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5.1 Introduction

The remote sensing of the earth and the elements of its environ-
ment at microwave frequencies have been found to contain many prac-
tical applications. The primary advantage inherent in remote sensing
at microwave frequencies over optical and infrared frequencies is in its

-weather, day-and-night operational capabilities. Active and passive
microwave remote sensing with both radar and radiometer have been
investigated in areas of snow and ice covered land or water [1-15], veg-
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360 5. Radiative Transfer Theory for Active Remote Sensing

etation canopy [16-19], cloud and rainfall [20,21], and soil moisture
studies [22-30]. While extensive effort has been concentrated in the
measurement and collection of voluminous experimental data, theoret-
ical models that are useful in interpreting these data have not been
satisfactorily developed, especially where combinations of absorption,
scattering, layering and rough surface are important factors. Although
past theoretical emphasis has been largely concentrated on rough sur-
face scattering, recent theoretical models have been proposed to ac-
count for volume scattering effects [31].

In the active and passive microwave remote sensing of earth ter-
rain, the scattering effects due to medium inhomogeneities and rough
interfaces play a dominant role in the determination of brightness tem-
peratures and radar backscattering coefficients. The effects of volume
scattering have been treated with two theoretical models for the ter-
rain media: (1) the random medium model where scattering effects
can be accounted for by introducing a randomly fluctuating part in
the permittivities, and (2) the discrete scatterer model where discrete
scatterers are imbedded in a homogeneous background medium.

In the theoretical developments for passive remote sensing the ef-
fect of volume scattering due to medium inhomogeneity was first ac-
counted for by Gurvich et al., [32]. They derived expressions for the
brightness temperature of a halfspace random medium with a lami-
nar structure, assuming uniform temperature distribution. Tsang and
Kong [33] solved the problem of thermal microwave emission from a
halfspace random medium with a laminar structure and nonuniform
temperature distribution using the radiative transfer theory. England
[34] first examined thermal microwave emission from a uniform low-
loss dielectric medium containing randomly distributed isotropic scat-
terers, with a radiative transfer approach. He [35] then considered the
more general case of a scattering layer over a homogeneous halfspace,
using the radiative transfer theory and a Rayleigh scattering model.
Tsang and Kong [36] derived a more general result than that of Eng-
land for both the halfspace and two-layer case, using a Mie scattering
model. With the Born approximation, Tsang and Kong [37] obtained
the emissivity of a halfspace random medium with a three-dimensional
variation.

In active remote sensing, Stogryn [38] first calculated the bistatic
scattering coefficients for a random medium with a spherical correla-
tion function using a perturbation approach. Leader [39] studied scat-
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tering from Rayleigh scatterers imbedded in a dielectric slab using the
matrix doubling method. Using the Born approximation, Tsang and
Kong [36] studied scattering of electromagnetic waves by a halfspace
random medium. They [40] also developed the radiative transfer the-
ory to calculate the bistatic scattering coefficients from a halfspace
random medium. An iterative approach is used to obtain results to
the second order, in order to exhibit depolarizaton of backscattered
power. Using the first-order renormalization method, Fung and Fung
[41] obtained the bistatic scattering coefficients from a vegetation-like
halfspace random medium. Fung [42] then extended the result to the
case of a vegetation-like layer over a homogeneous halfspace. Zuniga
and Kong [43] studied the scattering from a slab of random medium
using the Born approximation. Then, Zuniga et al., [44] extended the
result to the second order in albedo to show the depolarization effect
in the backscattering direction.

The radiative transfer theory has been useful in the interpreta-
tion of remote sensing data [45]. Even though it deals only with the
intensities of the field quantities and neglects their coherent nature,
it accounts for the multiple scattering and obeys energy conservation.
The modified radiative transfer (MRT) theory [46-48] which takes into
account the partial coherent effects due to the boundaries has been
derived for the cases when the interference effects become important
[49]. The MRT equations have been developed for a two-layer random
medium with laminar structure by applying the nonlinear approxima-
tion to Dyson’s equation and the ladder approximation to the Bethe-
Salpeter equation [46]. Then, the MRT equations for electromagnetic
wave propogation in a two-layer medium with three-dimensional per-
mittivity fluctuations are derived [47,48]. The MRT equations are then
solved with the first order renormalization approximation to obtain the
backscattering cross sections.

Most of the previous work on volume scattering all assumed planar
boundaries, and the effect of rough surface scattering was neglected.
However, in order to understand in a more meaningful way the prob-
lems of radar backscattering and thermal microwave emission from
natural terrains, a composite model that can account for both the
volume and surface scattering effects must be studied. Recently, the
Rayleigh scattering model has been used with the radiative transfer
equations to study the combined volume and rough surface scattering
effects [50-52].
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In this chapter, we solve the problem of scattering from a two-layer
random medium using the radiative transfer theory. The volume scat-
tering effect is first studied in section 5.2 by considering the two-layer
random medium with planar interfaces. Using all four Stokes parame- -
ters, the bistatic scattering coefficients of two-layer random medium are
first calculated using a numerical approach which provides a valid solu-
tion for both small and large albedos. A Fourier-series expansion in the
azimuthal direction is used to eliminate the azimuthal ¢-dependence
from the radiative transfer equations. Then, the set of equations with-
out the ¢-dependence is solved using the method of Gaussian quadra-
ture. The integrals in the radiative transfer equations are replaced by
a Gaussian quadrature and the resulting system of first-order differ-
ential equations is solved by obtaining eigenvalues and eigenvectors
and matching the boundary conditions. The order of the system of
eigen-equations is reduced for more efficient computation by making
use of the symmetry properties of the scattering function matrix. The
numerical results are illustrated by plotting backscattering cross sec-
tions and the bistatic scattering coefficients as functions of frequency,
incident angle, and the scattering angles.

In section 5.3, the combined volume and rough surface scatter-
ing effects are studied with a two-layer random medium model with
rough interfaces. The rough surface effects are incorporated into the ra-
diative transfer equations by modifying the boundary conditions. The.
reflected and transmitted bistatic scattering coefficients derived with
the randomly rough surface models are used to derived the boundary
conditions satisfied by the intensities at the top and bottom interfaces.
The radiative transfer equations are again solved numerically using the
Fourier-series expansion and the Gaussian quadrature method. The
thoeretical results are illustrated by plotting the backscattering cross
sections as functions of frequency and incident angle. '

5.2 Two-Layer Random Medium with Planar Inter--
faces

a. Formulation

Consider a layer of random medium characterized by the permit-
tivity €;+¢;, where ¢; stands for the randomly fluctuating part whose
amplitude is very small and whose ensemble average is zero, on top of a
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Figure 5.2.1 Geometrical configuration of the problem.

homogeneous medium with permittivity e, [Fig. 5.2.1]. The radiative
transfer equations which govern the propagation of intensities inside
the scattering medium are, for 0 < 6 < 7 ’

cosodizf(o, $,2) = ~K,I(8,4,2) — K,(0) - 1(, ¢, z)

L 2x —
+ /o dé’ sin @' /o d¢' B(6,¢;0'¢')-T(¢, 4, 2) (1)
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where

I,(0,9,z)

- 9,9,
6,65 = | oo e @)

Ve, ¢,2)

I, is the vertically polarized specific intensity, I, is the horizontally
polarized specific intensity, and U and V represent the correlation
between two polarizations [40,53], P(6, ¢;6",¢') is a 4 x 4 scattering
function matrix, which relates scattered intensities into the direction
(6,¢) from the incident intensities in the direction (#',¢'), K, is
the loss per unit length due to absorption, and K,(#) is the loss per
unit length due to scattering. The random permittivity fluctuation is
characterized by the variance of the fluctuation § and the correla-
tion function with lateral correlation length [, and vertical correlation
length I, . The scattering function matrix and the scattering coefficient
have been derived by applying Born approximation with the far-field
solution and the explicit expressions for the correlation function with
gaussian dependence laterally and exponential dependence vertically
are given in Appendix A [40].

Consider an incident wave with specific intensity I(7 — 6,,¢,)
impinging from region 0, which is assumed to be free space, upon the
scattering layer. The incident beam in region 0 assumes the form

Tm'(ﬂ' - 00,(}50) = ..I_m' 6((!05 90 — COs 80")5((}50 - ¢m) (3)

where the use of Dirac delta function is made. )

The boundary conditions for the four Stokes parameters at a pla-
nar dielectric interface have been derived [40] from the continuity of
tangential electric and magnetic fields. The results are, for 0 < 6 <
©/2,at z=0,

T(x =0,z = 0) = Toy(6,) - Toi (T — 0o, $5) + R1o(6) - I(0, 4, z = 0) (4)
and, at z = —d,

1(6, ¢,z = —d) = R13(6) - I(m — 0, ¢,z = —d) (5)

where we have broken up intensities in the scattering layer into up-
ward going intensities I(d,#,z) and downward going intensities T (7r -
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8,4, z). In the above equations, To,(0,) represents the coupling from
region 0 to region 1, R;o(f) represents the coupling from upward going
intensities into downward going intensities at the boundary of region 1
and region 0, and R,,(#) represents similar coupling at the boundary
of region 1 and region 2 [Appendix B].

