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1.1 Preliminary Theory s

1.1 Preliminary Theory

a. D.C. Current Flow

As a starting point we consider a point source of direct current
I in a homogeneous medium of conductivity ¢. The radial current
density J,, in amps/m, is given by the expression

J. =1I/(4xn7?) (1)

where r is the radial distance to the point of observation from the
source point. The corresponding radial electric field E, is obtained
simply from Ohm’s law:

E, =J,[o =1/(4war?) (2)

By symmetry there is no other components of the electric field. Thus,
in vector notation, the electric field is written

E =+E, = iI[(47or?) (3)

where # is a unit vector in the r direction. _
We now introduce the concept of potential by postulating that F
can be derived from the gradient of a scalar function V. Thus we write

E=—gradV (4)
or, in the present example,

E, = —9V/dr (%)
If we stipulate the V vanishes as r — oo, it is clear that

V =1/(4nor) (6)

We are now in the position to derive the field expressions for a
Pair of current point sources of equal and opposite signs. The situation
is indicated in Fig. 1.1.1 where, for convenience, we have chosen a
cylindrical coordinate system (p, ¢, z). The positive current source +I
is located at z = +L/2 while the negative current source —I (ie. a
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Figure 1.1.1 A current point source and a current point sink.

point sink) is located at z = —L/z. Both are located on the z axis.
The observer at (p,z) is independent of the azimuthal angle ¢.

Making use of (6), it is a simple matter to show that the resultant
potential V' at (p,z) is given by

V =(I/4xa)(r;' - r2t) )
where

re= [0+ (2 - L/2)] (8)
and

ro=[p* + (2 + L/2)7)} (9)

The corresponding electric field components are obtained from (4)..
Thus we easily deduce that

oV Ip [1 1
Eﬂ"a—p-m[z‘:ﬂ (10)

and

v I [z ~L/2 =z +L/2] (1)

T 8z  4xmo r3 ré
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FEzercise. Show that in rectangular coordinates

Iz [ 1 1]
Be= oo 707 73] (12)
and Iy [1 1]
-ty _ 2
Y7 4mo [ry3 r_3) (13)
where now .
ry = [z’ +y 4 (2 —L/z)’]’ (14)
and
2 2 2 3
r_ = [z +y +(z+L/2)] (15)

Then verify that V', E,, E, and E, satisfy Laplace’s equation,
i.e.

oV 9V 8w
+ e — —

2
vV 0z2  Oy? + 822

(16)

b. D.C. Magnetic Fields Simply Obtained

To obtain expressions for the magnetic field H of the two current
point sources, we need to be a bit more specific about the configura-
tion of the circuit connections from the generator (e.g. battery) to the
electrodes. For simplicity we will consider a linear thin wire carrying a
constant current I as depicted in Fig. 1.1.2. For this situation we can
assert that the magnetic field has only an azimuthal component H,
which itself is independent of ¢.

A simple statement of Ampere’s law for the present configuration
is

2r p

2x
| Herds= L\ ¢ paddy (1)

@'=0Jp'=0

which is a statement that the integral of the tangential magnetic field
around a closed circuit of radius p is equal to the total enclosed current
in the vertical (i.e. z) direction. Because of symmetry

P
2xpHy, = 27r/ J.(p's 2)p'dp’ (18)
0
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Figure 1.1.2 Concentric circular path to deduce magnetic field.

where, for the case |z| > L/2,

') = I [z-L/2 z+L/2
Ty 2) = [ ) + G ] (19)
and
r =[0) + e - @ry]? (20)
et <[t + e+ @2y (21)
The integration over p’ can be carried out to give
PO Sy (U £407 MR £ 10 N [

(et @} {o+l- @)

which is the resultant magnetic field at (p,z) for the linear current I
grounded at z = +L/2.
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Figure 1.1.8 Geometry for applying the Biot-Savart law.

We can deal with the case |z| < L/2 by noting that (18) is modi-
fied to read ,
2rpHy, =1 + 21r/ J.(p'y2)p'dp’ (23)
0

because the current on the wire now intersects the plane of the loop.
Then, for example, if 2 > L/2 we can see that in the limit p’ — 0

72 () =30-3) o)
(24)

bearing in mind that | > 0 always. The up shot is that the same
expression for the magnetic field H, is obtained as before. Thus it is
valid for all values of z.

FEzercise Show that (22) may also be derived by an application of
the Biot-Savart law

Solution The relevant form is

o I I gz x 7,

4r -L/2 ras

(25)

where .

re= [0+ (== 2)] (26)
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Figure 1.1.4 Idealization of an insulated current carrying wire with bare
ends.

and where 7, is the vector of magnitude r, from the element d7' to
the observer at (p,z). See Fig. 1.1.3 . The details of the solution are
given elsewhere. [Wait 1985, p. 36]

Ezercise Show that yet still another method to obtain (22) is to
use the vector potential A for the problem.

Solution Noting that H = curl 4 it follows quite easily from the
symmetry of the problem that

84
Hy =2 2
s 3 (27)
where L2
I 1.,
A, = E 12 Zdz (28)

is the only component of A. This solution is also detailed in the
referenced text book [Wait 1985, p. 37.
¢. Current Injection and Voltage Pick Up

Perhaps it is desirable if we indicate that a linear current-carrying
wire in a conducting medium can be realized by a physical structure
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such as illustrated in Fig. 1.1.4. The filamental wire of length L is fed
by the battery or zero-frequency generator at two terminals. The struc-
ture is covered by a concentric insulated cover throughout its length but
the ends are exposed. Thus the current I is conveyed to the medium at
the bare end points. As we have indicated, the structure is represented
analytically as a point source and point sink of current separated by
a distance L. The electric fields so produced are deduced on this ba-
sis. However, the magnetic field is dependent on the assumption of
symmetry about the axis of the structure. Here we make no attempt
to say that the magnetic field is produced by the current along the
wire or whether it is a manifestation of the current flow within the
external medium. But as we have indicated in the preceding exercises,
consistent results for H, are obtained by either supposition.

Another point of interest is that we ignore the presence of the
insulating cover in deducing the magnetic field using the Biot-Savart
law or the vector potential method. A possible justification for this
idealization is to note that the derived field expression for Hy given
by (22) reduces to I/(2xp) as p becomes vanishingly small provided
|z| < L/2. Thus 2xpH, can be associated with the total current I
whether we choose p = wire radius or p = insulation radius.

Other physical approximations involve the precise method that we
feed the structure and how it is terminated in the medium. In some
applications, both of these questions are important but in geophysical
prospecting schemes the voltage drop at the electrodes is not crucial
because the injected current I into the medium is monitored. Also,
the connecting leads from the battery or generator to the structure are
configured such that the resulting fields are minimized (e.g. by using
twisted pair lead wire of minimum length).

A few words might also be said about how the fields are to be
measured within the conductor. The ideal probe for the electric field
is again an insulated linear wire of say length £ with open ends. The
induced voltage v is then observed at the terminal pairs as suggested
by the sketch in Fig. 1.1.5. Now it is clear, under the assumption that
the linear wire is perfectly conducting, the full induced voltage will
appear at the terminals. Thus

¢/2
v=-— E,(2")d? (29)

-¢/2
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Figure 1.1.5 Idealization of an insulated linear wire with bare ends for
use as an electric field probe.

which is the open circuit voltage for the case when the linear wire probe
is aligned in the 2 direction. If E, was substantially constant over the
length ¢ we could write v ~ —F, -{ indicating that the electric field is
directly proportional to the voltage v at the detector. It is clear that
the probe system requires the ends of the linear wire have electrical
contact with the medium but the precise nature of the interface is not
crucial provided negligible current is drawn by the voltage detector.

When FE, is not a constant along the linear wire (i.e. probe is
“near” the source) it is desirable to express v in terms of the potentials
at the ends of the structure. Thus in the context of Fig. 1.1.5, we note
that

ov

Be=—%

so that ! ’
v=V(= -2-) -V = —-2-) (30)

is the expression for the induced potential.

A specific four electrode measuring scheme is illustrated in Fig.
1.1.6 where again the surrounding medium is assumed to be homoge-
neous of conductivity ¢. The “current electrodes” A and B are fed
by the battery or DC source so that essentially A is a point source
of current I and B is a point sink. The voltage v or difference of
potential between the electrodes M and N is then measured by the
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Figure 1.1.6 Four electrode array showing voltage and current circuits.

detector.
From what we have said above, it is.clear that the so called transfer
resistance R of the four electrode array is given by

v 1 [1 1 1 1
B=1=1e [AM+BN"AN"BM] (31)

where AM , BN, AN and BM are linear distances. This particular
configuration is relevant to boreholes or well logging. Here, for example,
A, M and N arelocated on the axis of the hole and they make contact
with the adjacent medium. Obviously, we have ignored the influence
of the hole, itself including the effect of any conductive fluids therein.
More about this type of measurement scheme will be brought up later
when more realistic conditions are considered.
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Figure 1.1.7 Linear wire of length L.

d. The Dipole Concept

In many instances the fields of the linear wire of length L, carrying
a current I, are observed at distances r large compared with L. The

situation is illustrated in Fig. 1.1.7 where r = (p? + z’)% is measured
from the center point to the observer at (p,z) again using cylindrical
coordinates. Now if r > L it is clear that

Pl = {p’ +(z- L/2)’} -
=[P+ ~zL + L2/4]”%
~ (r? - zL)“i =r"}1- zL/r’)_i
~r (14 2L/2r) =771 4 2L /20° (32)
Similarly

r=t et - 2L /208 (33)

The potential as given by (7) is now approximated as follows:

1 1 ILz
" 4xo [;': - ;:} = dmord (34)
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Figure 1.1.8 Electric dipole or short current element.

which is proportional to the product IL called the current moment of
the resulting electric dipole. Clearly an alternative form of (34) is

cos § (35)

in terms of spherical coordinates (r,0,¢) as indicated in Fig. 1.1.8. In
both (34) and (35) above we now replace IL by Ids to signify that
the current element has an infinitesimal length ds. Thus, we write (35)
as an equality

4ror?

The corresponding electric fields for the dipole source are obtained
from (4) so that we arrive at the explicit expressions:

cos @ (36)

v Ids
B = =55 = dmers e (37)
and
18V Ids
Bo==1%30 = trors i (38)

The inverse distance dependence, to the inverse third power, is char-
acteristic of the static fields of an elementary dipole.

Ezercise Obtain the electric field components of the electric dipole
Ids expressed in cylindrical coordinates.
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Solution We proceed directly by working with (4) and (34). Thus

0V 3ldspz _ Ids 3pz

E, = "'-5; = dror®  Ano (p* + z2)5/2 (39)
and '
8V  Ids (-1 32* Ids 222 - p?
e P = (;—,—; 73') “wogurapr 10

where we have noted that 9r/8z = z/r and dr/dp=p/r.

The static magnetic field of the electric dipole I'ds can be obtained
directly from (22) in the limiting case where p? + 2? > L? and IL is
replaced by Ids. Then

_Idsp  Ids
7 4xrd T 4mr?

sin (41)

which, of course, is valid for either cylindrical or spherical coordinates.
Our next observation is to note that the fields of the dipole can be

conveniently derived from a vector potential with only a z component
A, . Thus, we readily confirm that if

A, = Ids/4nr (42)

then
oE,=084,/0p0z (43)
oE, = §°4,/97* (44)

and
Hy = -04,/0p } (45)

lead back to (39), (40) and (41), respectively.
These relations are consistent with the general forms

E=—gradV (46)
and
” H=cul4d (47)

where A and V are related by oV = —~div 4.
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e. Dynamic Fields

Up to this point we have been dealing with purely static fields in
a homogeneous conductor of infinite extent. We now wish to general-
ize the results to time varying fields. For convenience we specify that
the fields vary harmonically with an angular frequency w. Thus, for
example, the component E, is a phasor or complex quantity with an
amplitude |E;| and phase ¢, . The actual physical quantity is then

ez(t) = Re {E,e’*'} = |E,| cos(wt + &z) (48)

Correspondingly, the complex vector E is written explicitly in the

form _
E=2FE, +jE, + :E, (49)

when E;, E, and E, are phasors. The physical time-varying vector
is then

€(t) =ze,(t) + Gy (t) + ze,(t) (50)
where
ey(t) =Re {E,e’“'} and e,(t) = Re {E.&“} (51)

It is important that the reader not confuse the meanings of vectors and
phasors. In what follows we will deal almost exclusively with complex
phasors corresponding to a single angular frequency w. There is no
loss of generality here because general time varying quantities can be
handled by Fourier synthesis involving spectra over all values of w.
At this juncture we write down Maxwell’s equations for a source-
free region characterized by a conductivity o, (electric) permittivity e ,
and (magnetic) permeability u. For the implied time factor exp(jwt):

—juwH = curl E (52)

(0 +jew) = curl H (53)

where E and H are the vector complex electric and magnetic fields,
respectively. If the region is homogeneous, we readily deduce that

curl curl E + 4*E = 0 (54)
and
curl curl H + y°H = 0 (55)
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where
7? = juw(o + jew)

In the case of rectangular coordinates, these two equations reduce to
the well known scalar wave equation such that each field component

(e.g. E,) satisfies
2 9 o
(83:’ + oy? oA ?2) Fe=0 (56)

However, the situation can be more complicated in cylindrical and
spherical coordinates. Thus, it is more convenient to utilize the vector
potential A defined such that

H=culd (57)
Then from (53) we see that
E= 1 curl curl 4 (58)
T o+ jew

In particular if we choose A = 24, (i.e. z directed vector potential)
it follows that

H, = ~04,/0p (59)
and
1 ?
B = i op0s (60)
— 1 3 2
E‘ - 0'+j6w ('—‘r 4 azz) Az : (61)

where we have made use of elementary results from vector calculus
(Wait 1986). We have also assumed azimuthal symmetry (i.e. 8/8¢ =
0). Then we can show that

(VP-4 =0 (62)

where in cylindrical coordinates

18, 8 o
V= ;5;(1’37) t3a (63)
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is the Laplacian operator.

Now in the case of zero frequency, it is clear that ¥2 = 0 and
V2?A, = 0 which is Laplace’s equation. For the elementary source
dipole of current moment Ids we showed that the static (i.e. w = 0)
solution for the problem was given by

Ids
A, = - (64)
where 3
r=(p*+2%)

The appropriate solution of (62) that reduces to (64) is clearly given
by
Ids
=L
A, = - (65)
where v = [juw(o + jew)]% is defined such that Re v > 0. Using (59)

we readily deduce that

_ Ids

" 4xrd
Ids

47r?

which reduces to (41) as it should when yr — 0. The correspond-
ing electric field components are most easily obtained from (53). In
spherical coordinates

H, (L+9r)e™p

(14+9r)e” " sinb (66)

Ids
= s
E 2n(o + .iew)r3(1 +r)eT™ cost (67)
and

_ Ids 2.2\ —r s
.Eg— m(1+7r+7 T )e sin @ (68)
We can observe that (67) and (68) reduce to the corresponding static
forms (37) and (38), respectively, in the limit r—>0andw — 0.
It is useful to note here that, if |yr| < 1, (without requiring that
w — 0), (67) and (68) are approximated by the “so-called” quasi-static
forms

Ids

.Ef = Wr—s COos 0 (69)

and
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Figure 1.1.9 Amplitude and phase of the generic field function B as a
function of normalized distance to source.

Ids

Eg = m&lno (70)

Now, if we let w — 0, the static forms given by (37) and (38) are
recovered.

f. Generic Field Structure

To give some insight to the nature of the field structure of the
dipole we will assume that ¢ 3> ew. In this case the conduction cur-
rents dominate the displacement currents. Then we may approximate
the propagation constant as follows

7 = [jmo(o + jew)]t = (juwo)} = (1 +)/6 (11)
where
§ = [2/(opw))?

is the classical skin depth. Now we may write (66), (67) and (68) in
the forms
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Figure 1.1.10 Amplitude and phase of the generic fleld function A as a
function of normalized distance to source.

