomly perturbed sinusoidal surface result. In this case the

amplitudes of the modes are given by the modified Bessel functions,
Whereas before they were given in terms of the Bessel functions. The
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Figure 4.3.10 (a) 0'(1;,-) as a function of §; for different values of [ at 1.4
GH:s witho=1cm, B=0, P =100 cm, 0, = 5 cm, [; = 300 cm, and
€1 = (6.0 + i0.6)¢,.

amplitudes of the modes are plotted in Fig. 4.3.10(b), and we can
see that they are monotonically decreasing as n is increased, which
explains the results in Fig. 4.3.10(a). Also note that as o, is decreased,
only the first few modes have larger amplitudes; and as n is increased,
they decay much faster. When o, = 0, only the n = 0 mode remains,
and we reproduce the random rough surface results.

The above result in the limit ¢, — o0, (50), can also be related
to the randomly perturbed sinusoidal surface case. When o, = 0, we
obtain
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Figure 4.3.10 (b) Locations and amplitudes of the modes for Op = 5§
cm and 0; = 2 cm.

* 2Le 2Ly 2 T n 2r _
{Iry = ‘/:21,. dz »/:ZL,, dy;J,‘(kd,B) exp [z (kd_L + an) . ,-L]
X (2L, — |2l)[2Ly - |yl] exp [-k3, 0% + k3,0’C(FL)]  (51)

For a narrow-band Gaussian random process, A(z) cos[(2x/ P)z+¢(z)),
the PDF for A(z) and v(z) is given by

for A >0,
otherwise

0<y<2r

P(4,9) = { sy e (%) (52)

Therefore, if we treat the amplitude B and the phase ¥ of sinusoidal
variation as random variables with PDF given by (52), and take the
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Figure 4.3.11 a’(lz,-) as a function of §; for different values of | at 1.4 GHzx
withe = 1 cm, B = 10 cm, P = 100 cm, 0, = 5 cm, I; = 300 cm, and
€1 = (6.0 + i0.6)¢,.

average of (51) with respect to B and %, we obtain the randomly
perturbed quasiperiodic surface result, given by (50), by making use
of

2

had B B
[ B akam G e (~ 505 ) = expl-KaoDIal-Kiod) (69

In Figs. 4.3.11 and 4.3.12 we illustrate the combined effect of the
previous cases. In Fig. 4.3.11 the backscattering cross sections are plot-
ted for different [ for the case B = 10cm and o, = 5cm. The ¢; = 0°
results are seen to be much flatter as a function of incident angle than
the corresponding cases in Fig. 4.3.10(a). The effect of varying o, is
illustrated in Fig. 4.3.12. Therefore, by varying o, and B, we can
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Figure 4.3.12 a(I;.-) as a function of §; for different values of o, at 1.4
GHz withc =1 em, ! = 50 cmy, B = 10 cm, P = 100 cm, I, = 300 cm,
and €; = (6.0 + 0.6)e,.

obtain different combinations of the previous two cases when o, = 0
or B=0.

Appendix A. Zeroth-Order Equation and Solution

The zeroth-order equations are given as follows.

- R > k - k ms
h("'kzt‘) -e.-6m = E ﬁ_ian(kzmi){y_a:(gx

k. .
n=—oco pms T
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kami Bomi komi kopmg (7 — Mm)2E
—‘—“aﬁ)+[ _ pl;n . ?p]ﬁ(o)

+ kum ym'ﬁ(o)} (Ala)
kE k
(k) &ibn = S =@ (o)
24 i0m —”=_°° 2k; mn zmi
2x
kzmi kzmi _ kpmi (n ~ m)T a(O)
k komi k komi o
kimi Bymi i
+ Lomi ami o) _ Jimi ) o /3‘°’} (418)
i pmc

0= Q}.(krems)

n=-—0oo

{ k kymt 0) _ k kzmt (o) + [_ klzmi kzmt'

kykomi °" ks kpm, Yyn ky kom:

- 2z
kpm;' (n m) P } ) _ klzmt yml ,3(0)} (A].C)

an
kl kl:mi 1 pmc

0= Z Q;tm(klzmi)