Once the radiative transfer equations are solved subject to the
boundary conditions (4) and (5), the intensity in the direction (8,,, ¢,,)
in region 0 is

Ta(oon ¢oa) = ?10(00) * —I—(ou ¢n z= 0) + I—iul(oo) * Tm’(ﬂ- - 00) ¢o) (6)

where T10(0) represents the coupling from region 1 to region 0. The
bistatic scattering coefficients 7gq(0os, Pos; 0oiy Poi) are defined as the
ratio of the scattered power of polarization 8 per unit solid angle in the
direction (6,,,®,,) and the intercepted incident power of polarization
a in the direction (6,,d,;) averaged over 47 radians [54].

cOSs 00, Io s (000 ) ¢00)
c0s 0 Ios

7/30:(00" ¢o:;0m'7 ¢O!) =4r (7)

where o, = vorh with v denoting vertical polarization and h
denoting horizontal polarization. In the backscattering direction 6,, =

05 and ¢,, = 7 — ¢,; . The backscattering cross sections per unit area
are defined to be

08a(00i) = €08 00 Ypa(0ois ™ + Dois Oois Poi) (8)

b. Fourier Series Ezpansion

The radiative transfer equations can be solved using an iterative
approach which gives closed form solutions [40,53] when the effect of
scattering is small (small albedo). The radiative transfer equations and
the boundary conditions are cast into the integral equation form, then
an iterative process is applied to solve the integral equation to both the
first and second order in albedo. The depolarization of the backscat-
tered intensities has been shown to be the second-order effect. However,
for the general cases when the effect of scattering is not small, we must
Tresort to the numerical approach to solve the radiative transfer equa-
tions. We first use a Fourier-series expansion in the azimuthal direction



366 5. Radiative Transfer Theory for Active Remote Sensing

to eliminate the ¢-dependence from the radiative transfer equations.
We let

0

1(6,4,2) = Y [T™(6:2) cosm(d — #:) + T (6, 2)sinm(9 - #)|
" (9)

P(6,4;0'¢') = Z e M,,

X [P (0,0")cosm(¢ — ¢') + ?"”(0, ') sinm(¢ — ¢')]
(10)
where superscript m indicates the order of harmonics in the azimuthal
direction, superscripts ¢ and s indicate the cosine and sine depen-

dence, and Neumann number §,, = 0 for m # 0 and §, = 1. Also
note that the zeroth-order sine dependence terms are zero.

T”(6,2) = 0 (11a)
P (6,6)=0 (11b)

Substituting (9) and (10) into the radiative transfer equations, the ¢'-
integration can be carried out. Then, by collecting terms with the same
sine or cosine dependence, we obtain a set of equations without the ¢
dependence. For m = 0,1,2,-.-

cos GdiZTM(O, 2)=—-K,JI (8,2)— ?,(0) T7°(0,2) + / d¢' sin ¢’
0

x [B7(6,0)-T%(8,2)- P (6,0) T™(0,2)]
(12a)

— L
cosodizf""(o,z) =—KJ'(0,2)-K,(0)-T (8,2) + / d6' sin ¢’
]

x [P (6,8)-T™(¢',2) + P(0,0)-T7(0,2)|
(12b)
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*
The closed form expressions for the Fourier-series expanded scat-
=—=mc -—ms
tering function matrices P (0,6') and P (6,6') are obtained [Ap-
pendix C]. We note that for azimuthally isotropic media the scattering
function matrix can be expanded as

—P{'l'c Py 0 0
—=mc P Ppe 0 0
P (6,0)=|" % (13a)
0 0 Psﬂslc P;:C
[ 0 0 PE Pl
B 0 0 P{gt P{:n'
=ms 0 0 PRt P
P (0,6')= . (13b)
Pyt Pyt 0 0
| P’ P30 0

Thus, the coupled equations (12a) and (12b) can be changed into two
decoupled equations by defining

[ 170, 2) ]
I;<(6, 2)
Um™(6,z)
L V™(6,z) ]
I (0,2)
™6,z = | (&) (14b)
Um™(6,z)
L Vm(6,2)]
where superscripts ¢ and o stands for even or odd dependence in

the first two Stokes parameters. Decoupled equations are given by, for
m=0,1,2,...

1°(6,2) = (14a)

cos odiif""(e, 2) = — KJI™(0,2) - K.(6)-T™ (6, )

+ / do'sin@P  (6,0')-T™(#',2) (15a)
]
cos odi’zf'”(o, z) =~ KJI°(0,2) - K,(6)- T"°(6, 2)
+ / do'sin6P  (6,0')-T"°(¢',z) (15)
o
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where
[ Py° PR PR -PY
. Pme ¢ __pms Pmo
P(ee)=|n B 7B 24 (16a)

Py PRt Py Py
| PRt PR P PZ"

Plffllc Pl";c P{g‘
—mo Pmc Pﬂlc Pma Pml
PU60.9= | o o pe poe (16t)
Py Py Py P
| P PRt PR P

In order to derive the boundary conditions for the Fourijer-series

expanded intensities, we first expand the incident intensity I (x —
0,,%,:) into the Fourier series:

Ii(m — 0,y $o) = Ioi 6(cos 8, — cos 8,;) 6(Po — oi)

= I,; 6(cos 85 — cos 6,;) Z m cos m(Po — doi)
(17)

Substituting the above equation along with the Fourier-series expanded
intensities into the boundary conditions in (4) and (5) and collecting
terms with the same azimuthal dependence, the boundary conditions
for each harmonic can be obtained. The results are, for a = e or o,
and 0<f<7/2,at z=0

T™(r=0,2=0) = Toy(6,) - Tox (x — 0,) + R10(8) - T"(6, z = 0) (18)

and at z = —d

T"(0,z = —d) = R1a(6) - T"" (7 — 0,2 = —d) (19)
where 1
I (x—0,)=T, -(J—TI)—-J(cos 6, — cosb,) (20)
with
Im’
—me Ik:'
I. = 21la
e (21a)



5.2 Two-Layer Random Mediu{n with Planar Interfaces 369

]

—mo 0

I, = U, (21b)
Vi

We define m,,,, to be the number of harmonics that has to be
kept in the expansion of the scattering function matrix such that

P (6,0)~P (6,6)~0 for m>mm,  (22)

Then, for m > m,,,, the radiative transfer equations simplify to

cosedizf"“(o, z)= -K,JI™ - K,(6)-T™(6, 2) (23a)
cos o%f””(o, 2)=-KJ" -K,(0)-T%,2) (23b)

and the solutions to these equations can be obtained analytically, with-
out resorting to the numerical approach.

c. Gaussian Quadrature Method

The set of decoupled radiative transfer equations without the az-
imuthal dependence for each harmonic can be solved numerically using
the Gaussian quadrature method. The integrals in the radiative trans-
fer equations are replaced by a Gaussian quadrature, an appropriately
weighted sum over 2n intervals between 2n zeroes of the even-order
Legendre polynomial P;,(6). The resulting system of 8n first-order
differential equations are solved by obtaining eigenvalues and eigenvec-
tors and matching the boundary conditions. In obtaining the eigenval-
ues and eigenvectors, the order of system of equations can be reduced
by a factor of two to 4n equations by making use of the symmetry
Properties of the scattering function matrix and noting that the eigen-
values occur in pairs such that if ¢ is an eigenvalue, so is —¢ . We first
break up the radiative transfer equations into two set of equations by
defining, for a = e, =0 or a =0, =e, and m = 0,1,2,...

R b

T,(6,2) = [ (24a)
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- I, (8,z
Iz(o,Z)E [ 21( b )]
122(0, Z)
v e
e B Lpllal Pll::
? (0 0:) = r‘P’Ju Plﬁu
1w - LP]J;; P1233
B0,0)= [P Pom
e B -P3121 Pnzz
Bo,) = [ P
e - \-P”n P2223~
We then have

[Umﬁ(e, z)]

V™R (8,z)
_[Pae P3e]
- LPpe Ppe

| P33 Pe
_[Ppe PR
_ [P PR

| Ppe Ppe

d~ = ¥
cos§—1I,(0,z) = — K.1(0) + [ do’ sin @'
dz o

(24b)

(25a)

(25b)

(25¢)

(25d)

x [Pu(6,0)-T1(6,2) + Pua(6,8) - T8, z)]

d- = *
cos§—1I5(0,z) = — K.3(0) + / df’ sin ¢’
dz 0

where

with

(26a)

x [i,(e, ¢) . To(¢, z) + Pa(6,0') - (6, z)]

?—,1(6‘) =K, +fu
?cz(o) = Ke + fs?