_ Ids

H, = 47”‘23(1‘/5) sin 0 (72)
E, = %B(r/ﬁ) cos @ (73)
Ids .
E, = 4ﬂ_araA(r/éS) sin 4 (74)
where
B(r/8) = [1+ (1 + j)r/8]exp [—(1 + j)r/é] (75)
and

A(r/8) = [L+ (1 +4)r/6 + 2jr*/8%] exp [-(1 + j)r/6]  (76)

The dimensionless complex functions B = |B|e’® and A = |A]ei%e
represent the normalized actual fields at a normalized distance r/§
from the source dipole. The amplitude and phase values of B and A
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Figure 1.1.11 Magnetic dipole or small current carrying loop.

are plotted in Figs. 1.1.9 and 1.1.10, respectively. As indicated both A
and B approach 1as r/§ — 0 which, of course, is the static limit. On
the other hand, if r/§ > 1, the functions are exceptionally damped
and the phase lag behaves as r/§ radians.

An interesting property of the A function is that its magnitude
is actually 1.4 for r/§ ~ 1.8. Thus, contrary to simple intuition, the
field |Ey| is much greater than that predicted on the basis of simple
plane wave theory.

g. The Magnetic Dipole

While we have been dealing exclusively with an electric dipole
source, the generic functions A and B are actually relevant to a mag-
netic dipole source. We call attention to this fact for future reference.

A magnetic dipole is here regarded as a small loop of area dA
carrying a current I as indicated in Fig. 1.1.11. Again, the surround-
ing medium is considered to be homogeneous with conductivity o,
permittivity €, and magnetic permeability, x. We refer the reader to
standard texts for the derivations of the field expressions. For example,
the principle of duality may be exploited which shows that the oscil-
lating magnetic dipole source is analogous to the electric dipole source
if the role of E and H are suitably interchanged [Wait 1985, p. 39].

Using spherical coordinates (r,8,¢) with the magnetic dipole (i.e.
small loop with vertical axis) located at the origin we can express the
non-zero field components as follows

_ jmwIdA
By =- 47r?

(1 +97r)e " sind (77)
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IdA y
= %2 - 8
H, 21rr3(1 +qr)e™"" cos (78)
and
— IdA 2.2\ ~77 o:
Hy = 41!”_3(1 +9r+7°r*)e” " sinf (79)

These expressions are analogous to the electric dipole forms given by
(66), (67) and (68). In particular, we note that in the static limit w — 0

IdA

H, = mrd cos @ (80)
IdA

= i 1

0= ot sin @ (81)

which are the classical forms for the DC' magnetic field of the static

magnetic dipole source. Of course, in this limit E, — 0. But, in the

quasi-static sense where w # 0 and |yr| < 1, we may approximate

(77) by

jpwIdA
4dxr?

E, ~ - sin 0 (82)

When the surrounding medium is a good conductor (i.e. o> ew)
we can express (77), (78) and (79) in the useful forms

Es=— ”Z:IdAB( /6)sin8 (83)
H, = 2IdAB(r/6)c050 (84)
H, = 14 (85)

where the complex functions B and A are given by (75) and (76),
respectively. Thus, the plots in Figs. (1.1.9) and (1.1.10) are still ap-
plicable.

h. Dispersion of o and ¢

At this stage, one could extend the calculation of the fields to
include displacement currents. Thus, one could utilize the forms given
by (66), (67) and (68) for the field components with vy defined by

= [jmo(o + jew)]}
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Typically such calculations assign a fixed value for o and €. Unfor-
tunately, such results are very artificial because in actual geological
media, both ¢ and (particularly) e vary significantly with frequency.
We prefer to deal with the complex resistivity function p(jw) which
is defined as

p(iw) = [o(w) + jwe(w)]™
in terms of the frequency dependent real conductivity o(w) and real
permittivity e(w).
We defer further discussion of the influence of dispersion (i.e. fre-

quency dependence) of the conductivity and permittivity. Obviously,
it is an important topic.

References
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1.2 Complex Resistivity Concept

a. Ohm’s Law

The essential property we exploit in the induced polarization
method of geophysical is the frequency dispersion of the medium. From
a macroscopic point of view, we are saying that the real conductivity
o(w) and the real permittivity e(w) are functions of the angular fre-
quency w . Thus, for a particular point in the medium, we may assert
that electric field E(jw) and the associated current density J(jw) are
connected by Ohm’s law

E(jw) = p(jw)J (jw) 1)

where

piw) = [o(w) + je(w) -w] ™" (2)

is the complex resistivity*. It is assumed here and in most of what
follows that p(jw) does not depend on the magnitude of the current
density J . That is, we are dealing with linear phenomena. The implied
time factor is exp(jwt).

b. Basic Dipole Model

While (1) is valid for an inhomogeneous region, we find it conve-
nient to deal with piecewise homogeneous regions. In fact, in order to
deal with basic concepts at the most elementary level, it is desirable
to imagine that the source of the excitation is an electric dipole with
current moment I(jw)ds. The surrounding medium is homogeneous
with complex resistivity p(jw). We may now write down expressions

for the field components with reference to spherical coordinates [Wait
1986a):

E,(jw) = M%B(jw) cosd (3)
By(jw) = L) 4 o) sin (@

and

* The use of the lower case rho to represent complex resistivity
should not cause confusion with the radial cylindrical coordinate.
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H,(jw) = 4:r21(jw)dsB(jw) sinf )
where
B(jw) = [1 + y(jw)r] exp [-7(jw)r] (6)
and
A(jw) = [1+1(jw)r + y*(Jw)r?] exp [-y(jw)r] (7

The complex propagation constant is here written in terms of the com-
plex resistivity as follows

y(jw) = {jwplo(w) + jwew)}F = [jwn/p(iw))?

Here we can see the complexity of the problem resulting from the
dispersion in the medium. For example, if we were to measure the
ratio Ey(jw)/I(jw) for some fixed point (r,0), the resulting frequency
dependence would be related to the frequency dependence of p(jw) ina
rather complicated manner. This fact means that any inverse procedure
to deduce the complex resistivity of the medium from the measured
field is not simple. We shall consider various aspects of this problem
below and in the following chapters.

¢. Quasi-Static Limit

There is a great simplification when the angular frequency w is
low and/or the radial distance r is sufficiently small such that

ly(Gw)r| < 1

Then B(jw) and A(jw) can both be replaced by 1. This restriction
is equivalent to the quasi-static assumption discussed earlier. We can
now say that an electric field component ¥(jw) is linearly related to
the complex resistivity in the manner

¥(jw) = I(jw)Fp(jw) (8)
when F depends only on the geometry. More explicitly, we would write

ds

2 cont] pli) 9

B.(jo) = I(je) |

and
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ds . :
10,8 5in 0] p(jw) (10)

Euljo) = 1(Go) |

On the other hand, Hy(jw) is independent of p(jw) at least within
the quasi-static idealization. Thus

ds

Hy(ju) = 1) | {2 sin] (1)

4d7r

Linear system theory [Wait 1984] can be employed to discuss the
time domain or transient response of the electric field response ¥(t)
(i.e. e,(t) or eg(t)) for a suddenly applied current i(t) at ¢t = 0.
Using Laplace transform notation, we can pose the problem as follows:
Given the source current, deduce the response; thus, begin by taking
the Laplace transform

I(s) = /0 " i(t)e-"tdt = Lit) (12)

where formally we identify s with jw — but we can allow Re{s} > 0
to guarantee convergence of (12). Then clearly

’ 1 §+joo
¥(t)=L1Y(s) = ﬂ;/; . e’*p(s)ds  (where§ >0) (13)
—joo
or, to be explicit,
¥(t) = FLI(s)p(s) (14)

In the interests of conciseness, we have used the symbols £ and L'
to denote the direct and inverse Laplace transform operations, respec-
tively.

While the Laplace transformation really involves all frequencies
here, we argue that the procedure is valid in an approximate sense
even though we have invoked the limitation that |y(s)r| < 1. The
early part of the transient response would be modified if propagation
effects were allowed for. This question is related to “electromagnetic
coupling” which we discuss later.

d. Apparent Resistivity

When the medium is inhomogeneous, we need to revise our ap-
proach. To illustrate the problem, consider the situation shown in Fig.
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Figure 1.2.1 Current element source in homogeneous region (1) in pres-
ence of target region (2).

1.2.1. An electric dipole of current moment I(jw)ds is located in a ho-
mogeneous region of resistivity p,(jw) which is unbounded except for
an adjacent region of resistivity p,(jw). The symmetry of the problem
has been destroyed but it is useful to introduce the concept of apparent
(complex) resistivity p,(jw) with reference to the homogeneous model
[i.e. where pa(jw) = p1(jw)]. For example, in the homogeneous case,
we might deal with the radial field E,(jw) at § = 0. Thus

E,(jw) =I(jw)dspi(jw)/2xr®  for p;=p, and 6 =0 (15)
Now, in the presence of the inhomogeneity, we can write
E,(jw) =I(jw)dsps(jw)/2nr®  for p;# p and 6 =0 (16)

In other words, the apparent complex resistivity for the configuration
indicated is an effective parameter that is normalized by the homoge-
neous medium parameter.

In a functional sense, we can write

Pa(jw) = Pa [pl(jw)’Pz(jw)] (17)

for a specific configuration of the source dipole and receiving circuit.
However, such a statement is only valid in the quasi-static sense where
all propagation effects are ignored. Some interesting properties can be
discussed using this model. In fact, as pointed out by Seigel (1985), it
is generally true that for any dimensionless factor A

Pa(AP1s AP2) = Apa(p1,02) (18)
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In other words, if the resistivities are increased by a factor ), then the
electric field components will also be increased by \. Clearly now, if
we differentiate both sides of (18) with respect to A we get

apa(Aplv '\Pz) + apa(’\ph AP2)

= palp1s 19
a(/\P1) P1 a(Apz) P2 P (pl P2) ( )
Now, we set A =1 to give
0pa 0pa
= pa 20

pl apl + P2 apz P ( )
Clearly, this equation is equivalent to

Olnp, @&lnp, _

Slnp, t olnp, - (21)

which is true for any frequency — again within the limits of the quasi-
static approximation. An alternative statement of (20) or (21) is

Pa = Kp,® p,® (22)
where
21 9pa P2 Opa
B, =82 .4 B, =2 23
T > paOps (23)

and K is a constant. The functional frequency dependence of p, , K,
p1 and p, is understood. In fact, we can write

pa(iw) _ K(jw)(pl(jw))“"“’(pz(s'w)
pa(0) ~ K(0) \ p:(0) p2(0)

where we have normalized all factors by the zero-frequency values and
where

Ba(jw)
) X6 e

X (jw) = p1(0)P1U)=5100) p () B2(i)-Fa(©) (25)
By making use of the identity

By(jw) + Ba(jw) = 1 (26)
it is possible to write the above expression in the form

X (jw) = [pa(0)/p1(0)]P24)-B2(®) (27)
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which agrees with Song and Vozoff [1985]. They argue that a useful
approximation to (24) is to set [K(jw)/K(0)]X(jw)=1 whence

SRS e

The applicability of this type of approximation has been confirmed by
Song and Vozoff [1985] who carried out extensive numerical experi-
ments using relevant geophysical parameters for both a layered earth
model and a buried spherical target. They show extensive plots of the
frequency dependent dilution factors B, and B, using a Cole-Cole
model for the complex resistivity functions p,(jw) and p,(jw). Pre-
sumably, they use the real parts of B; and B, although this point is
not made clear.

A closely related approach is to return to (22) and take logarithms
of both slices. Thus,

Inp,=InK + B,Inp, + B,Inp, (29)
If we write
Pa = lpale™®,  py=|ple®, and py =|pa|e’®
it follows that

In|ps| = In|K| + Re{B,}In|p;| — Im{B; }¢;

+Re(B}lnlps| -~ Im(Br}gy O
and
$a = ¢1 + Re{B1}¢1 + Im{B,}1n|p,| (31)
+ Re{B;}¢; + Im{B; } In |p,]

If we now focus our attention on the frequency dependence of In|p,|
and ¢; and neglect higher order terms, we obtain Guptasarma’s (1984)
approximations. They read

din |p,|
dinw

dhllpll
dinw

dln |p|

= Re{B} v

®a = Re{B,}¢; + Re{B;}¢, (33)
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where we note that Re{B,} = 1 — Re{B,}.

In order for (32) and (33) be valid approximations to (30) and (31),
it is evident that B,(jw) should not vary too rapidly with w and also
the imaginary part of B,;(jw) should be small compared with the real
part. The neglect of ¢, would be justified because ¢, — 0 when both
¢y and ¢, — 0. It is also evident that (32) and (33) also follow from
(28) if the imaginary parts of B; and B, are ignored. Thus, in spite
of widely differing derivations, Song and Vozoff’s [1985] final working
formulas are very similar to those presented by Guptasarma [1984].
In both cases, frequency dependent dilution factors are needed. While
the authors present convincing evidence that their methods work for
specific situations, it is not clear if such approximate procedures have
wider applications. Also, the extension to the time domain would raise
some difficulties. We discuss this aspect of the problem below.

e. Dilution and Distortion
‘We now recall that

pa(jw) = pa[p1(jw), p2(jw)] (34)

Then we adopt the view that the D.C. or zero frequency solutions are
a convenient reference. Thus, set

p1(jw) = p1(0)[1 + 6, (jw)] (35)

pa(jw) = p2(0)[1 + &:(jw)] (36)
and

ps(iw) = pa(0) [1 + &a(jw)] (37)

where §,, §; and 8, can be regarded as dispersion functions which
vanish as w — 0. We now employ a MacLaurin series expansion so
that in effect

N-1

Pa(l+8a) = Z

n=0

where Ry is a suitably defined remainder term [Sokolnikoff 1939]. It is
to be noted that the derivatives in (38) involve only DC' resistivities.
To be explicit, we should note that

9s _ ym [ap¢(pl(1 +81),p5(1 + 52))}
op 2;38 8(pi(1 + 61))

1
n!

8 81"
& — ba—1 palp1, R 38
[Pl xapl‘*'ﬂz 28}’2] Pa(p1,p2) + By (38)

(39)
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with a similar convention for the other derivatives.
In accordance with the form of (38) we may write

ba(jw) =By 6y (jw) + Bib6a(jw) + B1,16:%(jw) + Ba,26,* (jw)
+ By,26,(jw)b3(jw) + -+ (40)

where, to be explicit,

_ £1(0)8pa(0) _ p18pa _ Olnps

= = = 41
1= 0u(0)05:(0)  puOpi Olnps (41)
is, by definition, a dilution factor. Similarly
P'a' 3P¢ dln Pa )
= = 42
"= a0 Olnp, (42)

is also a dilution factor. Both B; and B, as defined involve only DC
resistivity functions and such a convention conforms with the original
works of Siegel [1959]. As indicated, the dilution concept refers to the
first order diminuition of the responses of the constitutive regions*
On the other hand, the higher order terms in (42) produce a more
complicated change of the apparent dispersion function [Wait 1981].
Thus, we call these coefficients distortion factors and the second order
forms are defined by

1 pl 6 Pa
B 43
L= 2 pa apl ( )
1 P2 3 Pa
= = 44
Bz.z 2 Pa apzz ( )
and
_ppa 0Ppa
B 45
1,2 = Pa aplapz ( )

where again only DC (real) resistivity functions are used.

* From Webster: Dilute — to make thinner, to diminish,.....
Distort — to twist out of regular shape,.....
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Ezercise Using the “homogeneity” property stated by (18), show
that the following identities exist [Wait 1986b)]

B]_ =1- Bg (46)
Biy+Bia+ B33 =0 (47)
and 1
Bl,l = Bz,z = —531,2 (48)
Also show that
B,, = 25 + BB (49)
1,2 1n py 103

f. Eztension to Time Domain

The series expansion of the dispersion function, involving only DC
resistivities, is particularly suitable for dealing with the time-domain
or transient response [Wait 1982, 1986b). We discuss this problem here
in the context of the quasi-static theory.