2=
i _ klzmi kzmi + kpmi (n B m); a(o)
k, ky kpm.' ky k1 zmi =

k klzmi kymi o) _ ymt (0) kzmt (0)
Br ks O T Ryt TP

M = —00, ..., 00 (A1d)

where Komiy Bymis Kpmiy Bzmi s B1zmi » and Q= (k.) are given by

kzmt - kzl + 21"_1, kymt - kyl’ kp"l k:ml + k:ms (A2a)

zmc kz

kl:m. = k:"“ (A2b)

pmi
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1 f? 2T 27
£ (k, =k-/ dz ex [—z’ m — n)—z F ik, H cos (——-z)]
mn (Fz) rYA p | —i( ) » =¥ >
= (Fi)™ ™y (k- H) (43)

The components of the zeroth-order solution are given explicitly as
follows.

k k
(0) ymi ) 4 Kami (o)
Elum mi ";oo an(klmi { kpmt + kpmt yn
+ k:mi kzmi _ kpmi (n - m)sz ,3(0) 4 2mi kzma kyms ﬂ(o)
ko komi k kzmi an k komi' ¥ _
(A4a)
- 2z
(0) = (k kzmi kzmc’ _ kpmi (n m) P a(o)
1I m el mn zms k kP"“ k kzm‘- n
kzmi k. mi mi zm:
4 Zzmi % ky (0) + ky ﬁ(o) ﬁ(O)} (A4b)

Appendix B. First-Order Equation and Solution

The first-order equations for the surface fields are given explicitly
as follows.

Z Qmo(kzl){ (1)(kll - k.me)

kat o1y, kaka | kg™

- EASI)(’CJJ k.Lmt)+ ( k k + 4 k k" (1)(kll _k-L"")
k, k

+ kl le(l)(k.Ll - klmt)}

= - Z ik,lF(Ell—ELmi) E Qr-nn(kli)

m=-00 n=-0o

kyt al® _ kzl (o)+ kzl kzl __(" m)h
ko Fzn kp, * k,,; k k,;
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+ %(kzl ; kzmt)]ﬁg’)‘) + [_k_"_lé‘y_{ + 22 kpl (kylk !lt)] ,3(0)}
zl zl

k ke Ok
(Bla)
kaka | kamy - -
E Qmo(kzl){( e+ 1:‘ k—f) AP (Frr = Frms)
ko ky = =
+ TiAS,"(k“ — kimi)
k -
- ',;:_:Bgl)(ku klmz)+ B(l)(ku klmi)}
=- E ik F (ki — kimi) Z Q (k)
kaka kg (M= m | ka (ke = ami)| )
k kpl k kzl k kzl o
kaky | Kot (kg = kyi)] o) yt © , Kt a0
+[k kpl+ kT Ay — ﬂzn+ ﬂ (Blb)

kE
E Qmo(klzl){ "'A(”(ku Eimi)

- Fkn@A(l)(ku Eimi) — (k”' - t % = m_)

1k ki ko by kg

k

—_ — k z T 7
X Bil)(k.Ll - kJ.ml') - Tllk_le;l)(kJJ - k.Lmi)}
1 Rpl

== Z tkiaF (ki = Fim) > Qhn(kra)
k k k k ;c ky (n—m)2
LT OB o +[ ka kg »
k1 k,,; Yzn ky k ky kpg ky ki
kp

kzl—kzrm’) (0) [klzl yl k,ol (kyl yt)] (0)
e [ e e (B1e)

e oo ky ki

k kiaka  kam¥
Z Qlo(k "‘){ : lk Lt B2 ) AD (R yy — Fimi)
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k ki b yorz,, _ % ks gz, -
kl kl k (k.Ll k.Lmz - kpl (k.Ll k.Lmt)
Kot po) (B — %
+Ic_ (kL — kimi)
= - Z zkmF(k.u k.Lm.) z Q,,m(km)
2%
_lc__ km ’_cz_x _ _L:ﬂ(n - m); + Q(kzx — kzmi) aﬁ?)
ky | ko ko By ki ky kia
L kyl kpl (kyl - kyi) (0) kyl (0) ka1 (0)
+ ky [ ky kpl * ky kia yn * kpl 'Bm kpl ﬁyn
l=—00,..,00 (B1d)
where QZ, are given by (A3), and
— . . 2in\ . .
ku=kaz+kuyg =k +— )2+ k¥ (B2a)

ko = \/ k2 + k:: (B2b)
ka= o[k — k2, kia= [k - k% (B2c)

The components of the first-order scattered field are given as fol-
lows.