(26b)

(27a)
(275)

(28a)

(28b)
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The scattering function matrix can be shown to satisfy the following
properties. For a,8 =1or 2,

Poa(0,6') = Poo(m — 0,7 — 6') (29a)
Poa(® — 6,8') = Poo(8,7 — 8) (290)

and for a # 0
Pop(0,8') = —Pos(r — 0,7 — 0') (30a)
Pop(m —0,6') = ~Pp(6,7 — 0 (305)
Further breaking up the intensities into upward and downward
propagating intensities, denoted by superscripts + and —, respec-

tively, and applying the Gaussian quadrature method, we obtain the
following set of equations by making use of the symmetry properties
of the scattering function matrix:

_ d- = — = = —_ = = J—
;T-EI:-=—-K,1-I:+F11-T:-+Bu-11 +F12'T;+B12'I;
(31a)
— d_.. = —_ = = —_ = —_— = —_—
—P'EIl =—Keg-1I, +Bll'ﬁ+F11'I1 —Bu'I:—Fu'I:
(310)
= d—— —_ p— —_— — —— = — —
n- :i;I; = —Kez'I: +F21‘T: + Ba -1, +F22'T; + By - I,
(32a)
— d~ —— —_ — 1 —_ = = —_
4 513 =—-K,-1, ‘“Bn'_IT —Fy -1, +Bzz'ﬂ- + Fay - I,
(320)
where, for a,8 =1,2, I} and I are 2n x 1 matrices
FIQI(”I’Z)- i 01(_F1)2)-
Lib?) | 7 _ [ Taa(=timr2)
T+= ay ) I = 1 ’
TN L) | 12T | Ta(oms2) (33)
_I,,,([L,.,Z)_ -Iaa(_l‘ruz)-
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and f,,p and ?ap are 2n X 2n matrices

il

i Paﬁll (“1’“1)

Paﬁzl (“1 ’ I-‘l)

Popy, (knrpa) -+

LPaﬂgl(“ﬁu‘"l) T

-Paﬁlx (“ll_l-‘l) A

Paﬁll (“ﬂv _“1) st
Paﬁgl(”'ln _I-"l) v

=L apay (l"nr _“1) e

Papu (l"ly“ﬂ)

Paﬁgl (“1 ) I‘n)

Paﬂll ("11 —I"'l)

Popy,y (Hn, —tin)
Paﬁgl (“ll "'F'fl)

Paﬂzl (I"n' _l‘ﬂ)

Paﬂu (#1 » H1 )

Paﬁl‘ (l‘"lll‘ﬂ) Paﬁlg (I‘ﬂ) l‘l)

Paﬂgz (I-"l 141 )

Paﬂzl (l"‘nl”’ﬂ-) Paﬁgg(”ﬂ:"l) M

Paﬁlg(i‘lt“l-‘l) A

Paﬁlg(i‘ﬁ’—“l) cer
Paﬁgg(“ll_l‘l) A

Paﬁzg(“ﬂv "'I"l) o

and 7i and @ are the 2n x 2n diagonal matrices

ﬁ: diag[;ll,‘",ﬂn,l‘la“"l‘n]

a= dia.g[al,---,aman“‘,an]

. Paﬁlg (I-‘nt l-"l)

Paﬁlg (I-‘l ) I-‘n) N

Paﬁgg (l“l ’ Pn)

Pa.ﬁgg (l‘n: I‘n) -

(34)
Pap,; (11, —y.,.)"

Pcﬁlg (I-"n» -#n)
Paﬁgg (l-‘l ) —#n)

Paﬁgg (I‘;n' _I-"n)-

(35)

(36)
(37)

In the above equation +y; are the zeroes of the Legendre polynomial
P, (1) and a; are the corresponding Christoffel weighting functions
and we made use of the relations a; =a_; and g; = —p_; . )
The system of 8n first-order differential equations, (31) and (32),

can be cast into more compact form by defining 4n X 1 matrices I,
and I,

I, -
I = _1 I.:
Ia2

]

(38)

such that upward propagating intensity T is given by

T =

I

.
[i] - 1L +1)

(39)
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and where, for 1 =1,2, T,y =1, +1, and I,; = I} -1, . Then, from
(31) and (32), we obtain

~I,=w-1, (40a)

I

=il

—I,=4.T, (40b)

where W and i are the 4n X 4n matrices

= ?c 0 [ ? _§ ? ? ] =

T = 1 s (=11 =u) (=12+=12) .5 (41a)
L 0 K.l L(F2—Bau) (Fa+ Bj)l

= [K. 0] [Fu+Bun) (Fu-Bw] _

T _ 1 Oy (=u =11) (=12 =u) .5 (410)
L 0 K., | (F21 + B31) (F322 — Bja)

and the & and @ are 4n x 4n diagonal matrices

—ﬁ:- diag[l‘l"",#n’ﬂl’"'9/-“1;’/‘19""/"111”1""’l‘n] (420')
a

= diag[ala""an’ala"',auaala"'7an1a1""’an] (42b)

The homogeneous solution can be obtained in the form

~
I
|

a0€™* (43a)
€% (43b)

a

~I
It
~l

s

Substituting the above equations into (40a) and (40b), we now have
4n eigenvalue equations.

@' W5 4d-aT).T., =0 (44)

I,, = a"lﬁ_l -A-T,, (45)

where T is an identity matrix. Thus, if « is an eigenvalue, so is —a .
Once the eigenvalues o; and the corresponding eigenvectors I,; are
obtained, we let E = (I,,,1,,,*+,1a,,) be the 4n x 4n eigenmatrix.

Then the total solution for the upward propagating intensity is given
by

I'=(E+Q)-D(2)-2+(E-Q)-U(z+d)-5 (46)
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where
Q=F'-4.E.3" (47)
a = diag[a,, azy- -+, 04 (48)
f(z) = diag[e®'*,e%%,. .., e4"*] (49)
ﬁ(z) = diag [e""“, e ., e"""“] (50)

and Z and ¥ are the 4n X 1 matrices which represent 8n unknowns
to be determined by the boundary conditions.

In a similar manner, the downward propagating intensity I can
calculated. We obtain,

=E+9)D(z)-z+(E -Q)-Tz+d)-5 (51

where
= —_1 = = —
E=n -W-.-Q-a (52a)
= —1 = = — ;
Q=p -A-FE-a (520)
and
. [Ba 0 ] [Fu-Bu) FatBa)] o
W [Ke 0y B Bu) (P ) |5 (530)
L 0 -—-K,. | —(F31 — Bs1) —(Fa2+ Bj).
B 0], [-FatBw) ~(Fa-Bw)] -
7 e T ki) & RED
L 0 K., | (F21+ Ba1) (Fa3 — B3s) J

In the random medium model, the eigenvalue equations can be sim-
plified further since there is no coupling between the first three Stokes
parameters, I,, Iy, and U, and the last Stokes parameter V in the
scattering function matrix. However, the Stokes parameters U and V
are coupled together in the boundary conditions, and, in general, we
have to keep all four Stokes parameters.

The boundary conditions, which are to be used to determine the
constants Z and ¥ of the upward and downward propagating intensi-
ties given by (46) and (51), are, at 2z = —d,

T'(z=-d)=Ry3-T (z=—d) (54)
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andat z2=0

—_— = —.+ —_— ——

I (Z=0)=R10'I (Z=0)+T01‘Im- (55)

where iu and ﬁlo are the 4n X 4n matrices which are obtained
by evaluating the 4 X 4 coupling matrices R,3(d) and R;o(8) at n
discrete quadrature angles, and T,, is the 4n X 4n; matrix which

is obtained by evaluating the coupling matrix T, at the quadrature
angles. The n; is the number of quadrature angles in region 0, and
the quadrature angles are related by the Snell’s law. Since €, > ¢,
we have n; < n. Thus, for the quadrature angles in region 1 which
are greater than the critical angle between regions 1 and 0, 6, where
i > ny , there is no incident intensity. In the above equation (55), the

incident intensity I, is obtained by discretizing the incident intensity
given by (20), which is given in terms of the delta function. One way
to bypass the problem of discretizing the delta function is to change
the source term at the boundary into the source term in the volume by
calculating the zeroth-order solution explicitly and using the radiative
transfer equations for the higher order terms with the zeroth-order
solution acting as the volume source [51]. In this section we discretize
the delta function in a consistent manner and keep the source term
at the boundary. This approach gives the same solution as the other
approach, and also the formulation does not have to be changed when
the boundary conditions are changed to incorporate the rough surface
scattering [51].
Consider an integral given by

I= / " 48 sin 0 £(8,8) 9(0') (56)

Using the Gaussian quadrature method the integral I is approximated
as

n

I~ " a;f(6,6,)g; (57)

j=-n

If we now let g(8') = 6(cos ', — cos 0.i) where 0, is one of the quadra-
ture angles in region 0, then the integral I can be evaluated exactly
to give

€, cosf,;

I=f(6, .9..)Fl —

(58)
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where 6; is the corresponding incident angle in region 1 which is related
to 6,; by Snell’s law, and we made use of [40]

eo cos 8,
€, cosb;

d¢' sin 0'd¢’ = db’, sin 8, — dé, (59)
Therefore, comparing (58) with (57), we obtain the discrete form for

the delta function:
1 ¢, cosf,

g; = ,'.'a—"e—,l‘ cos 6 (60)
where ) iz
= T (61)
0 otherwise

The incident intensities for even and odd terms in each harmonic, given
by (20), can now be cast into the quadrature form by making use of
the above relations.