When a step current Iyu(t) is injected into the current electrodes,
the corresponding voltage response v(t) is expressible in the form

o(2) = Iopa(0)A(?) (50)

where p,(0) is the DC apparent resistivity and A(t) is the normalized
step response (i.e. A(t) — 1 as t — o0 ). Then from linear system
theory

1 ._1Pa(3)
A(t) = —= L1+ 51
O L (51)
where £-1 is the inverse of the Laplace transform operator. Alterna-
tively, we can write

Pa(2)/s = pa(0)LA(t) (52)
Clearly, if p,(s) could be replaced by pa(0), corresponding to non-
dispersion, A(t) would simply be the unit step function wu(t).
If we now use (51) in conjunction with (40), it is evident that the
step function response is given by

2
A(t) =u(t) + Blll‘l———-Jlga) + B,c-l——-‘s’i’) + Bt 3(’)

8, 5
+ By 122 3(3) + Bl,zﬁ"—————sl(’g a(s) | .. (53)
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The functions By, B, B, - etc are real and time independent.

To discuss the time domain responses in a more explicit manner,
it is desirable to introduce the “decay function” M(t) which for ¢ >0
is defined by

M(t) =1- A(t) (54)

Clearly, this corresponds to the response at the potential electrodes
following the cessation of a steady current I, applied to the current
electrodes. Then we may write

M(t) =Bym,(t) + Byma(t) + Byimaa(t) + B3,2m; 5(t)

+ By ymya(t) +--- (55)

where
my(t) = — L716,(s)/s (56)
my(t) = — L718,(s)/s (57)
my(t) = — L716,%(s)/s , (58)
maa(t) = — L716(s)/s ’ (59)
my 5(t) = — L716,(8)82(s)/s (60)

It is certainly evident from the form of (55) that the first two terms on
the R.H.S. represent pure “dilution” of the response. The succeeding
second order terms lead to “distortion” or mutilation of the decay curve
shapes.

By a simple application of the convolution theorem for Laplace
transforms, we may express (55) in the explicit form [Wait, 1986b]:

M(t) =Bymy(t) + Bama(t)

_ B, | /0 (& — 7yma(7)dr + my (0)ma(t)

— B3 -/0 my'(t — T)my(7)dT + mg(O)mz(t)T

— By 3 :/; my'(t — T)my(7)dT + ml(O)mg(t)1 +--- (61)

Clearly higher order terms involve multiple convolution integrals that
represent further distortion of the decay curves.

Ezercise Choose m,(t) = mye~**u(t) and m,(t) = mae Plu(t)
where
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@
C1-|_ B | P 2| Czl

—a ——a—>k—a—> |

h

P, () l
P, ®)

Figure 1.2.2 Four electrode Wenner array over a two layer polarizable
earth.

my; = my(0) and m; = my(0) and where o and B are decay
constants for the assumed exponential responses. Then show that
[Wait 1986b]:

M(t) =Bymye”* + Bzmze_m — Bl,lmf(l —_ at)e_at

3 _1_ 5 [Be™P* — ae™]
T (62)

- Bg,zm;(l - ﬁt)e—m - Bl,zmlmz

9. Two Layer Polarizable Earth Model

To illustrate the concept of dilution and distortion, it is desir-
able to adopt a concrete model which involves two well-defined re-
gions. Such an example is a two layer flat earth model as illustrated
in Fig. 1.2.2. For convenience, a four electrode array is shown with the
current electrodes, C; and C;, outside the potential electrodes, P,
and P,. The common spacing between the electrodes of this so-called
Wenner array is a. The current injected into the electrodes, C; and
Cz,is Iexp(jwt). The resulting open circuit voltage at the potential
electrodes is V exp(jwt). The apparent complex resistivity p,(jw) is
defined according to

V _ paiw)
I~  27a (63)
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Assuming the validity of potential theory (i.e. electromagnetic cou-
pling is negligible), it follows that

pa(jw) = . \m
—— =142 N(jw)] Q(y,m 64
o) =1+ 2 X NG, m) (64)
where
¥ = a/h = electrode spacing/upper layer thickness
, pa(jw) — Pl(jw)
N(jw) = - - 65
() pPa(jw) + pr(jw) (65)
and
1 1 1
Q(y,m) = — (66)

m |1+ (y2/am2)]E (14 (y3/m2)}

Ezercise Derive the preceding expression for p,/p, assuming DC
theory is relevant using an image method. Note, C; can be
treated as a current point source and C; a current point sink
[e.g. Wait, 1982, Chap. 1].

In order to show explicit results, we need to specify a dispersion
model for two polarizable regions. We follow current practice and adopt
the Cole-Cole representation which is a versatile four-parameter model.
In the present context,

P1(0) — p1(0)

p1(jw) = p1(o0) + 1+ (um)® (67)
and
pa(w) = pa(o0) + 2200 — () (68)

1+ (jw‘r,)k’

where p;(0) and p;(co0) are the zero and infinite frequency limits,
respectively, of the complex resistivity of the ith layer (i=1,2), ©
is a relaxation time constant, and k; is a dispersion index. The index
k; would be 1 for a pure polar liquid but for geological materials it
would range typically from 0.6 to 0.1.

Using the basic definitions for the dilution factors as given by (41)
and (42), we may deduce the “first order” approximation

Pa(jw) = pa(0)[1 + 84 (jw)] (69)

where
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ba(jw) = B16:(jw) + B362(jw) (70)
The “second order” approximation is given by

bs(jw) =B161(jw) + B2b2(jw) + By,16:%(jw)
+ B326,°(jw) + By,261(jw)ba(jw) (71)

where the indicated distortion factors are deduced from (43), (44) and
(45). Explicit expressions for the dilution and distortica factors are
given by Gruszka and Wait [1985] for this particular co.figuration.

For the numerical example, we choose the “chargeability” m; =
[p2(0) — pa(00)]/p2(0) = 0.8 and p:(jw) = p1(0). In other words, the
lower region is polarizable but the upper layer (i.e. the overburden)
is taken to be non-polarizable. To be representative of an actual field
situation, the dispersion index k, for the lower region is taken to be
1/2. Then, we specify three values of the D.C. resistivity ratios of the
two regions; namely,

For the conditions indicated above, we graph the complex val-
ues of p,(jw)/p1(0) in the plane in Fig. 1.2.3. The “exact” version
corresponds to using (64) with the corresponding Cole-Cole form for
p2(jw) given by (68). The parameter wr ranges through all values
from 0 to oo for each value of C indicated. For purpose of compari-
son, the curves for the first approximation given by (69) and (70) are
also shown. In addition, we show the second order approximation given
by (69) and (71). All curves are arcs or approximately arcs of circles in
accordance with the expected behavior for a Cole-Cole model [Daniel
1949, Wait 1984]. But more significantly, it is seen that the first order
and even the second order approximated curves may diverge signifi-
cantly from the exact form. This discrepancy is most notable for the
case where C = 0.1 corresponding to a relatively well-conducting over-
burden. When the lower region is better conducting than the upper
layer, the divergence of the curves is almost insignificant.

Actually, the numerical example we have chosen is rather extreme
in the sense that the polarization (i.e. dispersion) in the lower layer
is very high. When m, is reduced from 0.8 to say 0.2, the first order
approximation, involving just the real dilution factors, B, and B,,
is very good for all values of the resistivity contrast. Some further
examples are given by Gruszka and Wait [1985].
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“Im. p (jw)/p (0) —=

AN R I A U S,
° 072 073

Re Pq(jW)/P,(O) —_—

Figure 1.2.8 Complex resistivity trajectories in Argand plane for two
layer polarizable earth model.

Ezercise Consider a multi-region model {Wait, 1982] where

Pa(iw) = pa[pi(jw), p2(§w), ps(jw), -+ ps(jw)]  (72)

where p;(jw) is the complex resistivity of the ith homogeneous
region (and ¢ =1, 2, 3 ... J ). In analogy, to the two region cases,
show that

Pa(jw) = pa(0) [1 + 8o (jw)] (73)

where

ba(jw) = Y Bibi(jw) (74)

i=1
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when the dilution factors are defined in terms of the D.C. resis-

tivities such that
_ 9. _ Olnp,

T Pa 3Pi - 3111/’5 (75)
and
J
> B =1 (76)
i=1

h. An Alternative Approach

A further approximate representation follows from the fact that
for a two-region problem, we can write

pulio) = pajo)f (2220) (77)

p1(jw)

where f is a function of the complex ratio of the two complex resis-
tivities. An equivalent statement of (77) is

pu(OML+ sG] _  (par s (o
pi[l + 6, (jw)] =f (,,1[1+5f(1 )]) (78)

where Lt
146, (jw) = T2 2 i 5:8:; (19)

and where it is understood that p, = p,(0) and p; = p,(0) are the
D.C. resistivity values.

Following Gruszka [1987], we now expand the right hand side of
(78) about §, = 0. Thus

Pa(0)[1 + 8,(jw)] _f (&) +P2p05 4 1(&) ’f(z)az
r 2! 1 T

pi[l + 6y (jw)] 41 P1
1 P2 8(8)8 1 P2 ﬂ(‘n)'n
+3!(p1) PRt a) 0+
(80)

where

) — ¢ (P2 _ € f(2)
fr=1 (Pl)— dzn

(81)

z=p3/p1
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A similar expansion was also employed by Guptasarma [1984]. As
Gruszka [1987] points out, we can solve for §,(jw) by inserting the
expression for §,(jw), given by (79), into (80) to yield

aa(i) =au(ie) + 61 (2) (62— 8+ £ (2) %+

v+ fa ( ) ((161—;16)‘,—.2—1 (82)

where
pule) = = L) (59)
6 =6(jw) and & = 8(jw)

Actually, (82) is a compact version of (71) as can be verified by ex-
panding the terms of the form (1+46,)~™ about §; and then collecting
terms in the same order of §; and §,. This process yields the identities

B =1-p, B; = ,31, By = By; = 35, and By; = —2,32

While (82) is more compact than (71), it is not as convenient for
application to time domain responses as displayed by (61).

Another extension leads to expansion coefficients 8;, Bz, ---
which are complex. In this case, again following Gruszka [1987], we
begin by noting that

Pa(jw) = |pa(jw)| exp(ida) (84)

pi(jw) = |pr(jw)| exp(i¢1) (85)
and

pa(jw) = |p2(jw)| exp(ids) (86)

Thus, (78) with obvious contraction of notation can be written

¢r) (87)

pa(jw)
P1(jw) ¢

M '(¢¢"’¢l) —
Pl(j“’)l ¢ d

where

¢r=¢2—¢1
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We now take the natural logarithm of both sides of (83) to give

1| P2U)

b | Filge =90 =10 () (88)

Then, on expanding the right hand side of (88) about ¢, = 0, we
obtain

pa(jw)
In pr(jw)

~Ba(12l) + 3Bu(12]) - 38212 +

+3(¢a — ¢1) = In f(|2]) + 7B:(12]) b

(89)

where

z = pa(jw)/p1(jw)

__2 %i(x) .
,31(3) - f(a:) d :Bz( )

where z = |z| is real !

The definitions of §,(]z|) and B;(]2|), as a function of amplitude
|z|, are consistent with (83), but note here fB,(|z|) and B,(|z]) are
frequency dependent real functions. If we now equate the real and
imaginary parts of (89), it follows that the leading terms are

lpali)] =lox(i)L (1)
exp { - [Ba(aD) + 3Au011) - 38212D] (82 — 1) } 50)

2?0 f(z) 1
2 0z f(z)

and

$a(jw) =1 + Bi(|2]) (2 — ¢1) (91)

where, as implied above, ¢; = ¢,(jw) and ¢; = ¢;(jw) and |z| =
|p2(jw)/p1(jw)| are real functions of frequency.

As Gruszka [1987] points out, (90) can be further simplified if 3;
is near 0 or 1 and B, is small, the exponential term can be replaced by
1. The resulting expressions for the amplitude and phase of p,(jw) can
be called the “ G approximation”: it bears some similarity with the
form given by Guptasarma [1984] but there are some subtle differences.
For example, here 3, is conveniently a real function of the frequency.

It is an interesting and instructive exercise to compare three ap-
proximations for the complex resistivity p.(jw) over a specific two
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Figure 1.2.4 The dipole-dipole array over a two layer polarizable earth
model.

layer model as shown in Fig. 1.2.4. Again, we are abstracting from
Gruszka [1987] who used the dipole-dipole array. He gives explicit for-
mulas for the functions B; and B, which we will not reproduce here*
but they can be obtained from the prescription given by (83). The three
approximations are summarized as follows

pa(jw)/p1 = RHS (Right Hand Side)
where, for the S (for Seigel) approximation,

RHS ~ 1 + §,(jw) + b1 (p ) [62(jw) — 61 (jw)) (92)

where, for the W (for Wait) approximation,

RHS ~1 + 6, (jw) + fi (,’;—) [62(iw) — 6(jw)]

+ 2 (22) a(j) - 6 (99)
and where, for the G (for Gruszka) approximation,

p1(jw)| f (lp2(jw)/pr(iw)l)
RHS = | F(p2/p1)

exp lj (4’1(]"*’) + 6

pa(jw)

pa(jw)

* Actually, B, = B, and B; = B,;, and explicit expressions are
given for B,(z) and B,(z) by (101) and (103), respectively.

(¢2(jw) - ¢1(.7'w)))] (94)
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Figure 1.2.5 Real and imaginary parts of the normalized apparent resis-
tivity for a dipole-dipole array over a two layer earth model where the
lower layer is polarizable. Approximations S (Seigel), W (Wait) and G
(Gruszka) are shown along with E (exact) curves. Parameters: p; = 103
ohm m, mg = 0.2,75, = 0.1sec.,k3 =025, N=2,a=20m, and A= 10m .

We characterize the two layers by Cole-Cole forms; thus

V= l1emi (1o — L
pi(iw) = p; [1 .(1 : +(J.wi)k)]‘ (95)

where i = 1,2. For the example illustrated here, we set m;, = 0 so
the upper layer is non polarizable, i.e. p,(jw) = p, .

Using (92), (93) and (94), we plot, in . 1.2.5, the real and imaginary
parts of the normalized apparent resistivity as a function of frequency.
For comparison, the corresponding “exact” results denoted by E, from
Gruszka and Wait [1985] are also shown. The specific parameter values
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are indicated in the caption to Fig. 1.2.5. As can be seen, only the Seigel
or S approximation departs significantly from the exact calculations.
Other more detailed comparisons have been given by Gruszka [1987].

Graphs of Dilution and Distortion Factors

We summarize here some results for the dilution factor B, and
B, ; for dipole-dipole array located on the surface of a two-layer earth
model. Electromagnetic coupling effects are not included so we may
view one complication at a time. We also show analogous results for a
borehole model.

The geometry of the two layer model is shown in Fig. 1.2.4 so
the notation need not be discussed again. Also, the potential theory
relevant to this model was already considered [Wait 1982]. Thus, we
need only state the working formulas.

Following (77), we may write the D.C. limiting form as

Pa = prf(pa/p1) | (96)

where

o) = g 2o 2 () (97)

and, following Gruszka (1987),

A i [0 Ke™% Zij
222(—1) 1 [) m-’o (gT;)dg

F(z)=1+ — 2 2 (98)
ZE(_l)-'HH L
i=1 j=1 Zij
where
PP (99)
P2t pr

Then to obtain the dilution factor 3;, we perform the operation

P2 9pa
By = —— 100
: Pa Opa (100)
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to yield

T 2 ey o) s

=1 j=1

F("’)Z Z( —1)i+i+ —”

i=1 j=1 Zij

2 =

(101)
A further differentiation is needed to obtain an explicit expression for
the distortion factor B, ;. Thus we use

1p% 8%p,
21 =5 ;’ ap’: (102)

to yield

z

i+j+1 i)

(1+z)*,1,§:1( ) / (- Keuyp Ke-w)s o (97%) 4o
2,2 =
F(z)ZZ( 1)‘+’+1
i=1 j=1

(103)
As indicated, B, and B,, are real functions. Then, the second
order approximation for the complex apparent resistivity is given by

Pa(jw) =pa(1 + 84 (jw)) (104)
where

5¢(jw) :.8161(jW) + Bz&g(]w) + Buﬁlz(jw)
+ Bi136,(jw)82(jw) + Baady* (jw) (105)

As we have indicated before §;(jw) and &(jw) are defined in terms
of the layer complex resistivities in accordance with

p1(jw) = py[1 + & (jw)) (106)
and

Pa(jw) = pa[1 + &;(jw)] (107)
Also, as we indicated before,

and
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Blg = —2Bu = -2 Bzg (109)

Thus, computed data for B, and B,; provided by Gruszka [1987] are
adequate to generate the complex (apparent) resistivity up to second
order in §;, and §,.