B, = 55,2—{ foke) [ AP EL = Fam) + FEAD(EL ~ Fum)
" (%:—,, ¥ ’%"f VBO(Ey — Fimi) + ’“—z—yB“)(h - km,)]
+ ik, F(Ey — 751,..,-)”;“ Qt. (k. ){ by o) - ZP o)
_ [l":ki _kp(n=m)TE k(e - "“m-‘)] P
Kk, kK kK,
S A e () B
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k k. k, kM _
Et(Jth = 2k { 0( 3)[(__ + k kP ) Ag:l)(kl _k.Lmi)

k, k
+ k yA(l)(k.L_klmt)

k z 1 1.
+ k—"Ba(,l)(h — kimi) — k—B},‘)(kl - kJ.mi)]
p

P

ik FEL —Fim) S QEa(k, ){ ["’ u

n=--o00

k, (n—m)E (k= o)
_k %o Fa = Romi) | (0)
kR Tk K ]"‘“

ks kv kp (ky - kyt') (0) ky (0) ks 0)
— |22y 22y Ty -3 = b
[k Y k|0 g T P (B30)

Appendix C. Second-Order Equation and Solution

The second-order equations are given as follows.
E Qmo(kzl){ AP (Fry ~ Frmi) — A(z)(ku — K Lmi)

kaky  kuymiE
+ (T’k—p:+ Sy )B“)(k“-km)

k.ak
+ kl kyl B(z)(k.l.‘ - klmo)}

_ — [d 1
= - Z FxF(ky —kimi) Z Q,—,m(k,,)(--z-)kfl
{Ev_'am) LTNOM [E_'E kp (n = m) T

kg ™ ky ¥ kka k kg

kpl (kvl - kwmi)] (0) [kzl kvl kp! (kyl - kyt)] (0)
Yo ke P R R TR k| P

- Z 1k:meo(ku){ F * A(l)(ku - kJ.mt)

m=—00
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k. -
- -,;—iF * A!(,I)(k_u - kJ_"“')

kaka kymiE = T
+ (TE * Tﬂfe_f) F % BO(Eys — Fim)

kzl kyl

+

et = Kami ) F(ELi — Bymi)] * B (Bt — Fymi)

k 1 T _— —_
+ W”"[(ky, — kymi)F(k vt — Fimi)] * B (kL — klm,-)} (Cla)

kaky k,m=E -
> Q,,.o(k,,){( ' ’+—,§—‘—k—’) APkt~ Fim)
m=-00 zl
kzl kyl
k kn

k. - +
+ Ep’:'By)(ku - kJ.mi)}

o S P Fu—Fam) 3 Qo) (-3)=

+ =4 Am(ku ~Eymi) = B(’)(k“ kimi)

- 2
Eﬂ.’f’.’ - k_P‘(n m) P4 k_pl(kzl = kami) a©
k ky k kz,l k n

ka kyl kpl (kyl - ky-’) o© — yl (0) ka (0)
[ k kpl + k kzl yn ﬂsn + :B

kaka  ka m”' -
- z iklemO(kzl){ (_l_l + — k k] ) Fx A(l)(kl, k.Lvm')

k, k

+ k' k”'F x AV (Ey ~ km)
k -
kZ:F * B(l)(k_u - klm.) + F B(l)(kll k.l.mi)

k — -
+ —P‘[(kzt komi)F(kyy — kJ.mi)] * AQ)(k.u —k1mi)
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+ W”'l[(kw ~ kymi)F(krs — Bimi)] % AP (kL — F l,,,.-)} (C1b)
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™ kp, By kg ky Ry
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P o 0 PR I

k k
- z —ikamo(kuz){ ylF A(l)(k.Ll"kJ.ms)

m=-—00

kb g,
T ki kg

by ko | kMY
=282 ) Fa BO(ky — Foims
(k1 ky 'k kl,, (ki = kimi)

klzl kyl
kl ko

F x A}}’(Fu - Flmi)