Substituting in the expressions for the upward and downward prop-
agating intensities into the boundary conditions (54) and (55), we ob-
tain the following 8n equations for 8n unknowns Z and ¥:

[ +Q)-Fu-(E+Q) =
+[E-Q)-Fuo-(E-Q)|-D(-9)-7=To T, (620)

[B+@)-Fu-F +Q)|-D(-d)-=
+[E-9)-Fu-F-Q)]-7=0 (626)

The above equations can be solved for the constants Z and y for each
case when the incident intensity is at one of the quadrature angles.
Note that in the halfspace random medium case when d — oo, the

equations for Z and § become decoupled since D — 0 and the matrix
equation does not become singular [51]. This is due to the form of the
solution assumed in (46) and (51).

Once the constants Z and y are determined, the scattered inten-
sities from region 1 to region 0, represented by the first term on the
right-hand-side of (6), can be determined. We have

II
‘~3I

T., =0)

[f

I
'~3||
©II

+(E-Q)-D(-d)-7| (63)
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Thus, the complete solution can be obtained by solving the radiative
transfer equations using the Gaussian quadrature method for each har-
monic as outlined above and reintroducing the azimuthal dependence.
The total scattered intensities in region 0 is given by

—_ = = = = —_— ] -1 =
I,,(¢.) = {Rm + T [I — Ryo+ Ry; - exp[-T ' K.d]] . To1}

Tablbo-6a)+ 3 {Toa [T (= 0)

m=0

- [7 - ﬁlo . ilz . exl’[—l‘_1 . ?,d]] - : TOI ' T::c]
cosm(ty = 6a) 4Toa T (s = 0 sinm(4u — 4)} (00

where we have summed up the zeroth-order solution and T (z =

0) and Tm‘+(z = 0) are the upward propagating m-th cosine and
sine harmonics evaluated at z = 0. Once the scattered intensities
in region 0 are obtained, the bistatic scattering coefficients and the
backscattering cross sections can be obtained from (7) and (8). Note
that if we are interested in calculating the scattering intensities for
vertically or horizontally polarized intensities only, then the even series
needs to be calculated. This is because the odd series, represented by
(14b), is zero due to the fact the incident intensity for the odd series as
given by (21b) is zero. In general, both the even and odd series have to
be calculated, especially for fully polarimetric scattering calculations.

d. Results and Discussion

The backscattering cross sections and the bistatic scattering co-
efficients are calculated and illustrated for the various cases. In our
calculations n = 16 is used. The backscattering cross sections are il-
lustrated as functions of frequency and incident angle. The bistatic
Scattering coefficients are plotted as functions of scattering angles 6,
and ¢, .

In Fig. 5.2.2 the horizontally polarized and depolarized backscat-
tering cross sections are plotted as a function of frequency for a 48cm
thick random medium. Backscattering cross sections increase as fre-
quency is increased. This is due to the fact that as frequency increases
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Figure 5.2.2 Backscattering cross sections as a function of frequency.

the albedo [K,/(K.+ K,)] increases, and the scattering becomes dom- i
inant over the absorption. Also, the difference between the like-like po-

larized return and the depolarized return decreases. In Fig. 5.2.3 the .
backscattering cross sections are plotted as a function of incident a.ngle 4
at 10 GHz.

In Fig. 5.2.4, the bistatic scattering coefficients v, and 7y,» are
plotted as a function of scattering angle 8, . The positive 6, corre-’
sponds to the forward scattering case where ¢, = 0 whereas negative
6, corresponds to the backward scattering case with ¢, = 180°. We"
note that there is symmetry about the 8, = 0 axis which is typnca.lf
of Rayleigh scatterers. For correlation lengths small compared to the
wavelength, the scattering pattern of the random medium is that of
the Rayleigh scatterers [37]. The number of harmonics needed in this
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Figure 5.2.3 Backscattering cross sections as a function of incident angle
at 10 GHsz.
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Figure 5.2.4 Bistatic scattering coefficients v, and 7,5 as a function of
scattering angle 6, at 10 GHz.

case was three which is the same as the case involving Rayleigh scat-
terers [53]. In Fig. 5.2.5 we show the bistatic scattering coefficients for
the larger correlation length I,. Unlike the previous case there is no
symmetry. The number of harmonics needed in the computation is also
larger than the previous case.
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Figure 5.2.5 Bistatic scattering coeficients 455, and v,; as a function of
scattering angle 6, at 10 GHz.

In Figs. 5.2.6-5.2.9, the bistatic scattering coefficients are plotted
as a function of azimuthal scattering angle ¢, for 6; = 6, = 33°. We
only plot from ¢, = 0° to ¢, = 180° because the bistatc scattering
coefficients are symmetrical. In Fig. 5.2.6, the bistatic scattering coefli-
cients v, and +,, are plotted for the case of small correlation length
l,. There is a symmetry in the bistatic scattering coefficients about
¢, = 90°. In Fig. 5.2.7, yp» and 7,, are compared. We note there is
no symmetry for the bistatic scattering coefficient +,, . In Figs. 5.2.8
and 5.2.9, the bistatic scattering coefficients are plotted for the case
of the large correlation length I,. We note that the scattering coef-
ficients are more peaked toward the forward scattering direction and
that there is no symmetry about the ¢, = 90° axis.
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Figure 5.2.6 Bistatic scattering coefficients 435 and 7, as a function of

azimuthal scattering angle ¢, at 10 GHz.
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Figure 5.2.8 Bistatic scattering coefficients vx5 and 7,5 as a function of
azimuthal scattering angle ¢, at 10 GHz.
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Figure 5.2.9 Bistatic scattering coefficients v;; and 7,5 as a function of
azimuthal scattering angle ¢, at 10 GHz.
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5.3 Two-Layer Random Medium with Rough Inter-
faces

a. Formulation

Consider a layer of random medium with rough interfaces charac-
terized by the permittivity ¢, + ¢; , where ¢; stands for the randomly
fluctuating part whose amplitude is very small and whose ensemble
average is zero, on top of a homogeneous medium with permittivity e,
[Fig. 5.3.1). The radiative transfer equations which govern the propa-
gation of intensities inside the scattering medium are given by (1) and
(2).

For the case of rough interfaces, the boundary conditions are, for
0<b<n/2,

I(x - 6,4,z =0)

2% x/2 — _
- / g, [ a8 sin8. Tos(9, 40, 8,) - T(m — 6, 41)
0 0

2x x[2 — _
+ / ¢’ / d6' sin@' Ryo(0,8;0',¢')-1(6',¢',2=0) (65)
] (s]
7(9, ¢,z = —d)

i x/2 ___ :
= / d¢'/ d¢'sin@’ Ry,(0,0;0',¢') - I(x — ', ,z = —d)(66)
0 0 :

where we have broken up the intensities in the scattering layer into.
upward going intensities I(0,¢,z) and downward going intensities
I(x — 0,¢,2), and T,(x — 8,,4,) is the incident intensity given by
(3). In the above equations To,(6, ¢;8,,¢,) represents the coupling
from region 0 to region 1, R,0(f, ¢; ', ¢') represents the coupling from
upward going intensity in the direction (#',¢') into downward going
intensity in the direction (7 —#8,¢) at the boundary of region 1 and re-
gion 0, and R,;(9, $;¢',¢') represents similar coupling at the boundary
of region 1 and region 2.

Once the radiative transfer equations are solved subject to the
boundary conditions, the scattered intensity in the direction (,,, o)
in region 0 is determined from
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incident intensity 2 scattered intensity

—_— z=0

Region 1 & = em + €14(7), 8,1, 1,

< e14(F)ef4(F') >= €2 5 exp[— (z-z’)’é(v—v')’ — le=2l)

[

Region 2 €2

Figure 5.3.1 Geometrical configuration of the problem.

Too(oon ¢o:)
2x x/2 — _
- / dg, / 48! 5in 6, Bor(0os, dor; 0y 81) - Toil(x — 01 61)
0 0

2r x/2 — _
+ / dg’ / d6' 518" Tyo(0sy $on 0, &) - T(, &', 2 = 0) (67)
0 0

where Tw(&o, $03;0',¢') represents coupling from region 1 to region 0.
il‘he coupling coefficients used in the boundary conditions for the rough
Interfaces are derived in the next section.
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b. Boundary Conditions

The boundary conditions satisfied by the specific intensities at
rough dielectric interfaces are derived in this section. Unlike the pla-
nar interface case where the coupling at the boundary is only to the
specular reflection and transmission directions, the incident intensity
is coupled to all of the reflection and transmission directions. The re-
flection and transmission matrices are related to the bistatic scattering
matrices, which is the generalization of the bistatic scattering coeffi-
cients to include the correlation between polarizations of the scattered
fields.