The linear distances z;; in (98), (101) and (103) are related to the
electrode separations according to z;; = |P;—C;|. Thus, for the dipole-
dipole array shown in Fig. 1.2.4, 2z, = C1 P, 213 = C1P, Xy =
CzPl and ZTogy = Cng where 01P1 = (N + l)a = Cng, C1P2 =
(N +2)a and C3 P, = Na when the electrodes are all in line.

The graphical plots of B, and B,, as a function of the resistivity
ration p,/p, are shown in Figs. 1.2.6 and 1.2.7 for various a/h and N
as indicated in the captions. Corresponding results for B, and Bj;;,
as a function of a/h for various p,/p, and N, are shown in Figs.
1.2.8 and 1.2.9. Then, the results for B, and B,;, as a function of
N for various p;/p, and a/h are shown in Figs. 1.2.10 and 1.2.11.
These results allow one to estimate how the frequency dependence of
the measured complex resistivity for a subsurface polarizable region
are diluted and/or distorted by the presence of an upper layer which
may or may not be polarizable.
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Figure 1.2.8 Dilution and distortion factors as a function of a/h for

various p3/p; for N = 2,
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Figure 1.2.12 Dipole-dipole electrode array on the axis of a bore-hole.

We now locate the electrodes in a fluid filled bore-hole which is
analogous to the two layer planar structure discussed above. The sit-
uation is shown in Fig. 1.2.12 where the electrodes are located on the
axis of the cylindrical bore-hole of radius . The resistivity of the fluid
is p; and the resistivity of the external region or formation is p,.

The relevant potential theory solution for this type of problem is
outlined elsewhere [Chap. 1, Wait 1982, and Wait and Gruszka 1987]
so we will state the working expressions without further ado. For the

model shown in Fig. 1.2.12, the normalized apparent resistivity is given
by

Pa 14 (% Z(_l)i+j+1 /w A(XD) cos(Az,-j)d/\) / Den (110)

1

where
ARD) = - ?‘i-bf\’:(kl—)goIg\(lj\)b;(Il((;\(?b) (111)
where
k= p/pa (112)
and s 3
Den = ) ) (-1)++ ;'17 (113)

i=1 j=1
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For the dipole-dipole array:

211=C’1P1=222=C2P2=(N+1)a
212=01P2:(N+2)a and 221=03P1=Na

The dilution factor is obtained from

P2 3Pa
B; = —
*7 paOpa
giving
2 2 2 0
[k;ZZ(—l)‘H“ / A'(b) cos(/\z,-,-)d/\] / Den
. . [s]
B, = 2'—‘2’-‘2 — (114)
1+ |2 YD (-1)Hn / A(Ab) cos(Az;)dA / Den
=1 j=1 Y ’
Where b Ko (AB) Ky (Ab
A'(Ab) = o (Ab) K1 (Ab) . (115)
(14 Ab(k — 1)I(Ab) K, (Ab)]
The distortion factor is obtained from
Pzz 32P¢
= — 11
” Pa ap22 ( 6)
which is conveniently written in the form
Bgz = Bg -1
9 2. 3 oo
[k’;zz:(—l)"‘”“/ A"(Xb) cos()\z,-,-)d)\] /Den
i=1 j=1 o
+ PN P
1+ ;ZE(—1)5+j+1/ A(ADd) cos(,\z;j)dA:l /Den
=1 j=1 0 .
(117)
where ) \B) K2 (AB

[1+ Ab(k — 1) I, (Ab) K; (M)
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Figure 1.2.18 Dilution and distortion factors as a function of pz2/p1 for

various N for a/b = 10.
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Figure 1.2.15 Dilution and distortion factors as a function of a/b for

various N for p3/py = 50.
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We present graphical results for B, and B, for this borehole
configuration using a similar format to the case above for the two layer
planar model. The curves are shown in Figs. 1.2.13 to 1.2.17 where the
parameters are the resistivity ratio p»/p:, spacing/hole radius ratio
a/b, and spacing number N . Here, it is of interest to note that the
dilution factor B, can become negative (e.g. as in Fig. 1.2.14). This
property is consistent with the observed property that the slope of In p,
vs. Inp, of the classical resistivity departures are indeed negative in
some cases.
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1.3 Resistivity and I.P. Response for an Electrode
Near an Interface

a. Introduction

There are a number of instances where it is desirable to measure
the complex resistivity of a geological structure near a plane interface
or fault plane. A notable example is when the current and potential
electrodes are located in a bore hole where the latter intersects the
plane of the formation at an angle. Another example is when an in-line
surface-based electrode array crosses an outcropping vertical contact
at an oblique angle.

Our purpose here is to present explicit results for both the re-
sistivity and the induced polarization response for a two-electrode or
normal array in the vicinity of a plane interface between two homoge-
neous regions. We will describe the problem in the context of a bore-
hole geometry but later we indicate the equivalence to the surface
based scheme. The relevant frequencies are assumed to be sufficiently
low that all electromagnetic propagation and coupling effects can be
neglected. Also the influence of the borehole, whether empty or fluid
filled, is also ignored.

b. Basic Formulation

The generic problem is really a standard one in potential theory
which is usually phrased in the context of an electrostatic point charge
located over a plane interface (z = 0) between two dielectric half-
spaces. We begin with the case where a point source C' of current I
is located at a height h over a plane interface separating two homoge-
neous conducting half-spaces of complex resistivities p; and p;. The
situation is illustrated in Fig. 1.3.1a and 1.3.1b. The potential ¥ at
P can be measured either in the upper region (z > 0) or in the lower
region (z < 0) as indicated in Fig. 1.3.2a or 1.3.2b, respectively. There
is an obvious symmetry about the z axis so the potential ¥(r,2) is
only a function of » and z.

For the region z > 0, we deduce directly from image theory that

-1 [— + K—] (1)

where
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z<0

(b)

Figure 1.3.1 Generic problem of current electrode at C over a plane
interface between two homogeneous regions.

R=[r*+(z— b))} (2)
R = [+ (2 + b))} (3)
K = (pzs— p1)/(p2+ p1) (4)

Clearly R is the distance from the source (at » = 0,z = h) to the
observer at (r,z). On the other hand, R’ is the distance from the
image at (0,—h) to the observer. For the region z < 0,

Ipips
= P 5
27(ps+ p1)R (5)
where R is given by (2).
We can readily verify that the potential ¥ and the normal current

density J, are indeed continuous at z = 0. In the latter case we should
note that, for z > 0,

J. = ~(1/p:)09 /62 (6)

while, for z < 0,
7. = ~(1/p3)0%/0z (1)



62 1. Complex Resistivity of the Earth

x

I
B

S

Figure 1.3.2 Geometry for borehole axis intersecting interface at an
angle a.

Subject to the low frequencies, the above expressions for the po-
tential are valid functions of frequency w/(2x) when we insert the
appropriate forms for the complex resistivities p;(iw) and p;(iw) for
the appropriate time factor exp(iwt).

We now allow the borehole axis to intersect the planar interface at
an angle a where 0° < a < 90°. Furthermore, the current electrode
C and the potential electrode P are located on the axis of the bore-
hole. The situation is illustrated in Fig. 1.3.2 for the case where the
electrodes are both located in region 1 where the complex resistivity is
p1(iw). The distance R between C' and P is now denoted by a, the
inter-electrode spacing. The distance R’ from P to the image source
C' is obtained from trigonometry and given by

2 1/2
R = [23’(1 — cos2a) + %(1 + cos 2a)] (8)

where s is the distance from the center of the array to the interface
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shown in Fig. 1.3.2.

In the case where the electrodes straddle the interface, (5) is still
valid where we merely replace R by a. When the electrodes are both
in the lower region, the expression for the potential at P, for a current
source at C', are symmetric to the case where the electrodes are in the
upper region (i.e. we interchange subscripts 1 and 2). In summary, we
may write

'IPI. 1 P2— P/ 1 . a
ir [a+p2+p1R' 8>3
_ Ipp2 .a a
¥ = (oL + pr)a ; 2<s<2 9)
Ip; |1 pr—p2l . a
47'[ +P1+P2R'] <3

where R' is given by (8) and it is now valid for (—oo0 < s < 00).

c. Apparent Resistivity

Following tradition, it is convenient and desirable to define an ap-
parent complex resistivity p,(iw) for all values of s such that

¥ = Ip,(iw)/(47a) (10)

In other words, if the region were effectively homogeneous and of infi-
nite extent, p, would be the actual resistivity.

Now we are specifically interested in knowing how the ratio p,/p,
varies with the normalized distance s/a for various values of the ratio
p1/pa. The explicit functional forms are

Pa _
7
(P2 — p1)/(p2 + p1) 8.1
2(3/a)’(1 — cos 2a) + (1/2)(1 + cos 2a) "a” 2
; 2p3/(p2+ p1) ;—%<§<%
P2 (p1 = p2)/(p1r + p3) .3 1
L /1 [1 2(s/a)*(1 — cos2a) + (1/2)(1 + cos2a)] e <2
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Figure 1.8.8 Apparent resistivity as a function of the vertical distance
above or below the tilted interface for py/p; = 10.

To illustrate the results, we regard p;/p; as real. In other words
any relative phase shifts are ignored. Thus the normalized apparent
resistivity p,/p; is also real. We later show some results relevant to
the case where p,;/p; is complex.

Using the tripartite expression (11), p,/p: is plotted as a function
of the normalized spacing s/a in Figs. 1.3.3 to 1.3.8 for various angles
a and real values of p,/p;. In Fig. 1.3.3, for p;/p, = 10, three angles
a = 90°,60°, and 30° are selected. As indicated, p,/p; asymptotically
approaches 1.0 for large values of s/a and approaches 0.1 for large
negative values of s/a . The limiting forms are approached most rapidly
for a = 90° when the borehole intersects the interface at right angles.
Very similar curves are shown in Fig. 1.3.4 where p,/p; = 0.1. Now
the limiting values of p,/p; are 1.0 for large positive s/a and 10 for
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Figure 1.3.4 Apparent resistivity as a function of the vertical distance
above or below the tilted interface for p;/p; = 0.1.

large negative values of s/a. Actually the curves in Fig. 1.3.4 have a
mirror symmetry with those in Fig. 1.3.3.

The influence of changing the resistivity ratio p,/p, is illustrated
in Fig. 1.3.5 for the case a = 90° only. As indicated, p,/p, approaches
1.0 for large positive s/a but p,/p, approaches 3, 5 and 10 for large
negative s/a for p;/p; =1/3, 1/5 and 1/10, respectively.

An attempt to illustrate the symmetry of the curves when the ratio
P1/p; is inverted is shown in Fig. 1.3.6. In the conventional manner, we
plot p,/p; as a function of s/a with p1/pa = 3 for various a values.
The same curves apply to the case p,/p, = 1/3 if the abscissa [8/a]
at the top and the ordinate [p,/p;] on the right of the figure are used.
Many other results could also be presented in this format at the slight
risk that the reader would be confused. The curves in Fig. 1.3.6 are
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Figure 1.3.5 Apparent resistivity as a function of the distance above or
below the horizontal interface for several resistivity ratios.

also intended to show the effect of a highly oblique intersection of the
borehole axis with the interface. For example, at a = 5°, the change
in p./p1 is within 10% over the range of s/a from -3 to +3. of
course, in the limit a — 0°, the ratio p,/p; degenerates to a straight
line given by

PalPr = 2p2/(Pr+ p2) (12)

corresponding to the unlikely case when the borehole is coincident with
the interface.

To illustrate the effect of a high resistivity contrast on each side of
the interface, we choose p;/p; = 100 and p;/p; = 0.01. These results
are shown in Figs. 1.3.7 and 1.3.8, respectively.

d. Induced Polarization and Dilution

We now wish to touch briefly on the case where one or both of
the half-space regions are polarizable in the sense that the frequency
dependencies of the resistivities are to be accounted for. Here, we will
employ a first order theory. To this end, we write

pa(iw) = pa(0)[1 + 8a(iw)] (13)
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Figure 1.3.6 Apparent resistivity as a function of the distance s for a
range of tilt angles for p; /p2 = 3; the results are also applicable to the

case p1/pz = 1/3 if the top and right hand scales are employed.

pi(iw) = p1(0)[1 + &1 (iw)]
pa(iw) = pa(0)[1 + 82(iw))]

(14)
(15)

where 8,(iw), & (iw) and §;(iw) are the departures of the complex
resistivities from their DC or zero-frequency values. By making an

appropriate Taylor expansion, it is evident that
6,.(1:(-0) jad Blb‘l(iW) + Bg&g(i&))

where

and

=

(16)

(17)

(18)
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Figure 1.3.7 Apparent resistivity as a function of the vertical distance
above or below the tilted interface for p;/p2 = 100.

Equivalent definitions of these dilution factors are

=g = o @
wnd Olnp, p20p
5= Tap, = b0, 20)
where we employ DC resistivities. It can also be shown that
B, +B; =1 (21)

so it is only necessary to compute one of these coefficients.

It should be realized that the simple representation given by (16)
is only valid in a first order sense; higher order terms containing higher
powers of §, and §, are neglected. We will not pursue this matter
here. Suffice it to say that we are dealing with weakly dispersive media
where |§,| and |6;] € 1.
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Figure 1.3.8 Apparent resistivity as a function of the vertical distance
above or below the tilted interface for p; /p3 = 0.01.

Using (20) in conjunction with (12), it is easy to show that

( 2p1p2 s 1
(B'/a)(p1r + p2)* + pa* — p1? ‘2”2
By ={ p1/(pr + p2) i~z > 252
(B'/a)(pr+ pa) + pr = p2 = 20103/ (1 + pa) .8 _ 1
\ (R'/a)(p1+ p2) + pr = P2 "a 2
(22)

where R' = R'(s) is given by (8).

Some examples of the dilution factor B; are shown in Fig 1.3.9a,
1.3.9b, 1.3.10a and 1.3.10b. To facilitate the presentation, we choose
a linear-log format. Also positive and negative values of s/a are dis-
played separately. In Fig. 1.3.9a, we plot B; as a function of s/a from
+0.3 to +10 where it is evident that B; is approaching zero as the
array moves away from medium (2) into medium (1). Of course, the
corresponding value of B, = (1 — B;) would then approach 1.0. The
values of B; for negative s/a are shown in Fig. 1.3.9b for the same
conditions. As expected, B, approaches 1.0 as the array moves away
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Figure 1.3.9a The dilution factor (relevant to the induced polarization
response) for several tilt angles, p;/p; = 10, and positive values of the
distance s.

from the interface into medium (2). For the region from s/a = + 0.5 to
—0.5 where the electrodes are straddling the interface, B; has a con-
stant value 0.909. The corresponding dilution factor B, for p,/p, =
0.1 is shown in Figs. 1.3.10a and 1.3.10b for positive and negative val-
ues, respectively. Similar limiting behavior is noted. Also the constant
value of B,, in the range s/a = + 0.5 to —0.5, is now 0.091.

e. Concluding Remarks

We have adopted a very simple model here in order to illustrate the
interesting phenomena when the resistivity and the induced polariza-
tion are measured near an interface between two homogeneous regions.
The problem is formulated in the context of a drill hole intersecting
the plane interface. Actually, the problem is fully equivalent to the case
where the two electrodes C' and P are located on the surface of plane
earth where there is vertical contact between two homogeneous regions
(i.e. quarter spaces). For example, in Fig. 1.3.2, we can visualize the
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Figure 1.3.9b The dilution factor (relevant to the induced polarization
response) for several tilt angles, p;/p; = 10, and negative values of the
distance s.

plane of the paper as the surface of the earth and where the array is to
be moved along a line making an angle a with the trace of the contact.
All the apparent resistivity curves and the dilution factor results are
valid for this case under the initial quasi-static assumptions.

f. Ezercises

Ezercise 1: Consider a two-electrode array on the surface of a two-
layer earth. The spacing between the electrodes C' and P is de-
noted by a. The thickness of the upper layer is d and its conduc-
tivity is o, . The conductivity of the lower homogeneous half-space
is 0. Beginning with the exact expression for the potential at P,
_derive an expression for the apparent resistivity p, in the limiting
case where the upper layer thickness is vanishingly thin and the
conductivity is indefinitely large in such a manner that their prod-
uct g, in mhos, is finite. Plot the apparent resistivity as function
of the electrode spacing in normalized form.
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Figure 1.3.10a The dilution factor (relevant to the induced polarization
response) for several tilt angles, p;/p2 = 0.1, and positive values of the
distance s.