—F x B(l)(kll - k.Lmt)
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klklzl
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> 1o E(Fuka Ea™ ) oz, - F
_Z 'Qmo(kl-ﬂ){ k, (kl kpl + ky kya (k-U J-‘m')
k klzl kyl

— — k — —

LAy ~ Frmi) — 72 BB kot — kim
klklk (J.l 1 kplz(-!-l J-)
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k1 k1 kpx kl klzl

klzl kl
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ki, k,
- E —1k1lemo(klzl){——"( 2

— ky k,,,
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1 1z1
k kiak —
k1 ,:1' kylF * Agl)(ku kimi) — F BW (ky — Eimi)
k.
+ k_F * B(l)(kl; - k.Lfm)
k ku — o T
- k_1k1 [(kzl zmi)F(k.Ll - kJ_mi)] * A, (k_u - kJ_nu)
k ku - - o T
kl koK, [(kyl ymi)F(k_Ll - k..Lmi)] * Ay (ku - kum)
(C1d)
where Q% i

are given by (A3).

The components of the second-order scattered field are given ex-
plicitly below.

e (4) (£t 5

m=-—00
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k. ky  k,(ky k,,.)] © _ kv 200 ()
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- §j ik, Qo (k. )[ (——+'Z E, )F*A‘”(h — ki)
ke k
-5 kyF A(l)(kJ_ —Fim:)
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Appendix D. Narrow-Band Gaussian Random Process

The narrow-band Gaussian random process can be expressed as
[Davenport and Root, 1958]

A(z) cos [2%:0 + ¢(:c)] = €.(z) cos 2%3: — &, sin 2%:: (D1)
where £.(z) and ¢,(z) are independent Gaussian
(€(=2)) = (&i(=)) =0 (D2)

and
(€c(21)€c(22)) = (€u(21)6u(22)) = 02C:(|21 — 23]) (D3)
(€e(z1)€:(22)) =0 (D4)

where o, is the standard deviation of £.(2) and £,(z) and
Ca(lz, - z,|) is the normalized correlation function. The covariance of
narrow-band Gaussian random processes at z, and z, is given by

<A(z1) cos [2%21 + ¢(¢1)] A(z3) cos [2%"2 + "b(“’?)] >

= 02C,(|z1 — z2|) cos %(zl — z,) (D5)
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The probability density function in terms of A and % is given by

A A?
P(A,¢)={r,_fexp <_ﬁ) for A>0, 0<¢y<2r
0 otherwise

Appendix E. Calculations of [(I)]’ and D;
The integral I is given by
I =/ exp(ikq - 7)dF,
The ensemble average of I is given by

(I) = dz'dy’ exp(ika2' + tkayy'){exp [ika, f(=',y')])
A,
with

(exp ke f (') =exp [ -3 (0% + 02

X exp [ikd,B cos (2%:1:' + ¢)]

o’ = (%)
o = (€2) = (&)
Therefore,
(I' =4L.L, exp [—%k:z(a’ + a:)] Z an
. 27 .
X sinc [(kd, + n}—-) L,] sinc [kqyLy]
where

an = (<1)"Ja(~ksB)exp [in (5 + 9) ]

(D6)

(E1)

(E2)

(E3)

(E4)
(E5)

(E6)

(ET)

J, is the nth-order Bessel function, and 2L, and 2L, are the lengths
of the rough surface in the z and y directions, respectively, so that

A, =4L,L,

(E8)
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Assuming that the area illuminated contains many periods (L, Ly >
pP), we have

(DI 216L2L] exp [ k3, (0> + 02)] D laal’
n=—co (E9)

X sinc? [(kd; + nz?ﬂ-) L,] sinc? [kay L)