Consider a plane wave incident from medium 1 onto medium 2
along the direction &; upon a rough dielectric interface. The electric
field of the incident wave is given by

E,' = é,' E”' e'i""_' (68)

where k; denotes the incident wave vector and é; is the polarization
of the electric field vector. The rough surface is characterized by a ran- -
dom height distribution z = f(¥.) where f(7,) is a Gaussian random
variable with zero mean, (f(7.)) = 0. The incident field will generate -
the reflected and transmitted fields in medium 1 and 2, respectively..
The solutions to the problem of scattering from a random rough sus-
face have been extensively studied [55-67]. In general, the scattered”
and transmitted fields for vertical and horizontal polarizations for the
incident field with vertical and horizontal polarizations are given by

I:Ev::l ﬁ (0n¢n on¢t) f;h(a,,¢,;0i,¢i)j| . [E".
En, r fhv(on ¢-;0i’¢i) f,:h(o,,¢,;0,-,¢'.) Ey;

[Evt] ﬁ [ (0ta ¢ta 0:) ¢c) f:h(ot’ ¢t;0i,¢i):| . [‘Eﬂ'] (70)
Ey, T Lfre(6es 86505, 0:)  fin (62, be3 05, 05) En

Now the scattered specific intensities can be expressed in terms of the
incident specific intensities.

| 0

I, =R T (11)

M~

-T: = %12 y (72)
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where I;, I,, and I, are the column matrices for the specific intensities
containing the four Stokes parameters

Iva
T, = | i\t (73)
a= a=1,r,
Ua
Va
and
= 1 =
Ri2(0,, 0430, 8:) =A.cost, L (74)
-T_—n(oz 4’:‘0' ¢) ="'l—ﬁf (75)
1PeyVir ¥ Aocosﬂt 2
with
(a1 (1£2,17) Re((£25 13)) —Im{(£3, 1))
zo (1£2.1%) (7P Re((f3 12)) —Im{(f2,13))

2Re((£3,120)) 2Re((£5,150)) Re({(Fa o+ I ) —Im{(F3 15 —F 315 ))
2Im{(£3,120)) 2Im{(£3. 050 ) Im((FSfen 1o 15 ) Re((fan s 1ot )

(76)

Thus, the boundary conditions for the specific intensities at a rough
interface is given by

. 2x x/2 — .
Il(k,)=/(; d¢.-/0 df; sin0; Ry12(0,,9.;6;, ¢:) - Ir(k:) (77)

. 2% x/2 — »
Iz(kg)=./o d¢.'/; db; Sinoile(on¢t;oi$¢i)'Tl(kt') (78)

The reflected and transmitted intensities at the directions k, and k,
are given by integration of all the scattered intensities which are cou-
pled to that direction from the incident intensity.

The reflection and transmission coupling matrices can also be re-
lated to the rough surface bistatic scattering coefficients. First, the
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definition of bistatic scattering coefficients is generalized to include
the correlation between polarizations. We define the bistatic scatter-
ing matrix 5 whose elements are given by

cosb, I,(6,,9,
Yap(0ss 043 0i, i) = 4m o 0.~(I,s.-’¢ ) a,f=1,2,3,4 (79)
where

Ila Iva

- I, I
L.=||=]|™" a=1i,s (80)

ISa Ua

I4a Va

The usual bistatic scattering coefficients are

Yoo = Y11 Yo = 712 The = Y21 Thh = Y23 (81)

The reflection coupling matrix is related to the bistatic scattering ma-
trix as follows:

1 cos6; —

Bas(0s, 61300 8) = - 2L 7(0,, 44361, 64) (82)

In a similar manner, the transmission coupling matrix can be related
to the bistatic scattering coeflicients for the transmitted intensities:

Tl 060 80) = 3= e 55 (01,4305, ) (83)

The explicit expressions for the reflection and transmission matrices, .
obtained using the scattered and transmitted fields derived by a com-
bination of Kirchhoff approximation and geometrical optics approach,
are given in Appendix D [31,69]. The other solutions for the scattering
from a rough dielectric interface, such as small perturbation method
(SPM) [65,66] or modified SPM [67,68], can also be used to derive the
coupling matrices to be used with the radiative transfer equations.

Note that, in general, the coupling matrices can be broken up into
coherent and incoherent components. The coherent components only -
couple the incident intensity into the specular reflection and transmis-
sion directions while the incoherent components couple to all reflection
and transmission directions.

Fua(81r 61366, 85) = Bog(00 64100, 8:) + Ran(O0, b3 05 85) (84
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%12(01, oe3 0;, ¢:) = ﬁz(ota &3 0iy ¢s) + T—:iz(ou &3 0is 4’;) (85)

c. Fourier Series Ezpansion

The radiative transfer equations and the associated boundary con-
ditions can be solved using a numerical approach. We use a Fourier-
series expansion in the azimuthal direction to eliminate the ¢-depen-
dence from the radiative transfer equations and obtain a set of equa-
tions without the ¢-dependence [section 5.2.b] The ¢ -dependence
from the boundary conditions can also be eliminated using the Fourier-
series expansion. We let

Ti(% = 8oy $o) = Toi 6(cos 8, — cos 0.:) i (_6_:-—1)7; cos m(, — Poi)
e (86)

and, for a, 8 = 0,1, 2,

Rop(0, 48 ¢') = Rog(6) 6(cosd — cos ') D —(ﬂ—}g cosm(¢ — ¢')
e (87a)
Rosl0s$:0,8) = Y. (s (Ron (60 cos (8 = 4)
m=0 m
1Ty (6,0 sinm(¢ — ¢')| (870)

?‘ g MY = = _ ' - —1___ Yy
01(0, $; 6., 8,) = T, (6,) 8(cos 8,—cos BO)Z::O aTo)" cos m(¢,—,)
(88a)
= / / —~ 1 Fme / /
X TAAEDY ato)r [Tm (6,6,) cosm(¢o — 4,)
m=0 m

+To, (6,6,)sinm(g, - ¢,)]
(88b)

where 0, and 0 are related by the Snell’s law.
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Substituting (86), (87), and (88) into the boundary conditions (65)
and (66) and carrying out the d¢' and d¢! integrations, we obtain
the following set of equations. For 0 < § < v/2 and m =0,1,2,---

I™(x -0,z =0)
x/2 —c .
= [ do,sing, [T;i(6,6,) - T’ (v~ 6,)
[¢]
+T (6,65)- T’ (x — )]
x/2 —c .
+ / do'sin¢’ R,,(6,6')- T (6',2 =0)
1]
x/2 —me —me
+ f d#' sin ¢/ [Rw 6,6)-T7°(¢', z = 0)
1]

—Roy (8,8)-T™ (0,2 = 0)]
I (x—0,2=0)
x/2 —ms
= [ aosime T (0,0) - T (x - )
1]
/3 = —ms
+ j 40’ sin @ By (6,0') - T™ (¢, 2 = 0)
1]
x/2 —ms —me .
+ / a0'sin @' [T, (6,0)-T™(#,2 = 0)
1]

+R,, (8,6 .T™(8', 2 = 0)]

*/2 = —=mc
T™ (0,2 = —d) = / d0'sin 0 Boy(6,0) - T (x — &, 2 = —d)
(1]

(89a)

(89b

x/2 —me —me
+/ df' sin ¢’ [E;", 0,0)-T(x — ¢,z = —d)
1]

—Rpa (6,0) T™(x 0,z = —-d)]

(90a)
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s x/2 — s
i (0,z=—d)=/ df'sin¢' R, ,(6,6')-I (x -6,z = —d)
0

~/2 e e
+ / df'sin®' Ry, (6,8')-T™ (v - ¢',2 = —d)
0

+R;; (6,0) T (x — 0,2 = -d)| (90b)
where 1
Im- (7(‘ - 90) = Io,' mc?(cos 00 — Ccos 00,) (91)

Note that the Fourier-series expanded coupling matrices for az-
imuthally isotropic rough boundaries do not couple the first two Stokes
parameters to the last two Stokes parameters. The coupling matrices
can be expanded as follows. For A= R or T,and a,8=0,1, 2,

(ASs, AT, 0 0 ]
¢ AZ‘C A:,"c 0 0
i:‘p _ Ba1 Baz . . (92a)
0 0 Aaﬂas afss
0 0 A:‘;u :!n;u "
[0 0 A%, AT
. 0 0 AT A™
f:p — o . Bas Bas (92b)
Aﬂﬂn aBaz 0 0
| AT A, 0 0

Thus, the boundary conditions (89) and (90) can be decoupled by
deﬁning
[ 1°(6,2) ]
—me I<(0, 2)
I (6,2)= 93
6= | oo (93a)
V™ (6, 2) ]
[ I(6,2) ]
I;* (6, 2)
Um(9,z)
L V™e(6, 2) |

T™°(0,2) = (93b)
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where superscripts e and o stand for even or odd dependence in the
first two Stokes parameters. After carrying out the df, integration,
the decoupled boundary conditions are given by, for « = e or o,

I™(x-6,2=0)