Solution I: The exact expression for the potential at P, assuming
DC conditions, is

T,

Now noting that /oy — 0,00d — g, and e 29 — 1 — 2d), we

see that
2rg Jo A+(co/g)
This integral will now be evaluated by first inserting the identity

_ 1 [T Orern)e g,
penerr il A )

into the integra.nd. Then the potential is given by

e (7/9)z p—2z
- / / Jo(Aa)dAdz 4)
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Figure 1.3.10b The dilution factor (relevant to the induced polarization
response) for several tilt angles, p; /p2 = 0.1, and negative values of the
distance s.

The integration over A can be readily performed to give

e—(v/9)=
2xg/ (22 + az)‘“

Lz o [‘?(3)]

49 | = [1+-(§)11“ d(E) (5)

The integral can now be expressed in terms of Struve’s function H,
and the Bessel function Y,, both of order 0, by using an identity
given by Watson [pg. 331, #3 with w =0 and v = 0]. Thus

1 ao ao
¥ = H
M[°(g) %(g)] ©)
We now define an apparent resistivity p, or an apparent conduc-

tivity o, according to
¥ =1/2x0,a = p,/27a (7
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Figure 1.3.11 Normalized apparent resistivity as a function of the nor-

malized electrode spacing for a two electrode array and a thin conductive
sheet on the surface of a homogeneous half space.
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e

Then, using dimensionless forms, we write
senmmm(5)-n()] e
P O 29 g g
ap, ap, ap1
=7— — | -Y | — b
"2dp [H"(dp) °(dp)] (8%)
Using tabulated values of H, and Y,, we plot the normalized
resistivity ratio p,/p as a function of the normalized spacing pa-
rameter p,a/pd for a range of values from 0.01 to 20. As it should,
the ordinate approaches 1.0 as the spacing parameter becomes suf-
ficiently large. Thus, we have a convenient single universal curve

to estimate the importance of thin conductive surface layer on re-
sistivity measurements.

Ezercise 2: Using the same model as in the previous exercise,
deduce the sensitivity functions B, and B; for the same two-
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electrode array C and P . The relevant quantities are

_Olnp,

5, = Jmte (1)
and
= T (2
Olnp

Plot these parameters as a function of the normalized spacing pa-
raméter used in the preceding exercise.

Solution 2: To simplify the development, we write

%’ =F(y)= gy [Ho(y) — Yo()] 3)

where y = ap,/dp is the spacing parameter. Now clearly

_OWlnF(y) _ y OF(y)
By = dlny  F(y) Oy )

31;;”) = g {Ho(y) —Yo(y) -y [% - Hi(y) + Yx(!/)] } (5)

Here, we have used the identities

) -2 mw) )
and v
L) - 1) )

where H; and Y; are Struve and Bessel functions of order one,
respectively. Then, the explicit expression to calculate B, is

7) — Hyi(y) + Yi(y)

Y
Bty W) - %)

(8)

and
B=1-B, 9)
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Figure 1.8.12 Sensitivity or dilution factors B and B,.

Using tabulated values of the Struve and Bessel functions, the
functions B and B, are plotted as a function of the spacing pa-
rameter in Fig 1.3.12. As indicated, for large values of the spacing
parameter, the sensitivity factor (i.e. B ) for the lower half space
tends to 1 meaning that the masking effect of the conductive sur-
face layer is negligible. On the other hand, for small values of the
spacing parameter, the surface layer is dominating the response.
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1.4 Low Frequency Electromagnetic Response

a. Introduction

A basic problem in electrical prospecting is how the currents are in-
jected into the earth from a horizontal current-carrying cable grounded
at its end points. The basic building block for this analysis is the hor-
izontal electric dipole of current moment I ds located in the air-earth
interface. Such a solution was given by Sommerfeld [1909-1926] many
years ago for the case where the earth was idealized as a homogeneous
isotropic half-space. An exhaustive treatment of dipoles in the pres-
ence of a conducting half-space was published by Banos [1966] in a
textbook. It is our purpose here to outline the solution of the prob-
lem in the context of induced polarization. We also consider cylindrical
geometry which is relevant to borehole measurements.

b. Basis Anisotropic Half-Space Model

We choose a model of an anisotropic but homogeneous half-space
as indicated in Fig. 1.4.1. To facilitate the solution, the source dipole
is located at height h over the interface at z = 0 and oriented in
the z direction. We later allow A to tend to zero corresponding to a
grounded electric circuit. The upper region ( z > 0) is taken to be free
space with electrical properties ¢, and p, (i.e. permittivity and per-
meability). The lower region, 2z < 0, has a complex resistivity pr(w)
in the horizontal direction and a complex resistivity p,(w) in the ver-
tical direction. As indicated these complex resistivities are functions of
the angular frequency w for an implied time factor exp(jwt). How-
ever to abbreviate the subsequent discussion, we shall designate these
frequency dependent complex resistivities by p, and Po -

Ohm’s law for the lower region can be succinctly stated as follows

J=5-E (1)

where J is the current density vector, E is the electric field vector,
and 7 is the (complex) conductivity tensor. The latter quantity takes

the form .
— P 00
o={ 0 p' 0 (2)
0 0 pt

where the off-diagonal elements are zero. To be specific, we are saying
that
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Figure 1.4.1 Horizontal electric dipole over an anisotropic half-space.

Je = (ph)—l-Ez (3(1)

Jy = (pn)'E, (3b)
and

J. = (pz)nlEx (3C)

Then Maxwell’s equations for z < 0 are

curl H =5 (4)
and . .
curl E = —ju,wH (5)
excluding any source regions and the corresponding forms for z > 0
are identical if 7 is replaced by je,w.
c. Vector Potential Formulation

To solve the boundary value problem, we find it convenient to
introduce the vector potential A and a scalar potential ¥ such that

H=curl 4 (6)

and . _
E=—juwA—grad ¥ (M
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which clearly are consistent with (4) and (5).
We now choose the gauge condition [Wait 1966a]

divA + (pn)"'® =0 (8)
for z < 0 and _
divA + je,w¥ = 0 (9)
for z > 0. Then it is not difficult to show that for z > 0
V34, -7’4, =0 (10)
V34, - 7?4, =0 (11)
and 1 1
V’A,—(———-—-) —-de-ﬂ’i’A =0 12
o o) 3 S (div4) P (12)
where
7* = (Fpow/ps) (13)
On the other hand, for z > 0, we simply have
(V"= 12)4, = 0 (14)
( - 70)‘4 =0 (15)
and
(VI-71D)A. =0 (16)

where 7] = (Feow)(Fpow) = —€optow? .

In order to solve the problem, we need to choose the vector poten-
tial to have both a component A, in the direction of the dipole and
component A, normal to the interface. However, we can set 4, = 0
and still be able to satisfy all the boundary conditions (i.e. tangential
field components E,, E,, H., and H, must be continuous at the
interface z = 0). Another condition is that A, , for the region z > 0,
must have the proper singularity at the source; that is

A, = (Ids/4xr,)e™ 7" (17)

as p= (22 +3?)/? 5 0 and z — h where r, = [p? + (z — h)?]V/2,
This fact is incorporated neatly into the analysis by noting that

~YoTo o
- 2 g-sels=bl g, (Ap)dA (18)
[+}

To U,
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where u, = (A? + 42)"/2. This “Sommerfeld Integral” is the key for
solving many such problems involving localized sources in the presence
of layered media [Wait, 1966a; Kong, 1976].

For z < 0, we write

4, =19 / F(\, 2)7,(Ap)dA (19)
4 J,
and
. _Ids 9o [*
a="22 /0 G\, 2)J,(Ap)dA (20)
where p = (22 + y?)'/? and where F and G satisfy
0*F
3‘27 — (Az + 72)F =0 (21)
and G oF
(MK 4~ = (K 1NOF
557 (MK +4))G=(K-1) 5 (22)
where K = p,/py, . Solutions of (21) and (22) have the form
F(A2) = A(N)e™ (23)
and
G(A,z) = B(A)e”* — (u/A?)A(N)e* (24)

where u = (A% +4?)'/? and v = (A2K + 72)'/? and where A()) and
B()) are yet to be determined.

d. Statement of the Formal Solution

It is important to observe that (21) and (22) are coupled differ-
entjal equations which, in effect, mean that the solutions for 4, and
A, are coupled by virtue of the anisotropy (i.e. K # 1) even within
the homogeneous region.* Of course, in the upper anisotropic region
(z > 0), this complication does not arise. In fact, for z > 0, we write
the solution in the somewhat more familiar form

o0
Az — Ids i [e—uolz—hl + R_L(A)e_u°(z+h)] Jo(Ap)dA (25)

ir Jo u,

* An alternative approach to the problem is to follow Kong [1976]
and use Debye potentials or z directed electric and magnetic hertz
vectors.
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d _Ids 8 (%
S —uo(z+h)
= 32:,/ S(A)e Jo(Ap)dA (26)

where R,(A) and S()) are also to be determined by the boundary
conditions at z =0.
As it turns out [Wait, 1982]:

A()) = i (14 Ry (N)] e (27)

RN = 2 (28)
S(\) = [B(A) - l‘-A(A)} guoh (29)
_ Y2+ uu+ A ’

B0 = 55 [ i) A (30)

which constitute the complete formal solution of the problem.

e. Quasi-Static Limiting Forms

We now do two things. First of all, we let A — 0 corresponding to
having the dipole lying in the interface. Then we proceed to the quasi-
static limit and set -, = 0. The latter approximation or idealization
is valid when all significant distances £ satisfy |y,£| < 1. In the limit,
where z = h = 0, we then find that

, ¥
E, = —ju.wA; — P (31)
and
oF
Ey - —3—3] (32)
where
Ids
A= [T S r000 (33)
I ds _
2,,-72‘,3 [1~(1+7p)e™] (34)
and
84, OA,
¥ =—p (—37 dz );:o (35)
Ids 8 [®Jv—u
=~ x P A [ 3 +1] Jo(Ap)dX (36)
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The expression above for A, is the same as that for an isotropic
half-space [Wait, 1961] and it depends only on p, the complex resistiv-
ity in the horizontal direction. On the other hand, the surface potential
¥ depends on both p, and p, . To clarify this point, we write

where £ Id 91 Id
3 38 x
¥ =—-——p 3:3 o Ph;)— (38)
and Id
S
¥, =" / (v - ()N (39)

where we have employed the identities
*® 1
| ronar=2 (40)
0 p

%Jo()\p) = —J1('\P)’\'::; (41)

In the isotropic limit, ¥, vanishes and the limiting form ¥ = ¥,
corresponds to the expected result.

Actually, ¥, can also be evaluated in closed form [Wait, 1982] and
the result is given by

Ids

: -
Y2 = —Fopns [exp (-76) — KV exp (—ypK )] (42)

In the static limit (i.e. [yp| — 0), we see that
_ Ids 12 %
=9, +9, > %(phpv) F (43)

which is the expected DC solution. Another interesting observation
is that ¥; — 0 if |yp| > 1. Then, in this asymptotic limit

Ids =z
¥ - ‘I’l = th; (44)
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Figure 1.4.2 \Amplitude and phase of the E, field component for an z
directed electric dipole on the surface (z= 0) of an anisotropic homoge-
neous half-space model of the earth.

which depends only on the horizontal resistivity.

The key point in the above development is that the potential func-
tion ¥ is dependent on frequency as |yp| varies from 0 to oo unless
the half-space is isotropic. An interesting demonstration of this point |
is seen when we look at E, (for z = h = 0) for the z directed electric
dipole source. Using (32), (37), and (42), we deduce that

_ 3(Ids)zy

E" 27

pr(l+A4) (45)

where

A= % [(3KY* + 7p) exp (—7pK~Y% - (34 7p) exp (—7p)] (46)

Clearly, in the isotropic limit, A vanishes. Also, if [yp| > 1, A van-
ishes.

To illustrate the frequency dependence of E,, as given by (45),
we plot the amplitude and phase of (1+ A) in Figs. 1.4.2a and 1.4.2b,
as a function of |yp| for the cases where K = 0.5,1.0,2,5, and 10.
In this example, all displacement currents have been neglected. Thus
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Figure 1.4.3 Plan view of the general non-intersecting current and po-
tential cable configuration.

[7p| = (ow/pn)!/? is proportional to (frequency)? where p; is real
and frequency independent. Clearly the frequency dependence of the
normalized field 14 A is quite significant except in the isotropic limit
where K = 1.

f. General Coupling Theory

Conceptually, it is evident that the tangential electric fields E,
and E, of a horizontal electric dipole in the interface, can be used
to deduce the mutual impedance between two grounded circuits. Such
a configuration is illustrated in Fig. 1.4.3. For example, C; and C,
could be the current electrodes which are connected by insulated wires
to the generator which supplies the current I. The voltage V, in-
duced in the potential circuit, is then the integrated electric field along
the contour of the insulated wires connecting the “voltmeter” to the
Potential electrodes P, and P,.

The first step is to regard the element Ids in the current circuit
as a source dipole at a distance s from C,. The voltage V induced
in the element dS is —E,dS where E, is the tangential electric field
at a distant » from ds. Here we designate ¢ as the angle subtended
by ds and dS. The resulting induced voltage V is then obtained
by integrating over both s and §. This procedure was illustrated by
Sunde [1949] and generalized later [Wait, 1982). In the present context,
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we find that

v & o 5°Q(r) |

—=Z,= g =x\)

1 /;1 /P, [P(r)cose+ 3385]d3d$ (47)
where .

J How —yr
P(r) = S [1- Q@ +7yr)e™] (48)

and

Q(r)=£* [} + /0 B (" 2 “) Jo(Ar)dA] (49)

At sufficiently low frequencies (i.e. where |yr| < 1) we see that
P(r) = jpow/27r (50)

and
Q(r) = (papo)!/2 /277 (51)

In this case P(r) and the resulting integral in (47) has a purely induc-
tive character while Q(r) leads to a purely resistive contribution. In
general, yr is arbitrary and the frequency dependence is more com-
plicated and simple closed-form expressions are not possible. Never-
theless, it is useful to note that Q(r) can be expressed in terms of
exponential integrals. To show this, we observe that

56; /: P Io(Ar)dr = — /ow(v — u)Jy(Ar)dA
= [K'* exp (—7pK™"?) — exp (=7p)] /P (52)

Then we can write

Q(r)= ~ [l + / [Kllze(""x—”:) - e("")] %dr]
0

2r | r
1|1 12 1 ~1/2 1
where ©  —at
Es(a) = / <t (54)
t=1 t

is an exponential integral of order 2 as defined by Abramowitz and
Stegun [1964].
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Figure 1.4.4 The N layered anisotropic half-space model of the earth.

g. Extensions to Layered Anisotropic Earth

There is some merit in extending the formulation of the electrocou-
pling to the case where the earth is represented as a layered half-space.
Also it is desirable to let one or more of the layers be anisotropic. The
situation is illustrated in Fig. 1.4.4. The solution of N -layer problem is
carried through in a manner very similar to the homogenous half-space
model. The details are given elsewhere [Wait 1966b, 1982]. As noted in
Fig.1.4.4, the n’th layer has a complex resistivity py , in the horizontal
direction, and Pv,n in the vertical direction. Here n = 1,2,3,...N.