By allowing L, and L, to approach infinity in the above equation,
we obtain

(D) = 4x?A, exp [—k3, (o + 02)] Z |an|* & (kd,, +n=— ) 8 (kay)
N (E10)
where § is the Dirac delta function.
Ir =/dF/ d7, exp [ikqy - (FL — 7
{ar) A, le + p[u(L J'] (E11)
(exP (ikdz [f(x’ y) - f(z" y')]))
With the change of variables we have
L [Ee-lel 2Ly~ Iyl
(II"):—/ dz' / dy/ d:c/
4 J 30,4 zL,,+|y| 3L, 3L,
X exp [zk,u_ rl] “;w a.(z)exp [25—213—3]
X exp [—kf;,a2 + k3,0 2C(F_,_)]
X exp [ k3,02 + k2,02 cos -—:c C. (:c)] (E12)

where

a.(z) = [2k¢,B sin (;z)]

E;‘P&Ildmg a,(z) and carrying out the dz’ and dy’ integrations, we
obtain

. 3L, 2L, o
(Ir+) / da:/ dy Z Z Bryuexp |i [ (de_ + 2u P) __,_]
2L,

2L n=—00 §=—0o
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é {exp [in%,’i (2L, - lzl)]

(2L, - |y] -

—exp [—in% (2L, - |:c|)] } exp [k}, 0% + k:,azC(?_L)]

dzV =z dz% =z

X exp [-—-kz o2 + k3,02 cos 2%3: C,(z)] (E13)

where
ﬁ“# = (_1)“Jn—p(kdzB) Jn+“(kd,B)

It is clear from the above equation that the n = 0 term is proportional
to L,, while the n # 0 term is proportional to P. The argument
of the Bessel function k;, B will dictate the number of terms that
needs to be summed up. However, if L, > P (we eventually take the
limit L, — oo later on), then the n = 0 term will make dominant
contributions, and other terms will be negligible. Therefore, keeping
only the n = 0 term, we obtain

2L, 2[1' oo _ 27r
(Ir*) = / dz/ dy Z b, exp [i (de. + éy?) .ﬂ_]
-2z, -

Ly e

2L, — |2[][2Ly — |ylJexp [~k},0” + £3,0°C(F.))
X exp [—kg,af + k3,02 cos 2}{2 Cz(z)] (E14)

where ,
b, = J:(kd,B) (E15)

We assume the correlation functions C(7,) and C,(z) to have a Gaus-
sian form

C(r) =exp [(27 + 7)/7] (E16)
C.(z) =exp [-2*/1Z] (E17)

where [ is the correlation length for the random variable £(7 L) in
the transverse plane, and /, is the correlation length for the random
variables {.(z) and £,(z) in the z direction.

The expressions for the standard deviation of the integral I can
now be evaluated in a closed form. Assuming L,,L, > l,I,,P, we
obtain from (E10),(E14),(E16), and (E17),

4n

Dy = (II') = KI)| = 252 (D, + D) (£18)
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D, = 4 Z b, exp [~k3 (o3 + 02) z(kd‘ )"

==-00

12 27\ ? I
X ™ (exp {— [(kdz +#F) + k:,,] m}

m/=1n=0
1 , B 2r]®
XE exp {_kdy4m [kd, +(u+m' - 2n) ?] m
(E19)
where
Izml
=V
and

Tilka) 3 8,303 23,,( ") exp [k (o + o)

p=-00 m=1 n=0

x‘/ ——————(k"‘ 27 ex kaz + (p + 2) -
m m! P = T\HTm=2n 4m

(E20)

where we made use of

lim sin ki, L,) = 8(ks) (E21)

Ly—oo

We note that when 1 > I, P, the expressions for Dy, , (E19), can be
simplified to

— (k2,02)™ 12
D;l_—Zbexp k(a'-i-a E(—TU')—

H=-00 m=1

exp { - [ (k.,, + p%") 2 + kgyJ %} (E22)
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After some manipulations, the above expression further simplifies to

S 2 (.2 .2 o (k30" 1
.DI1 EF/; dzZ exp [—kd,(a + O'z)] Z -——nl-!—"g

m=1
2r \* ?
X exp {— [(kdz + kd,27r—gsin %z) + k:‘;y] 4—m} (E23)

The above result is consistent with the result obtained using the inco-
herent model [Ulaby et al., 1982] where the physical optics solution is
averaged over the local slopes. This is due to the fact that when the
period P is much larger than the correlation length [, then within
the correlation length the periodic component will appear to be planar
with the local slope.
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