= Tox(oo) 'T:a(" —6,) + Tm (9, 0«') : T:a

*/2 r—c —ma 1 —ma
+ / df'siné' |R,o(0,60') + Ry, (0,0)| -1 (6',2=10) (94a)
o | ]
%0,z = —d)
/2 e=d =ma 1 —ma
=/ a0’ sinf [R,3(6,0) + By (6,8)] -T"(x — 0,2 = —d)
o !
(94b)
where,for A= Ror T,and ,8=0,1,2,
AZ";“ :!uﬁcu _AZ‘ﬁ‘xs —A;np‘l‘l
—me AT ., —ATs . —ATS
Aap = m‘izl mplza mcpas mcp24 (95a)
aBsy aBaz Aaﬁsa A0ﬁ34
:!nl;u Lnl;n A:!nﬁgn AZ‘EM
A,;En Az‘;u A:!néu A:xn[;lA
Aaﬂn Aaﬁs: Aaﬁsa Aaﬁ34
:!nﬁ‘n Ag‘éu :!ngn Az‘l;“
and, for ¢ = e or o,
I (x—-6,)= Tm; §(cos b, — cosb,;) (96)
o TR (b + D ° i
with
Im’
—=me Ihi
. o= 97a
0 (97a)
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0

—mo 0

I, = U, (97%)
Vi

The radiative transfer equations for the even and odd series can be
obtained in a similar manner in section 5.2.b. We have, for a = e or o
and m=0,1,2,---

cos odiif"'“(o, z)= - K,J°(0,2) - K,(6)-T"°(6, 2)

+ / do'sin@' P (6,6')-T"(8,z) (98)
(o]

where ?""’(o, 0!) is defined in a similar manner to (95) [section 5.2.b].
We define m,,,, and m/, . to be the number of harmonics that

has to be kept in the expansions of the scattering function matrix and
the coupling matrices, respectively, such that

?‘mc(o’ 01) ~ ?m'(o, 0,) ~ 0 fOl' m> Mmaz (99)
and
—mc —ms
Ap A >0 for m>m,,., (100)

Then, for m > m,,,. the radiative transfer equations simplify to
d —ma —ma = —ma
cos OEI (6,2)=-K,I  —K,0)-I"(9,z) (101)

where a = e or 0. Similarly, for m > m/, ., the boundary conditions
simplify to

T™(r~0,2 = 0) = Ty (6.)-To;" (7~ 0,) + Byo(0)-T"*(8, 2 = 0) (102a)

and
—ma == —ma
T8,z = —d) = R,3(0) - T""(x — 0,2z = —d) (102b)

where d@' integrations are carried out. Thus, for m > max[m,...,
m, ..}, We can use the simplified radiative transfer equations and the
boundary conditions, given by (101) and (102), to obtain the solutions
analytically without resorting to the numerical approach.
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d. Numerical Solution

The set of decoupled radiative transfer equations without the az-
imuthal dependence for each harmonic can be solved numerically using
the Gaussian quadrature method. The integrals in the radiative trans-
fer equations are replaced by Gaussian quadratures, and the resulting
system of first-order differential equations with constant coefficients
are solved by obtaining eigenvalues and eigenvectors. The numerical
solution for the specific intensity is given by, for each harmonic and for
even or odd series,

2)-Z+(E-Q)-U(z+d)-§  (103a)

6 _
(2)-2+(F -Q)-T(z+d)-7  (103b)

+3)-

(
(

~ N
.
l’:l{ tl:ll

bil EII

where T and T~ represent the upward and downward propagating
intensities and Z and ¥ are the unknown constants [section 5.2.c].

The boundary conditions, which are to be used to determine the
unknown constants Z and ¥, can be obtained by discretizing the
boundary conditions given by (94). Following the procedure outlined
in the Appendix E, we obtain the following set of equations:

T(z=0)=Ryo-T(z2=0)+T, - T, © (104a)

T (z=-d)=Ry-T (z=—d) (104a)

Substituting in the expressions for the upward and downward prop-
agating intensities into the above boundary conditions, we obtain the
following set of equations for Z and ¥:

(B +2)-F0-E+Q)] =
+ [(f'—ﬁ’)—ﬁm-(b‘—ﬁ)] -3(—d)-y= oo+ I; (105a)
[(E+Q)-Fu-(E +Q)]-D
+[E-9-Fu-F —Q)]°y=o (1058)

HI

The above equations can be solved for the constants Z and ¥ for each
case when the incident intensity is at one of the quadrature angles.
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Once the constants Z and y are determined, the scattered inten-
sities from region 1 to region 0, represented by the first term on the
right-hand-side of (67), can be determined. We have

I, 10 'T+(Z = 0)

I
ol

Nl

0 [(E+@)-z+(E-Q)-D(-a)-7  (106)

Thus, the complete solution can be obtained by solving the radiative
transfer equations using the Gaussian quadrature method for each har-
monic as outlined above and reintroducing the azimuthal dependence.
The total scattered intensities in region 0 are given by

a8 = (T4 Too- [~ T Ty expl 7 Ke] T}
Toi 6(¢0 — $0i)

+ ) {fox T cos Mo — boi) + Roy - Top sinm(¢o — doi)

m=0

C

+(z = 0) cos m(Po — Poi)
(2 = 0)sinm(#, - 4us)

el
[=4

I

I
Tm:

+  +
3
o

et —ms~

T (z=o)—ﬁ';' T (z=0)] cos m(Po — oi)

+
| nas— |
2

e —_— poad -1
— Ry Ry, -exp[-F ' K. d]]

|
=3
(-4

=

c

Ty - T2 cos m(do — dor)

+ [ﬁ’ . T”°+(z =0) +-Td;:: -Tm'—(z = 0)] sinm(¢, — ¢o;)}
(107)

where m! = = max{muqz.,m,,,,] and for m > m!, ., we have evalu-

ated the scattered intensities analytically and summed them up. Once
the scattered intensities in region 0 are obtained, the bistatic scattering
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Figure 5.8.2 Backscattering cross sections as a function of incident angltv
for rough surface and volume scattering at 5 GHs.

coefficients and the backscattering cross sections can be obtained from
(7) and (8). It should also be pointed out that the emissivity used in
the passive remote sensing, which is related to the bistatic scattering
coefficients, can be calculated in a similar manner [70].
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e. Results and Discussion

backIn this.section we illustrate the theoretical results by plotting
scattering cross sections as functions of incident angle and fre-
quency for various cases. In our calculations n = 16 is used. The
combined volume and rough surface scattering model is illustrated us-



398 5. Radiative Transfer Theory for Active Remote Sensing

4
5 -
N \/—‘—
////
rd
7’
-,
'
’
.
z
s
/
/
/
-10 /
/
/
/
s
/ - Volume Scattering
/
/ ~w———  Volume and Rough Surface
// 0 = 420 Scattering
, 3
/ =0
20 / €m = (1.01 +i0.001)¢q
// 6=0.05
/ l,=04cm I,=04cm
/ T — T —— 2z = 50 em
l’ € = (10.0 +i1.0)eg 5 = 0.05

T I T T N

S 10 15 20 GHz

Frequency
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ing the geometrical optics solution for the rough surface modified with
the shadowing function. In Fig. 5.3.2, the backscattering cross sections
for like-like polarized return o4, and depolarized return o, are plot-
ted as a function of incident angle at 5 GHz. The bottom boundary
is assumed to be rough with mean square surface slope s* = 0.05.
We note that unlike the case of only volume scattering, which has a
fairly smooth angular dependence, we have a peak near nadir. This
is due to the contribution from the bottom rough surface. Also, de-
polarization return for the combined model is higher than the volume
scattering model. In the volume scattering case, the depolarization of
the backscattered power is due to the second-order and higher-order
scattering effects. However, in the presence of a rough boundary, there
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is the effect of interaction between the rough surface and volume scat-
tering.

In Fig. 5.3.3, we compare the backscattering cross sections for vol-
ume scattering, rough surface scattering, and the combined volume and
rough surface scattering. We can see that the backscattering cross sec-
tion near nadir is dominated by the rough surface scattering whereas
for larger angles of incidence volume scattering effects dominate.

In Figs. 5.3.4 and 5.3.5, we compare the volume scattering ef-
fects and the combined volume and rough surface scattering effects by
plotting the backscattering cross sections as a function of frequency.
In Fig. 5.3.4 the angle of incidence is §; = 4.2°. At low frequencies
the backscattered power due to volume scattering diminishes, and the
rough surface effects dominate. As frequency is increased the effect of
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the bottom rough surface diminishes since the intensities do not pen-
etrate the scattering layer as much as at lower frequencies, and the
backscattered power is due to the volume scattering. In Fig. 5.3.5, we
illustrate the same case for the angle of incidence 6, = 32°. Again,
the rough surface scattering dominates at low frequencies. However,
the rough surface scattering effect diminishes faster as frequency is
increased which is due to the fact that at higher incident angles the
intensities have to travel a longer path before being affected by the
bottom rough surface.