The mutual impedance formula given by (47) is still applicable but
P(r) and Q(r) are now given by

_dpew [T A
P(r) ==~ /; YT ¥, o)A (55)
and
| A Jpow
-t S /oo 6
Qr) = 5 / [zl X7 il ] Ado(Ar)dA (56)

where Y, and Z; are admittance and impedance functions defined as
follows

- N. }’2 +N1tanhu1h1
~ "'Ny + Y; tanhu; b
_ n-'-N;taIth;hz
- 2N3+Y3tanhu3h3

Y,

(57)

Y;

(58)
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Y.41 + N, tanhu,h,

Y, =N,
N, + Y, tanh u,h,

(59)

Ny + Ny_ytanhuy_1hy_y

Yv_1 = Nx_
Nt N¥"'Ny_1+ Nytanhuy_1hy_,

(60)

where N, = u,/(ju.w) and u, = (A2 +12)V/? and 7, = (ju.w/
prn)t/? for n = 1,2,3,...N. The iterative formula for Z, has pre-
cisely the same form as (57) to (60) if the Y ’s are replaced by Z s,
the N ’s are replaced by K ’s and the u’s by v’s, where

1/2
K. =voprn and v, = (A’Z"—'" + 7,3)
h,n

In the limiting case of a homogeneous half-space (i.e. by — oo and
uy —u), Y; - u/juw and Z; — vp,. Then P(r) and Q(r) reduce
to the forms (48) and (49), respectively. We also recover the results
derived by Hohmann [1973] for the 2-layer isotropic case.

Any general configuration of grounded wires connecting the elec-
trodes can be handled with the above general forms for P(r) and
Q(r) used in conjunction with (47). A rather extreme special case is
the homogeneous half-space. It is often used as the basis for an elec-
tromagnetic coupling estimate in connection with induced polarization
surveys. But, perhaps one should bear in mind here that the resistiv-
ity is complex and matters can become complicated; we illustrate the
point below for a half-space of isotropic complex resistivity p(w).

h. An Illustrative Ezample

The so called dipole-dipole array is considered as illustrated in
the inset in Fig. 1.4.5a. The electrodes are on a common line and the
spacing is such that C,C; = PP, = a and P,C, = na. As shown by
Wait and Gruszka [1986a)], the mutual impedance for this case can be
expressed in analytical form:

_pPw) 2
Im =4 1 { an(n + 1)(n + 2)y

- 26lya(n + 1)+ G(7an) +Ghra(n+2)]} (61
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Figure 1.4.5a The real part of the complex resistivity for a dipole-dipole
array as a function of frequency. Curve A — apparent resistivity, Curve
B - pure IP, Curve C — pure EM.

where

7 = [fpow/ p(w)]*/? (62)
and

G(z)=e¢* (% - 1) + zE,(z) (63)
in terms of the exponential integral [Abramowitz and Stegen, 1964]

defined by - o e
E,(z)=/ ¢ atv=/1 et dt (64)

v

In the DC limit (i.e. w — 0), we recover the expected form

_ p(0)
Zm — Bo = man(n+ 1)(n + 2) (65)

which is well known in resistivity formulations (e.g. [Chap. 1, Wait,
1982]).
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Figure 1.4.5b The imaginary part of the complex resistivity for a dipole-
dipole array as a function of frequency. :

We are now led to define an apparent (complex) resistivity as fol-
lows, for any frequency:

— Pa({w) .
™~ zan(n +1)(n + 2) (66)
Then clearly ) Z
pa o — ..._”.". - .
2(0) Ry - P@)+iX(w) (67)

where R{w) and X(w) are the real and imaginary parts of the appar-
ent complex resistivity.

Actually, Z,, is valid for any frequency provided the appropri-
ate frequency dependent form for p(w) is employed. For purposes of
illustration, we choose the Cole-Cole form [Pelton, 1978] given by

p@)=p0) [1-m (1= 5= )] (68)

where p(0) is the DC value, m is the chargeability, r is a time
constant, and k is a dispersion index. One should note that at a suffi-
ciently high frequency p(w) — p(0)(1—m). Thus m is a good measure
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of the total dispersion over the whole significant frequency range (i.e.
10! to 10® Hz). The adjustable parameters 7 and k are chosen to
represent a particular rock or mineral type. For our numerical exam-
ple, we choose m = 0.2, n =2, k =1/4, r = 0.1 sec., p(0) = 10?
ohm-m and a = 200 m.

Using (61) and (68), we plot R(w) and X(w), as defined by (67),
as a function of frequency in Hz in Figs. 1.4.5a and 1.4.5b respectively.
The resulting curves are designated A. Then we plot what might be
called pure induced polarization (IP) which, in the present context,
would be defined by

o) P& _p()
B ranmt ) 9B~ o &)

In other words, electromagnetic (EM) coupling is ignored. These curves
are designated B. It is significant that the A and B curves begin to
diverge even for frequencies as low as 1 Hz. This fact is not surprising
when the pure EM coupling curves are also plotted. In this case we use
(61) but p(w) is replaced everywhere by p(0). Clearly the EM coupling
is dominating the response for frequencies above about 10 Hz. This fact
should be borne in mind in interpreting such measurements. Wait and
Gruszka [1986a,b] discuss a possible decoupling procedure where the
actual or composite response function is “corrected” by subtracting out
the pure EM coupling results. The method is not particularly effective
at the higher frequencies.

In the applied geophysical literature [Wait 1959a, Dey and Morri-
son 1973, Brown 1985, Song 1985, Wynn and Zonge 1975, 1977, Wynn
1979], one finds various proposals to mitigate the annoying effects of
electromagnetic coupling in induced polarization surveys. Some rather
ingenious attempts to “remove” the EM coupling by special data pro-
cessing techniques have been made. No attempt will be made here to
evaluate these procedures which may be more “art” than science. Qur
purpose is merely to identify the nature of the problem and to illustrate
the inherent complexity of the situation that confronts the exploration
geophysicists.

Rather than attempting to remove or correct the resultant com-
plex resistivity data for EM coupling, it might be better to carry out
the interpretation using a dynamic formulation such as proposed ear-
lier [Wait 1981]. Such an approach has been developed by Mahmoud
et al [1987] which requires the use of two receiving grounded dipoles
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P @)

Figure 1.4.8 Four electrode array located in a bore-hole where potential
circuit is offset by a distance r from the axis.

with special orientations relative to the source dipole. The procedure
was applied to computer simulated data on a two layer earth with
encouraging results.

t. Borehole Configuration

Here we wish to discuss the EM coupling problem when the elec-
trodes are located in a borehole. The starting point is to deal with
the electromagnetic field of an oscillating electric dipole located on the
axis of the borehole. Such a solution, for a homogeneous cylinder of ra-
dius b of complex resistivity p, and an external homogeneous region
of complex resistivity p,, is straight forward. It is the special case of
a general analysis for dipoles in the presence of cylindrical structures
[Wait 1959b, Hill and Wait 1979]. A similar model was considered re-
cently by Freedman and Vogiatzis [1986].

The special geometry is shown in Fig. 1.4.6. The current electrodes
C, and C; are fed effectively by a generator on the axis of the bore-
hole. The potential electrodes P, and P, are displaced from the axis
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by a distance r. An expression for the mutual impedance Z is given
in explicit form by Gruszka [1987] as follows:

2 — e~y Rs oo
p1 ipjpr [ €T 2/ A sy
- -1 — e Jo(Ar)dA
Z 4 E( ) { Rl] g ) ‘U.f 0( )

i,j=1
oo 2 a2
+ %/ ulA(A)IO(ulr)Az 71A(0)I0(71r) COS(AZ,'j)d/\}
0
2 o
=B {7 S hOnD + A0 (70)
27 o Ui
where
Ko(uzb
ulleo(ulb) - usz%Kl(ulb)
A(A) = — Ko(ﬂzb) (71)
uy p1Io(urd) + uzszl(uzb)Il(ulb)

u =M +9)Y2 | Reu; >0

us = (A +93)Y2 |, Reuy, >0
R = (r* + Z.?J')l/2 y & =P -G

N = (.7'#1“’/»01)1/2 y T2 = (.7'5‘2“’/172)1/2

and s is the overlap distance as indicated in Fig. 1.4.6.

A special case of the formulation is when we locate a dipole-dipole
array on the axis of the bore-hole (i.e. » = 0). To illustrate this case,
we let the borehole fluid have a dispersionless or non-polarizable re-
sistivity p; while the external region of complex resistivity pa(w) is
characterized by the Cole-Cole form given by (68). The particular pa-
rameter values are indicated in the caption for Fig. 1.4.7a.

The real and imaginary parts of the apparent complex resistivity
are plotted as a function of frequency in Figs. 1.4.7a and 1.4.7b and
identified as curve A in each figure. Curves B correspond to “pure
IP” in the sense that the propagation constants 7, and v, are set
equal to zero. Then curves C' are what we might call “pure EM” in
the sense that p,(w) is replaced by its DC value p(0). Curves D
are obtained by subtracting the EM anomaly from the actual complex
resistivity so the quantity plotted is

o (5733 -1)
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Figure 1.4.7a Dipole-dipole array located on the axis of a bore-hole with
the following parameters: p; = 1 Qm, p3/py = 50, my = 0.2, 7 =
0.1 k3 =0.25, N =10, b=0.1m, and a = 10 m. The real part of the
normalized complex resistivity is shown for the five cases listed below.
Curve A — p4(w)/pa(0), Curve B — p,(w)/pa(0) for 4; = 12 = 0, Curve C
= Pa(w)/pa(0) for ma = 0, Curve D — EM corrected, see text, Curve E —

p2(w)/p2(0).

Finally, in Figs. 1.4.7a and 1.4.7b, curves E correspond to the complex
resistivity ratio p,(w)/p2(0) or “true IP” of the formation or external
region.

It is evident that the electromagnetic coupling (curves C' in Figs.
1.4.7a and 1.4.7b) is important at frequencies above about 100 Hz
for the parameters chosen. Not surprisingly, the coupling is most no-
ticeable in the imaginary part (i.e. the reactive part) of the apparent
complex resistivity where, to the first order, we would expect the EM
coupling to be proportional to jwL where L is an inductance. In the
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Figure 1.4.7b Dipole-dipole array located in a bore-hole with parame-
ters indicated in caption for Fig. 1.4.7a. Here the imaginary part of the
normalized complex resistivity is shown for the same five cases.

hypothetical case where the electromagnetic effects were absent (i.e.
71 =72 = 0), we can see from the closeness of curves B and E that
the resistivity of the formulation or external region would be almost
identical to the measured or apparent resistivity.

To “correct” the apparent complex resistivity in the presence of
EM coupling, we perform the single subtraction process indicated
above. For the real part, we see from Fig. 1.4.7a that the resultant
corrected resistivity coincides, within the graphical accuracy, with the
actual resistivity of the external medium. However, the correction pro-
cess is not so effective (i.e. curves A and D diverge at frequencies
above about 200 Hz).
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Figure 1.4.8a Amplitude and phase spectra, dipole-dipole array perpen-
dicular to the pipe (spread N = 1).

J- More Complicated Cylindrical/Half-Space Problems

Often in dealing with complex resistivity data in the field, the
so-called cultural problem arises. The best example is buried conduc-
tor such as a metallic pipe or cable that may be in the vicinity of
the measuring electrodes. A case in point occurs when we employ a
dipole-dipole array on the surface of a half space of the earth which is
homogeneous except for a relatively thin conductor located at a fixed
depth h. General formulations [Wait 1977a,b, 1978] for this type of
problem have been published. The solutions are tractable under the fol-
lowing conditions: the buried conductor or cable is of infinite length,
the conductor radius is small compared with other typical dimensions,
and the conductor can be described by an axial (spatially dispersive)
impedance. Parra [1984] has applied such a formulation to the case
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Figure 1.4.8b Amplitude and phase spectra, dipole-dipole array perpen-
dicular to the pipe (spread N = 3).

of solid metal pipe of radius 10 cm buried at a depth of A = 3m.
The half-space has a resistivity of 100 @ m while the pipe has a real
conductivity ¢, = 3 x 10° mhos/m. Parra shows various results for
a dipole-dipole array that may be oriented at any angle relative to
the pipe. His results for two cases where the pipe is at right angles
to the dipole-dipole array are shown in Figs. 1.4.8a and 1.4.8b. The
amplitude and phase of the effectives complex resistivity are shown as
a function of frequency from 0.1 to 10® Hz. For comparison, the phase
is also shown for the half space in the absence of the pipe. In Fig.
1.4.8a, the pipe is located centrally between the dipoles and buried a
distance of 3m. The electrode spacing a = 300 m and the spread fac-
tor N = 1. In Fig. 1.4.8b the pipe is located nearer the transmitting
dipole and the spread factor N = 3. In the latter case, there is a
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drastic change of the phase curve for frequencies greater than 100 Hz.
This rapid change of phase seems to occur when |ya| > 1 where ¥
is the propagation constant of the half-space. In Parra’s calculations,
the magnetic permeability of the pipe is assigned the free space value
io . Also, in the curves shown in Figs. 1.4.8a and 1.4.8b, the induced
polarization at the pipe surface is neglected. Similar results were pre-
sented by Wait and Williams [1985] for the closely related problem of
a vertical metal well casing in the vicinity of a surface-based dipole-
dipole array. They allowed for the large magnetic permeability of the
steel (e.g. u/p, ~ 500) and also the appropriate value of the interface
impedance 7 at the steel/electrolyte boundary was incorporated into
the calculations. In such a situation, both the eddy currents in the
pipe or casing and the induced polarization contribute to the apparent
complex resistivity.

Concluding Remarks

As we have demonstrated, the mutual impedance or apparent com-
plex resistivity is a complicated function of the intrinsic complex resis-
tivity of the medium. The influence of direct EM coupling, of the lead
wires and effects of buried pipes and wires need to be estimated for
a given situation. While it does not seem possible to mathematically
justify claims to “remove” EM coupling, it is certainly not inconceiv-
able that special data processing such as devised by Wynn and Zonge
[1975, 1977] will emphasize the relative contribution of the induced
polarization.
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1.5 LP. Response of Prolate Spheroidal Ore Grains

a. Introduction

In the induced polarization method of geophysical prospecting,
one exploits the interfacial polarization at the surfaces of dissimilar
material. The best example is the interface between a metallic conduc-
tor such as an ore grain and the adjacent electrolytic region. Here we
will consider the alternating current response of an idealized spheroidal
model of the ore grain which has a specified interface impedance Z(jw)
for a time-harmonic factor exp(jwt). We then consider an ensemble
of such particles and obtain an expression for the apparent or effective
complex resistivity p.(jw) as a function of volume loading and particle
shape. We shall restrict attention to frequencies that are low enough
to allow potential theory to be used.

The following theoretical development is based partly on previ-
ous publications [Wait 1982, 1983, Flanagan 1983, Flanagan and Wait
1985]. Essentially, it is a generalization of the spherical particle model
which also utilized the interface impedance concept. We contrast our
approach with the electrochemical formulation by Wong and Strang-
way [1981]. Not withstanding their diligence in fitting their theory
to published experimental data, one could question their method in
handling the infinite system of coupled mode equations for ionic per-
turbations. We discuss this point below.

b. Basic Formulation

To conform with the shape of the basic particle, we choose pro-
late spheroidal coordinates as indicated in Fig. 1.5.1. The relation-
ships between the spheroidal system (7,4, ¢ ) and the cylindrical sys-
tem (r,¢, z) are

r=c[(1-8)(n*-1)] 13 (1)
z=cné (2)
$=4¢ ®)

where ¢ is the semi-focal distance. The angular coordinate ranges from
~1 to +1 while the radial coordinate ranges from 1 to oo . As indicated
in Fig. 1.5.2, the surface of the particle is defined by n = 7, or, in terms
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Figure 1.5.1 The prolate spheroidal coordinate system.

of cylindrical coordinates

Stm=l (4)

where a and b are the semi-minor and semi-major axes, respectively.
Confocal spheroidal coordinates are then

2 2

r z
(- 1) + an? 1 (5)

provided a = ¢(no? — 1)¥/2 and b = enp .

Initially, we assume b > a corresponding to the prolate spheroidal
geometry. Later, we indicate the extension to the oblate spheroidal
case. In terms of a and b, we have ¢ = (b7 —a?)"* and n, =
b(b? — a2)”V/2,

The particle is assigned a resistivity p, (for n < 7) and the
external region is homogeneous with resistivity p. The surface of the
particle is characterized by an interface impedance Z(jw). In this way,
we account for the discontinuity of the potential across the surface.
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Figure 1.5.2 The spheroidal particle in a locally uniform applied field.

c. Spheroidal Harmonic Solution

Our objective is to determine the response of the spheroid when it
is immersed in a uniform electric field E,. As indicated in Fig. 1.5.2,
E, is in the plane ¢ = 0 or the (z,2) plane in the cartesian system.
Thus, it is convenient to write

E'o = 2Eq + 2E, (6)

where E, and E, are the transverse and longitudinal components,
respectively. Basically, we need to derive the response of the sphere to
both transverse and longitudinal field excitations. The general case is
then handled by superposition.

The electric fields are obtained from

E=—grad ® (7
where &, the resultant potential, satisfies

Vg =0 (8)
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Solutions are of the form

Q — Pum(n)an(s) cos m¢ (9)
T Qa"(n)Qa"(8) sinmé
where, in general, any linear combination is allowed. Here P,™ and
Q.™ are Legendre polynomials of order m and degree n. The argu-
ments are 7 for the radial functions and § for the angular functions.
To assure single-valueness, m is an integer. Also, because the field is
finite at § = +1, we can reject the Q,™(§) functions. Furthermore,
we recognize that for the interior (i.e. 7 < 7o), @,™(n) is singular as
n — 1 so it is not acceptable. Also, in the external region (i.e. n > 7o),
we note that P,™(n) does not vanish as n — 0o0.

In the case of purely axial excitation (i.e. Eq = 0), we write the
resultant potentials in the following forms:

For > no
&= APMP)+ Y B Qu(n)Pa(8) (10)
n=1,8,5---
For n< 1o
= ) CuPu(n)Pu(9) (11)
n=1,8,5...

Here, A° is known while B,° and C,° are coefficients to be deter-
mined. We note that m = 0 because the problem has obvious axial
symmetry. In fact, A° = —cE,.

In the case of purely transverse excitation (i.e. Eo = 0), the solu-
tion forms are as follows:

For > no
& = A'P'(n)P,}(6) cos ¢ + Z B.'Q.'(n)P.'(§)cos¢p  (12)
n=1,3,5.-

For n < no
&= > Cu'Pl(n)P.'(6)cosd (13)

n=1,3,5.
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Here, A! is known while B and C} are to be determined. Here, we
have taken m = 1 and noted that & is an even function of ¢. In fact,
Al = —CE—O .

In writing out (10) and (12), we have located the primary potential
as the first expression on the R.H.S.(right hand side). In both cases,
the summation term represents the secondary potential which vanishes
as 1 — oo . More explicit details are given elsewhere [Wait, 1983].

The first boundary condition is that the normal current density
J,, is continuous at the particle surface. To be specific,

108 _108
P 37) n=n¢-0 Pan n=n0+0

(14)

The second boundary condition is that the potential drop across
the interface is proportional to the product of the interface impedance
Z(jw) and the normal current density. This is equivalent to the state-
ment

_ Z(jw)(no® - 1) 98

2 |
n=n0+0 pc(mo? — 6’)1/2 01 la=no+o

= <§| (15)

71=10-0

which must hold for —1 < § < +1 [Wait 1982, 1983].
On applying the boundary condition (14) to either (10) and (11)
or to (12) and (13), we get

1 . 1
3 Cam B (m) P (8) = A Pumo) P (0)

+ % > B."QT ()P (8)  (16)

where

. o .

P (no) = 551’» () o (17)
and

Am 0 m

QT (m) = 5,Q"()| (18)

Here m = 0 or 1 corresponding to longitudinal or transverse excita-
tion, respectively.
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We now multiply both sides of (16) by P,™(§) where k is an
integer and then integrate over § from —1 to +1. Making use of the
orthogonality relation

+1 2 (k+m)! for k=n
P, (8)P™(6)dé = ¢ 2k + 1 (k — m)! = (19)
-1 0 for k#n
we deduce that
Gy = an2 B m)g g 1 Q7 (M) (20)
P B (o) P B (m0)

which holds for any value of k. Here

5 ____{1 for k=1
LE= 10 for k=3,5,7---

Now, we apply the boundary condition (15) which leads to
Y Ca" P (o) P (8) =

A™P™(n0)Pi(8) + D B Q™ (m0) Pa™(8)
— Z(jw)(’?oz - 1)1/2 m pm m mAm m
g (A BT WP(6) + 3 B QT ()P («Z}l)

which holds for —1 < § < +1. We multiply both sides by P,™(§) and
integrate over § from —1 to +1. With (19), this process yields

Ci" B (no) = A™Py™ (10)81,x + B Qr(n0)

, _ 1\1/3 . had s
_ Z(}w)(ﬂoz 1) {A’"P{"(%)al,k + Z Ban’:(nD)a“sk]

pe n=1,8-.
(22)
where
_ 2k+1(k~m)! /“ P,™(8)P,™(5)
Ay k = 2 (k + m)! i (’702 _ 62)1/2 (23)
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Combining (20) and (22), we have the single equation set to de-
termine Bj :

1 ad mAm m
e [ Z B," Q7 (n0)anx + Bx AFk]

= — P{n(;lo’)’al,k + Afk (for k= 1,3, 5.. ) (24)
where
» A= pe _ a(¥?*/a*—1)p
* _Z(J'w)(n T Z(w) (25)
™ Qk (70) m
(0) Gy ~ O 0) (26)
and

h= (1 - 7) P (o)1, (27)

The reader, if you are still with us, is reminded that for the purely axial
excitation, m = 0 while for the purely transverse excitation, m = 1.

d. The Confocal Model

Before discussing concrete results, it is useful to consider the nature
of the equation set given by (24). Actually this system is complicated by
the presence of the coupling integral given by (23). In our earlier work
[Wait 1982, 1983], we have avoided the non-orthogonality by choosing
an angle dependent form for the interface impedance. To illustrate this
point, we allow the interface impedance to be Z(§,jw) = Zo(jw)f(§)
where f(0) = 1. Thus, in the boundary condition (15), we replace
Z(jw) by Z(6,jw) as defined. The equation set (24) has the same
form but now

_2k+1 (k—m)! +1 P,"(8)P,™(9)
ok = 2 (k+m)J_, (n0? — 52)1/2

f(8)ds  (28)
We now choose the functional form of f(§) such that

£(8) = (10" ~ 6" o (29)
over the range —1 < § < +1. In view of (19), we see that

1/n0 f n=k
Ok = {o if n#k
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Then, (24) reduces to

B[00 (o) + AR = ~Pm(0) +Aefi  (30)
where A, is now a constant given by Ao = pc/Zo(jw). Equation (30)
can now be used to determine an explicit expression for Bj*. In this
case, the interface impedance can be regarded as a confocal sheath.
Indeed, in accordance with (29)

o=fi-r(1-2)]" -

which varies from f(0) = 1 at the waist to f(£1) = a/b at the
tips of the particle. Essentially, this is the model considered by Wait
[1983]. While this special angular variation may not be too realistic,
it does lead to a simpler solution. Also, it is worth noting that other
non-uniform models can be handled by modifying the form of f(4).

e. Reduction of General Solution

The extension of the general solution given above for the prolate
spheroidal geometry (i.e. b > a) to the oblate spheroidal case (i.e.
b < a) is straight-forward. Analytically, the solutions are identical but
we need to allow various parameters to pass from real to imaginary
values in a consistent manner [Wait 1983]. We omit further discussion
of this matter here.

To apply the general solution for the potential outside the particle,
it is desirable to express the results in terms of spherical coordinates
(R,0,¢) asindicated in Fig. 1.5.2. Here, we will also restrict attention
to the case where R > a or b. Then, it is not difficult to show that
for n=1

1 c?
Qi(n) ~ 3 3 (31)
Upy o~ — 2 o 28
and, forn =3
2 2ct
8 8c*
Qs'(n) = - - (34)
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In general, we may note that for 7 > 1

w P (n 4+ m)i2n
(2n + 1)!Ign+t

~ (—1)™ n!l(n + m)!i2» o+
(2n + 1)!Rn+1

Q" (n) = (-1)
(35)

In this sense, only the dipole term is significant. Also, in this same
limit, we note that

Pi(n)~ R/ec (36)
P11(7I) ~ Rfc (37)
P (6)~z2/R ‘ (38)
P,'(6) ~z2/R (39)

We can now express (10) and (12) in convenient forms using the
preceding approximations. For axial excitation

Qz = —Eol + ansz,/Rs (40)
and for transverse excitation,
$, = —Eor cos ¢ + Eoa’b(M, /R®)r cos ¢ (41)

Here M and M are normalized dipole moments which are given by

cs
M = (E) BIO/AO (42)
and
m=-(2 )5 174 (43)
T \3a2/) !

This normalization, in effect, means that M and M both reduce to
1.0 in the limiting case of a perfectly conducting sphere with zero
interface impedance and with the same volume.

f. The Normalized Induced Dipoles

At this stage, it is desirable to show some numerical results for the
simpler confocal model formulated earlier [Wait 1982, 1983]. We re-
strict attention to the case of axial excitation. Thus we need to deduce
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Figure 1.5.3a The magnitude of the normalized axial dipole moment for
various spheroidicities calculated from the confocal model.

B,™/A™ from (30) for m = 0, or use the relatively simpler but equiv-
alent formula for M, given by Wait [1982, 1983]. A useful formula for
plotting purposes is the dimensionless quantity (a2b)'/3p/Z(jw) which
is proportional to (particle volume)!/® and inversely proportional to
the interface impedance for a fixed value of the surrounding medium
resistivity p. Here, we will let p be real but Z(jw) is intrinsically
complex. For purposes of illustration, the phase of Z(jw) is taken to
be 0.1 radian (i.e. 5.7°). Because we are thinking in terms of metallic
particles, it is also permissible to set the particle resistivity p, = 0.
The results for |M| and the phase of M for this confocal model
are shown in Figs. 1.5.3a and 1.5.3b for values of b/a = 1.1,2,5, and
10. As the coating parameter Z(jw) tends to zero, the amplitude of
the dipole moment becomes very large for the elongated particle (i.e.
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Figure 1.5.8b The phase of the normalized axial dipole moment for
various spheroidicities calculated from the confocal model.

b/a =10). This is a current channeling effect which is pronounced for
axial excitation. However, the values of |M| are greatly reduced as
Z(jw) is increased. In the limit of sufficiently large values of Z(jw),
the particle is acting as a prolate spheroidal void. In the intermediate
range, interesting things happen. In fact, there is a point where |M]|
becomes very small but not quite zero because Z(jw) is complex. Here,
there is also a rapid change in the phase as indicated in Fig. 1.5.3b.
To deal with the general case of a uniform coating (i.e. f(§) =1),
we must solve the system of equations given by (24). It is also necessary
to evaluate the integral for a,, given by (23). Both tasks have been
implemented by Flanagan [1983] and described by Flanagan and Wait
[1985] in detail. The main objective is to get a satisfactory numerical



112 1. Complex Resistivity of the Earth

20-
z
O 151
- N=t
g
> 10+
(1
(@]
2 5
2
0- 3
T 3 LI AL S L] i ¥ i 1 H L ] LA 1
3 2 A I 2 3 a4
Log lop/z |

Figure 1.5.4a The convergence of the normal-axial dipole moment for
various dimensions of the linear system involved.

solution for B, /A. To this end, (24) is truncated at a sufficiently large
value of n to simulate the infinite system. Not surprisingly, the highly
elongated case requires a larger value of n. To illustrate the point,
we choose b/a = 10 and successively increase n until there is no
appreciable change in the solution for B,/A and the corresponding
value of the normalized dipole moment M . For n = 4, the error for
|M| was less than 1% (relativeto the n = 5 case). To show the nature
of the convergence of the solution process, we plot both the amplitude
and the phase of M in Figs. 1.5.4a and 1.5.4b for this example, with
n = 1,2, and 3 relative to the n = 4 case. The vertical scale is the
percentage deviation so obtained. The convergence is very rapid. Of
course, the n = 1 case corresponds to neglecting the higher order
terms. This is akin to dealing with a confocal model where there is no
such coupling.

The values of |M| and the phase of M , are plotted in Figs. 1.5.5a
and 1.5.5b using the (non-confocal) interface impedance which does not
vary with § . These results are compared with those in Figs. 1.5.3a and
1.5.3b where f(§) is defined by (29). The general shapes and trends
in the curves are remarkably similar in spite of the physically different
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Figure 1.5.4b The convergence of the phase of the normalized axial
dipole moment for various dimensions of the linear system invelved.

models. In both cases, the phase of the interface impedance was taken
to be 0.1 radians.

g. Effective Resistivity of Disseminated Particles

We now consider a uniform distribution of spheroidal particles in
a bounded region. The objective is to determine the effective complex
resistivity of the mixture. To simplify the problem, we will make a
number of assumptions that will become clear in what follows.

As indicated in Fig. 1.5.6, we consider a spherical region of radius
R, . Within this volume there are N identical prolate spheroidal par-
ticles all aligned in the axial direction parallel to the applied electric
field E,. We assume that the particle locations are random.

At an external point P(R,§) where R > R,, we follow Maxwell
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Figure 1.5.5a The magnitude of the normalized axial dipole moment for
various spheroidicities.

[1891] and express the potential & as the total contribution of all the
induced dipoles. Thus,

M(a?b
®~ —-FE,Rcosf§+ N g; )E’oR cosf (44)
An equivalent expression is
&~ —EyRcosf+ L L RPE,R 7 cos (45)
P+ 2p.

in terms of the effective resistivity p. of the spherical volume and the
resistivity p of the background. Equating these two expressions, we
have p—p
— =M 46
P+ 2p, (46)
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Figure 1.5.5b The phase of the normalized axial dipole moment for
various spheroidicities.

where v = Na?b/R,® is the fractional volume loading of the particles
within the spherical volume. From (46), we see that

Pe 1—-ovM
Pe - 777 N1 4
> = 1120 1-~3vM (47)

Following the Maxwell prescription, we have assumed v < 1 which
justifies the superposition of the individual induced dipoles.

Equation (47) can be employed to deduce the effective complex
resistivity for axial excitation of a dissemination of aligned prolate
spheroidal particles in terms of their normalized dipole moment M .
The same reasoning applies to the case where the electric field is applied
in the direction transverse to the axes of the particles. Then, in (47), we
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Figure 1.5.6 Ensemble of spheroidal particles.

merely replace M by M which is the appropriate normalized dipole
moment for the transverse excitation.

A more sophisticated discussion of the effective medium approach
is given elsewhere [Flanagan 1983, Wait 1983, Flanagan and Wait
1985]. In the present context, alternative formulas for the effective resis-
tivity of the disseminated particles would not differ from (47) provided
v were less than about 5%.

h. Results for the Apparent Complez Resistivity

To present meaningful results for the effective or apparent complex
resistivity of the loaded medium, it is necessary to specify the interface
impedance as a function of frequency. There are many choices; here,
we will adopt a form recommended by Olhoeft [1982]. It has the form

Z(jw) = A+ B/(jw)” (48)

where v, A and B are constants to be fitted to observed data. For
a pyrite/electrolyte interface, Olhoeft found that » = 1/2, 4 =
0.9536 Qm? and B = 1.7931 Qm?(sec)~'/? were consistent with ex-
perimental data. Leaving aside the physical or electrochemical impli-
cations, we will adopt this “Warburg” model. A plot of the amplitude
and phase of Z(jw) is shown in Fig. 1.5.7.