5.4 Summary

In the active microwave remote sensing of earth terrain, scattering
effects due to medium inhomogeneities and surface roughness play a
dominant role in the determination of radar backscattering coefficients.
The volume scattering effects due to medium inhomogeneities have
been studied by characterizing earth terrain with two-layer random
medium model. The radiative transfer theory is used to calculate the
backscattering and bistatic scattering coefficients from a two-layer ran-
dom medium. Radiative transfer equations are solved numerically using
the Fourier series expansion and the Gaussian quadrature method.

In order to more realistically model earth terrain, a composite
model comprising an inhomogeneous layer over a homogeneous halfs-
pace with rough boundaries has been developed. The random medium
model is used to incorporate the volume scattering effects. To model
rough top and bottom interfaces, the bistatic scattering coefficients
for a randomly rough surface obtained using a combination of Kirch-
hoff theory and geometrical optics approach are used. The radiative
transfer theory is used to solve for the scattering coeflicients. Rough
surface effects are incorporated into the radiative transfer theory by
modifying the boundary conditions. Radiative transfer equations and
the boundary conditions are solved numerically using the Fourier se-
ries expansion and the Gaussian quadrature method. It has been shown
that the backscattering cross section for the angles of incidence near
nadir is dominated by the rough surface effects whereas the large angle
of incidence behavior is dominated by the volume scattering effects.
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Appendix A: Scattering Function Matrix, Scattering Coef-
ficient, and Absorption Coefficient for the Random Medium

The scattering function matrix has been derived for the random
medium whose fluctuating permittivity is characterized by the corre-
lation function

(e1(F)e}(7")) = b€’ b(F — 7") (41)

where § is the variance of the fluctuation, and the function b(7 —7")
is the normalized correlation function. The scattering function matrix
is given by [40]

P P12 s O
xk!4§ Pan Pz Pas O
0 50,60, 4) (a2)
P31 P32z pas O

0 0 0 py

P(0,4;60',¢') =

where &(0,¢;60',4') is the spectral density of the fluctuation which is
given by the Fourier transform of the correlation function and

P11 = sin® @sin® @' + 25sin @ sin 6 cos b cos &' cos(¢ — ¢')

+ cos® 6 cos? &' cos®(¢ — ¢') (A3)
P12 = cos® Bsin®(¢ — ¢') (44)
P1s = cosOsinfsin ' sin(¢ — ¢') + cos” 0 cos ¢’ sin(¢ — ¢') cos(¢ — ¢')
(45)
P21 = cos® @' sin*(¢ — ¢') (A6)
Paz = Cosz(¢ -¢) (A7)
Pas = — cos ' sin(¢p — ¢') cos(¢ — ¢') (48)
Ps1 = —2sinBsin @' cos 8’ sin(¢ — ¢')
— 2cos 0 cos® ¢ cos(¢ — ¢')sin(¢p — ¢') (A9)
P32 = 2cos @sin(¢ — ¢') cos(¢ — ¢') (410)

Paa = sin0sin @’ cos(¢ — ¢') + cos 0 cos &' [cos? (¢ — ¢') — sin*(¢ — ¢')]
(A11)
Pas = sinBsin @’ cos(¢ — ¢') + cos @ cos @’ (A12)
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For the correlation function we assume gaussian dependence laterally
and exponential dependence vertically

1 1\2 P 1\2 '
b(F,_F,,)___exp[_(z z") ;(y ") _Izlz|] (413)
P z

Then the spectral density is given by

L2
Q 0 « ! U — z2%p
6,4:6,¢) 4731 + k213(cos 6’ — cos 0)?]
k:zlz
- exp [— 14 £[sin? @' + sin® @ — 2sin @' sin 0 cos(¢’ — ¢)]] ‘
(A14)
The scattering coefficient ?.(0) is given by
K, 0 0 0
— 0 Ky 0 0 )
0 0 0 Kth
where
/ rkll46 7 U ! / U
Kv(o ) = . dQ 2 Q(oa ¢;0 a¢ )[Pll(oa ¢;0 ’¢ ) + P21(0,¢;0',¢ )]
' (A16)
’ xki'é ' ' w
Kn(#') = , d— — (0, ¢;6', ¢ )[p12(6, 856", 8') + P2a(6, ;¢ ¢')]
(A17)

and the d) integration is carried over a 47 solid angle. The absorption
coefficient K, is given by

K, = 2k! (A18)

where k' is the imaginary part of the wave number in region 1.
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Appendix B: Coupling Matrices for Stokes Parameters at
Planar Dielectric Interface

The coupling matrices in the boundary conditions take the form
[40,53], for a, 8 =0,1,2,

toap(0a) O 0 0
Tuplta)= 2| 0 el 0 0 (B1)
€, 0 0 9ap(0a) —hap(fa)
0 0 hap(0a)  9ap(fa)
and
Tvap(fa) 0 0 0
ﬁap(oa) _ 0 Thap(0a) 0 0 (B2)
0 0 Wap(0s) —Zap(0a)
0 0 Zap(0s) Wap(0a)
where

tvap(fa) = 1 — ryap(fa) (
thap(fa) = 1 — Thap(ba) (
9ap(0a) = (cos s/ cos 6o ) Re(Yap X 3p) (B5)
hap(0a) = (cos b/ cos 0o )Im(Yap X, 5) (

for 6, less than the critical angle, otherwise

9ap(0a) = hap(6a) = 0 (BT)
and

Xap(ba) =1+ Rap(ba) (B8)

Yop(0a) =1+ Sap(6a) (B9)

where R.5(0,) and S,5(f,) are the TE and TM Fresnel reflection
coefficients, and

Toap(0a) = |Sap(8a)l? (B10)
Thap(0a) = |Rap(ba)l? (B11)
Wap(6a) = Re(SapR}p) (B12)

Zap(0a) = Im(SapR;p) (B13)
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Appendix C: Fourier Series Expansion of the Scattering
Function Matrix

The scattering function matrix given in Appendix A can be ex-
panded into the cosine and sine series as follows:

?(O,qb :0'¢') = Z:o m [?0(0,0’) cosm(p — ¢')

+?m(0, 0')sinm(¢ — ¢’)] (C1)
where _ .
Py oy 0 0
=mc , P P 0 0
P (0,0')=q(0,¢) e e (C2)
0 0 P55 Pas
[ 0 0 P PEC
[0 0 ply P
s 0 0 ms ms %
?m (0, 0:) — q(o’ 01) . o P2z Pas (03)
pa’ Py O 0
P P 0 0
with st Y :
q(6,6') = =2 p (Ca)

4 14 k213(cosf — cosf')?

§
S

ph=e7Y [sin2 fsin’ ' I,,(z) + sin 0 sin 8’ cos 0 cos §'(Im_1(z) + Im+1(zj3
2 2 gL 1 1

+ cos® G cos” ¢ (EI"‘(Z) + ZI —a(=) + ZI,,..,,,(::)) (C5)

me - 2 1 1 A

piy =€ ¥ cos 05 In(2) - E(I ~3(2) + Im43(2)) (ce)

me - 2 11 1 y

i = e o 0L [1ae) - Hhmes() 4 Tns@)] (0D

o = 5 [l 4 JUs@ + T2 (08)
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Doy = e‘”% [sinﬂ sin 0'(],,,_1(23) + Im+1(z))

+ cos b cos @' (I,n_3(z) + Im+,(z))} (C9)

P =e? [cos 0 cos 0'I,,(z) + sin @ sin 0’%(I -1(z) + I,,,.H(z))}

(C10)
Pis =piy =0 (C11)
Py =€ Y cos 0% [sin 0 5in 0’ (In_1(2) — Im41(2))

+% cos 0 cos 0’ (I_3(z) — I,,..,_,(z))] (C12)

,1
Py = —e Ycos @ Z(Im_z(Z) ~ Inya(2)) (C13)

Pa = — e ¥ cost [sin0siné (Ln_y(2) — Irnss(2))
+% cos 0 cos 0’ (I,,_a(z) — Im+z(z))] (C14)
1

Pz =e Y cos 0§(I —2(2) — Inya(2)) (C15)
P =P =P =piy =0 (C16)
y= %k{’l;‘;(sin2 6 + sin’¢') (C17)
z= %k{’l”, sin 0 sin ¢’ (C18)

and I, is the m-th order modified Bessel function.

Appendix D: Expressions for Coupling Matrices Obtained
using Geometrical Optics Solution

The reflection and transmission coupling matrices at the rough
dielectric interface can be obtained using the scattered and the trans-
mitted fields derived by a combination of Kirchhoff approximation and
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geometrical optics approach. The explicit expressions for the coupling
matrices R,; and T, are given by [31]

R (6,5 43 6, 0;) = 1 [Fua* !
12\Ysy ¥sy Viy @5 ) = COSB, 4lki X ’;'I4k§d‘ 27 82
ki + k3] =R
- €Xp _—iT% 012(0”¢t;0i,¢i) (Dl)
2k, 8
= . 1 kRaaP(R- k)P 1
TIZ(ot’ ¢t1 on ¢l) - COSO; I,‘é X ’;t|4k4 ’7_227‘.82
k3. +k
+ €xXp [— %] 12(0t, ¢h 0., ¢:) (-Dz)
2dzS
where s? is the mean square surface slope
Fa=k -k, | (D3)
Ezd = E’ - ;t (D4)
lf\?vlz |, h'z Re( fvv) _Im( fvv)
=a |ff,'2 If;.;Jz Re(fhh Iay) ~Im(fg, -fhh )

Re(£3,13,) 2Re(F3 050 ) Re(f2 10 +1808) —Im(£8 1o — £2 127)
2Im(f:.vfh.) ZIm(f ).fm.) I""(fvv-fhh ),f}..) R‘(fvvf“, f hfh')

(D5)
with
= (h -k )(h k, )R + (9, - k; 3 ) (s - -k, )R, (D6)
w = —(8, - k) (hi - k) By + (B, - k:)(3: - )R, (D7)
fon = (hy - ki)(0; - k,)Ry — (9, - k) (hs - k,)R, (D8)
fan = (=9, - k:)(0: - k,) Bo + (R, - k) (hs - k)R, (D9)
and

2 = (B - k) (ha - Be)(1 + RL) + (b - ks ) (3 - k.)”’(1+R') (D10)
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fro = = (b0 - ki)(hs - ke)(1+ RY) + (e - k) (o - ;;,)%(1 +R)) (D11)
tn = —(he - k) (95 - ko) (1+ BL) + (5 - i) (s - fcogj-(l +R.) (D12)

Fin = (0 ki) (8- k)1 + RL) + (e - bi)(hs - ic,)%(l +R,)) (D13)

R, and R, and R/ and R}, are the local reflection coefficients for
the vertical and horizontal polarizations evaluated at the stationary
phase points (a,,8,) and (c!,3'), respectively.

The geometrical optics solution used to derive the boundary con-
ditons for rough dielectric interface satisfies the principle of reciprocity
but violates the principle of energy conservation. This is due to the
neglect of the effects of multiple scattering and shadowing. The shad-
owing effects can be incorporated to modify the boundary conditions
as follows

fnn(i’:;ici) = S(i’nici)il2(’;o; ’;.) (D14)
Ta(kes ki) = Sy bs) Toa(hes i) (D15)

where § (IAcQ, l}p) is the probability that a point will be illuminated by
rays having the directions l::ﬂ and —l::a y given the values of the slope
at the point [31].

Appendix E: Application of Legendre Quadrature Formula
to the Boundary Conditions

The boundary conditions given by (94) can be cast into the matrix
form using the quadrature formula. In this appendix we will illustrate
the application of the Legendre quadrature formula to the boundary
conditions. The boundary conditions are approximated in a manner
such that the formulation does not have to be changed when applied
to the flat surface case.

Consider the following scalar version of the boundary condition at
z=—-d:

x/2
10,z = —d) = / 4’ sin 0’ r13(8,8) I(x — 0,2 = -d)  (E1)
0

One way to approximate the above equations is to apply the Gaussian
quadrature method. We obtain, for i,j = 1,2,---,n,

I(0,-,z = —d) = ia,- 1‘12(0", 0J)I(7I' - 0j,2 = —d) (E2)



408 5. Radiative Transfer Theory for Active Remote Sensing

This approach is justified as long as the approximation of changing
the integration to the summation is accurate. This means the number
of quadrature points n has to be large enough so that the above ap-
proximation is valid. Note that as r;3(6,6') becomes a more sharply
peaked function at the specular direction, the number of quadrature
points has to be increased. Thus, it would be difficult to use the above
approach for the case of near specular surface. In the limit of specular
surface the coupling function is given by

r12(0,6') = r13(8) §(cos ' — cos 0) (E3)
and the boundary condition simplifies to
I(6,2 = —d) = r3(0) (7 — 0,z = —d) (F4)

In this limit we note that the number of quadrature points does not
have to be large as long as r,3(0) is a fairly smooth function.

One way to overcome the above problem is to use the Legendre
quadrature formula. We let p = cosé. Then, for i = 1,2,---,n and
j=-—nye0,—-1,1,2,000 0,

I{piyz2 = —d) = i w;; I(pj, 2 = —d) (E5)
where ( )
I

wij = I'(p )/ dp 12("»’—‘) (E6)

I(p) = (l"‘#t)(ﬂ"l‘:)"'(#’”!‘u)(.“‘*‘#x)(.“'*‘ﬂz)“‘(#‘3'{%) (ET)

() = £000) (E8)

p=pi

p; = cos b, p—j = cos(w — 6;) (E9)
In the above formulation, we note that as ry3(y, 4') becomes a sharply
peaked function around the specular direction, the number of quadra-

ture angles n does not have to be increased as long as the coefficients
w;; are evaluated accurately. In the limit of specular surface, we have

wi; = ria(p;) 6i; (E10)
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where

1 iz
by = { = (E11)
0 otherwise

Therefore, in the limit of specular surface, we have
I(6;,z2 = —d) = r12(0:) (7 — 6,2 = —d) (E12)

Thus, if we use the Legendre quadrature formula to discretize the
boundary conditions, then as the surface becomes more specular the
number of quadrature angles does not have to be increased, and also
the formulation does not have to be changed.

The boundary condition (E5) can be cast into the following ma-
trix equation:

T (2= -d)=Wi-T (2= —-d)+ Uy3-T'(z = —d) (E13)

where
I, 2 = —d) I(uyyz = —d)
T'(z=-d)= : T (z2=-d)= :
I(ptny 2z = —d) I(p-n,z = —d)
(E14)
qu reer Wig
Wu=|: @ (E15)

Wy *** Wpy

[ wi(~1) o0 Wi-n)

LWn(-1) *°* Wn(-n)
Thus, the appropriate boundary condition is given by
T'(2=-d)=Ryy-T (z = —d) (E17)

where — - - —
Riy=[I-Uyp)™? Wy, (E18)
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We note that

ﬁlz ~0 (£19)
and the coupling matrix is given by
iu = le (E20)

The boundary condition at z = 0 is next considered. Unlike the
boundary condition at z = —d, there is an additional source term,
which is the incident intensity being transmitted from the upper region.
Consider the following scalar version of the boundary condition at 2 =
0:

x/2
I(x—8,2=0) = g(8,0,) + / d8' sin 8’ 10(6,0') (¢, 2 = 0) (E21)
(1]

where ¢(0,0.;) represents the incident intensity at 6, transmitted
from region 0 to region 1. The second term in the left-side of the above
equation can be approximated following the same procedure outlined
above for the boundary condition at z = —d . Thus, we will concentrate
on approximating the source term g(0,0,).

We note that for g(6,0,) which is a smooth function, there is
no problem as long as the number of quadrature angles is sufficiently
large. Then, the boundary condition can be discretized in a straight-
forward manner. In the limit of a specular surface, the source term
is given by the delta function, and another approach must be used.
One way to bypass the problem of discretizing the delta function is to
change the source term at the boundary into the source term in the
volume by calculating the zeroth-order solution explicitly and using
the radiative transfer equations for the higher order terms with the
zeroth-order solution acting as the volume source [51]. However, this
approach requires two different formulations for the rough and planar
boundaries. Also, the case of near specular surface where the source
term is very sharply peaked in the specular direction cannot be treated
easily.

In section 5.2, we outlined the procedure for discretizing the delta
function and keeping the source term at the boundary. This approach
also gives the same solution as the other approach of using the volume
source terms. We will now generalize that procedure and discretize the
sharply peaked incident intensity. Consider an integral given by

x/2
I= £(8,0')g(6',0) (E22)

0
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where f(8,60') is a smooth function. Using the Gaussian quadrature
method, the integral I is approximated as

j=n

I~ a;f(6,6;)g; (E23)

j=-n

Our task is to come up with a set of coefficients g;, such that the
above approximation is accurate for an arbitrary function g¢(¢',6,).
Using the Legendre quadrature formula, the integral I is accurately
approximated as

j=n
I~ )" f(6,6;)w, (E24)
i=-n
where ) ) ()
—_* [ 4 )
w = g ot e (E25)

Comparing (E23) and (E24), we obtain

1
¢

If we now let g(6,0,;) = §(cos 6, — cosb,;) where 8,; is one of the
quadrature angles in region 0, the coefficient w; is given by

€, co0s 0,

RS S Dbt E2
w;j FAd 6;. cos 0'_ ( 7)
Thus, the discrete form for the delta function is given by
1 ¢, cosf,
9 =6;—=2 (E28)

1
a; € cosb;

which is the same as the result given in Section IL.3, Eq. (60). If
9(¢',0) is a smooth function, then the coefficient w; can be ap-
proximated as

LS e | (1)
Wi o~ o dyu—E7
3 = 9k )H’(uj) /_1 Py

= g(1)s Hoi )a; (E29)
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Therefore,
95 = 9(Kjs Hoi) (E30)
which is also a consistent result. Thus, the discretization of the source

term by (E24) and (E25) gives the correct results in both limits of
very sharply peaked and smooth incident intensities. We also note that

w; ~0 for j=-1,-2,:--,-n (E31)
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