We now show the corresponding results for the effective or appar-
ent complex resistivity p.(jw) of the disseminated model for various
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Figure 1.5.7 Interface impedance as a function of frequency for a pyrite/
electrolyte boundary according to Olhoeft [1982].

assigned parameters. We use the approximate form given by (47) for
the case of axial excitation. For transverse excitation we replace M
by M . The particle resistivity p, is assigned the value zero and the
ambient medium resistivity p is set equal to 200 Qm. The interface
impedance is the plotted in Fig. 1.5.7 as described above.

The amplitude |p./p| and the negative of the phase of p. are
plotted as a function of frequency in Figs. 1.5.8a and 1.5.8b for the
case where v = 0.05 and b/a = 5 and for four particles (i.e. a =
0.33, 1, 3.3 and 10 mm). Both axial and transverse excitations are
shown. The results illustrate that the small particles have a maximum
in the phase at higher frequencies as indicated in an early study using
a coated sphere model [Wait 1958]. This behaviour is also present in
the results computed by Wong and Strangway [1981] with their elec-
trochemical model. In Fig. 1.5.8a, we can also note that |p./p| changes
most rapidly at frequencies near where the phase shift is maximum.

In Figs. 1.5.9a and 1.5.9b, we show the influence of the spheroidic-
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Figure 1.5.8a The magnitudes of the effective axial and transverse re-
sistivities for various particle sizes.

ity ratio b/a on the frequency response curves using the same format
as the curves in Figs. 1.5.8a and 1.5.8b. The axial and transverse ex-
citations are designated by A and T, respectively. For the curves in
Figs. 1.5.8a and 1.5.8b, a = 1.0 mm and v = 0.05. Clearly, the elon-
gated particles have an enhanced IP response for axial excitation but
the response for purely transverse excitation is only slightly dependent
on b/a. In fact, it can be shown that for b/a greater than about 5,
the response would be the same as a grating of infinitely long cylinders
with the same diameter as the minor axis of the elongated spheroidal
particles and with the same volume loading. We might add that the
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Figure 1.5.8b The phase-shifts of the effective axial and transverse re-
sistivities for various particle sizes.

case designated b/a = 1.1 is essentially the same as a spherical particle
insofar as the plots are concerned.

Finally, in Figs. 1.5.10a and 1.5.10b, we illustrate the dependence
on volume loading v again using the same format as in Figs. 1.5.8a
and 1.5.8b. In this case, v varies from 0.01 to 0.2 (i.e. 1 to 20% )-
The fixed parameters are a = 1 mm and b/a = 5. As indicated in
the phase response, there is almost a linear increase with the volume
loading v over this range. According to our simple adaptation of the
Mazxwell loading law, such a behavior is not surprising. For v greater
than 0.05, the simple form given by (47) is in error. As discussed by
Flanagan and Wait [1985], a modified mixture formula such as the
Brueggman-Hanai form should be preferred but the differences in the



120

1. Complex Resistivity of the Earth

1.2-
T
10

09 A

0.8

or{ B:i0

(073
T

(N

1.0
-3

2 1 01 2 3
Log f(Hz)

Figure 1.5.9a The magnitudes of the effective axial and transverse re- -
sistivities for particles of various spheroidicities.

plots in Figs. 1.5.10a and 1.5.10b, even for v = 0.20, would not be

significant.

Final Remarks

There are many similarities between our results and those of Wong
and Strangway [1981]. In their electrochemical model, an interface
impedance descriptor was not used. They dealt explicitly with the ac-
tive cations which reacted at the metal interface to yield a net charge
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Figure 1.5.9b The phase-shifts of the effective axial and transverse re-
sistivities for particles of various spheroidicities.

transfer. They also needed to solve the coupled time-dependent wave
equation to describe the concentration perturbations of both the active
and the inactive ions. They neglected the coupling of higher modes for
the perturbation solutions. It is difficult to see how this step is justified
although the qualitative behavior of the results should not be changed
appreciably for the slightly elongated particles. Of course the coupling
disappears in the spherical limit [Wong 1979]. But any serious attempt
to model elongated particles should address the question of mode cou-
pling which becomes most significant when the particle becomes highly
elongated such as a needle. In our interface impedance model, we have
attempted to show how to cope with this problem by dealing with the
coupled equation set for the modal coefficients.
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Figure 1.5.10a The magnitudes of the effective axial and transverse
resistivities for various volume loadings.

Our results are limited by the assumption that the electrochemical
processes can be modelled by an interface impedance. When the radius
of curvature of the particle becomes small, such a descriptor will clearly
be in doubt. In this case, the local current density at the tips of the
particle may be high enough to cause non-linearities in the response.
Of course, this limitation also appears in the so called electrochemical
formulations.
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1.6 Response of Disperse Systems for Simple Particles

a. Introduction

A common feature of geologic media is the lumpy nature of the
structure. Thus, at least in an idealized sense, we can represent such
a region as a homogeneous host with various kinds of suspended par-
ticles. Central to this viewpoint is the characterization of the electro-
magnetic response of a single particle when it is placed in a uniform
field. Also it is appropriate to allow for any boundary layer effects at
the interface between the host and the particle. To treat this problem
fully, we should really build in the requisite electrochemistry to prop-
erly describe the ionic reactions and the transfer of charges across the
interface. This aspect of the problem is described in a separate chapter.
Here, we argue that the interface can be characterized, at least in a
phenomenological sense, by a surface admittance and/or an interface
impedance. The meaning of this statement should become clear as we
proceed.

b. Formulation

We begin with a very simple model of a solid conducting spherical
particle of radius a and of resistivity p, immersed in a homogeneous
host medium of resistivity p. To allow for a possible discontinuity of
potential across the surface of the particle, we endow it with an inter-
face impedance Z(jw) that may be frequency dependent. The applied
or primary field E, is uniform and directed along the polar axis of a
spherical coordinate system (r,0) centered at the particle. The time
factor is exp(jwt) and the frequency is sufficiently low that Laplace’s
equation governs the fields both inside and outside the particle.

The imposed condition at the boundary » = a amounts to saying
that voltage drop v = ZJ, where J, is the radial current density.
It is understood that Z is both complex and frequency dependent.
However, we will avoid non-linear effects and say that Z does not
depend on J, .

c. Potential Theory Solutions (Spherical Model)
Suitable forms for the potentials are

¥, = Aorcosf for O0O<r<a (1)
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and
¥ = —Eorcosf + Ar~?cosf for r>a (2)

Here A; and A are constants to be determined from the boundary
conditions. It is evident that ¥ = —FEyrcosf if p=p,.
Continuity of radial current density requires that

108 _10%

mw_p 5 for r=a (3)

Also the required potential discontinuity means that

Z 0%
TI_W—;E'_ for r=a (4)

Applying (3) and (4) to (1) and (2) leads immediately to the solution

_ —3E0P1
°7 2p, +p +(22/a) 5)
and
_ s P—P1— (Z/a)
A=Bo ot (2Z/a) (6)

Thus, for the case r» > a, we can write

¥ = —Eyrcosd + a®Eoxor 2 cosf (7)
where
p=po—(Z/a)
= 8
X0 = 20+ p + (22]a) (®)

In the case where the double layer is absent, we have Z = 0 and
the solution reduces to the case where the potential is continuous across
the boundary.

The solution given above for the sphere with the interface
impedance property is really a special case of that given in the preced-
ing chapter for the spheroid model. In the spherical limit the higher
order multipoles are zero.

A slightly more complicated case is to allow the normal current
to be discontinuous at the boundary. As a consequence, the tangential
electric field just inside the boundary will drive a surface current that
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is proportional to the surface admittance Y (jw). Now the boundary
condition given in (3) is to be replaced by

10% Y 8 [ ,0%, _}__2‘?_]
;;5;-+ a Or (r or )Jr:a—-O - P1 or r=a+0 (9)

and (4) is written in a slightly amended form

#

Z 0%
v -v-22% (10
' r=a-0 P Br r=a+40 )

For this double shell model, we can write the exterior potential in
the form

3
¥ = —Eorcosf + - E;ox cos @ (11)
r
where
1-6
X=1+2 (12)
with
(1/p) z
b= +— 13
Wr) + (2¥7a) T pa (13)

Here x can be identified as the normalized induced dipole of the par-
ticle. If Y — 0, we recover the solution given by (7) and (8).

The mathematics of the double shell model has been discussed
in more detail elsewhere [Wait 1985). Physically, at zero frequency, the
situation corresponds to a solid core of radius a encased by a thin con-
ductive shell which, in turn, is covered by a thin resistive coating. For
non-zero frequency, the displacement currents or similar phase shifted
currents cause both ¥ and Z to be complex. Thus x is complex
in general. The electrochemical theorists [e.g. Wong 1979, Chew and
Sen 1982] obtain representations for x involving interactions within
the double layer. As we have already indicated, x, at least in a phe-
nomenological sense, is a characteristic of the particle and its surface
layers. Similar suggestions were put forth by Schwan et al. [1962] and
Schwartz [1962] who may not have been aware of earlier work by the
author and his colleagues [Wait et al. 1956, Wait 1958].
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Figure 1.6.1 Basic spherical model as characterized by an interface
impedance and/or admittance.

d. Cylindrical Rod Model

While it may seem artificial, another useful model is an infinitely
long circular cylinder of radius b which has a resistivity p; . The host
medium is homogeneous with resistivity p. The cylinder is oriented
with its axis at right angle to the applied primary field E,. We can
still refer to Fig. 1.6.1 if this is viewed as a cross section. Again the
surface of the particleis characterized by an interface impedance Z(jw)
and a surface admittance Y (jw) which, in general, are both complex
and frequency dependent.

We now employ cylindrical coordinates (r,8) not to be confused
with the spherical coordinates used above. The appropriate forms for
the potentials are now

¥, = Borcosl for 0<r<a (14)
and
¥ = —Eorcosf@+Br~lcos§ for r>a (15)

Here B, and B are constants to be determined. The boundary con-
ditions, in analogy to the spherical counterpart, are now written

10%, Y 8 (8%, _10¥
P1 or + a ra (r or )]r:n—o - 1 ar]"‘=¢+° (16)

and
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z 0¥
¥ —v-Z -—] an
1] r=a-0 P or r=a+0

which, apart from the term involving Y, have the same form as (9)
and (10). Using the obtained value for B, we can write (for r > a)

¥ = —Eyrcosf + Ega’r~xcosf (18)
where 5
1-—
5 9 1
X=1Ts (19)
with
(1/p) Z

@)+ (¥/a) | pa (20)
This solution for the cylindrical model is almost the same for the
spherical model (i.e. compare (18), (19), and (20) with (11), (12), and
(13) respectively). An independent justification for the boundary con-
ditions (16) and (17), for the cylindrical model, is given in the Ap-
pendix.

e. Ensemble of Spherical Particles

To deal with an ensemble of basic particles, it is desirable to ignore
the interaction between the particles. At least, such an idealization
is a first step as we have indicated in the preceding section. Thus,
we consider the configuration shown in Fig. 1.6.2 where N spherical
particles of the same radius a are contained within a spherical volume
of radius 7. The resistivity of the host region both inside and outside
the spherical volume is p. A uniform field E, is applied in the axial
direction.

We now follow the original concept put forth by Maxwell that we
have alluded to in the preceding section. We begin by writing down an
expression for the total potential P at (r,8) as a superposition of the
potentials of each of the particles. Neglecting the interaction between
the particles, we have

Y., Eoa®
¥ = —Eyrcosf + E —-i:—x- cos 6; (21)

1

where the spherical coordinate system (r;,8;) is chosen for the ith
particle with its polar axis (i.e. 6; = 0) aligned with the applied field.
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Figure 1.6.2 Ensemble of identical spherical particles enclosed in a spher-
ical volume.

At a sufficiently large distance such that r > ry, we can argue that
r; and 6; in (21) can be replaced by r and @, respectively. Within
this approximation

Na?

¥ ~ —Eorcosf + X Eycos 6 (22)

7.2

Then, if we regard the spherical region of radius ro as a continuum
with an effective resistivity p. , we write

- PP |
$¥ = —Egrcosf + R 2peEoc059 (23)

We now equate the right hand sides of (22) and (23) to give

P Pe

24
P+ 2p. (24)

vx =
where v = Na3/r} is the volume of particles per cubic meter; v is
called the fractional volume loading. From (24), we deduce the impor-

tant result 1— vy

Pe —-v

Lo . 27742 9

p 14 2vx (25)
which is a generalization of Maxwell’s formula. The limitation is that
the volume loading v is small compared with 1 but there is no re-

striction on the particle’s properties. In the following section, we review
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various attempts to extend the theory to allow for higher volume load-
ing.

) It is useful to outline the corresponding solution for a cylindrical
volume of radius r, loaded with N cylindrical rods of radius a. The
sketch shown in Fig. 1.6.2 is still applicable if we view this as the cross
section of the cylindrical model. The applied electric field E, is taken
here to be transverse or perpendicular to the axes of the cylindrical
rods. We employ the same procedure as used for the spherical model
with essentially the same assumptions. Then, we deduce that the ap-
parent resistivity normalized by the homogeneous host resistivity is
given by

pe _ 1-vx

P l4vx
where now v = Na?/r? which again can be identified as the fractional
volume loading. In this case, x is defined by (20) as appropriate for
the cylindrical geometry.

(26)

f. Eztension to Cole-Cole Form

It is interesting to note that the derived formulas, for both the
spherical and cylindrical models, yield expressions for the complex re-
sistivity which are reducible to the Cole-Cole form. To explain what
we mean by this statement, we will write (25) for the spherical model
in the simplified form

pe _ 1-vx
> = 1T 2oy 1 - 3vx (27)
which is justified because v < 1. We also note that
1-46 3 1
=——=1-c— 28
After a little algebra, we see that
P 2 2 1+ (26)

The Cole-Cole form for the complex resistivity, as discussed in
section 1.2, is written

. _ 1
Pe(]"’)—l’o{l mo[l T Ger (jw)k]} (30)
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where po = p.(0) is the DC or zero-frequency apparent resistivity.
By inspection, it is clear that (29) and (30) can be made equivalent
if we set

0=1+ 30 (31)
_9p, _9 1 9
T S e 21+ (3v/2) ~ 2° (32)
and
(jwr)* = (26) (33)

The chargeability m, as obtained here is consistent with the simple

relation o (0) = pe(c0)
Pe(o) (34)

To discuss the fractional frequency term, we first specialize the
particle to a perfectly conducting core (i.e. p; =0 or y = 0o ). Then,
in accordance with (13), § = Z(jw)/pa and thus

2(jw) = L2

R
(jwr)
In other words, the interface impedance is proportional to ( jw)‘k . As
we discuss elsewhere, this is a realistic approximation to the behavior
at an interface between a metal and an electrolyte where k could vary

from say 0.2 to 0.4. If the interface impedance as measured fits the
law

(35)

Z(jw) =

(36)
(jw )

where ap and k are adjusted constants, we deduce from (35) that the

corresponding time constant 7 is given by

pa 1/k
= | = 3
7 (2%) (37)
This tells us that r is proportional to (particle radius)ll * where the
power 1/k is typically in the range from 2 to 5.

Jumping now to the cylindrical model we would write, in place of
(29), that

. 1
%21+2v—4v{1~1+6~1] (38)
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This representation is the same as the Cole-Cole form if in (30) we set

po=1+2v (39)
mo = 4v(1+ 2v)™! ~ 4y (40)

and
(Gwr)t =671 (41)

Here a?/r? is the fractional volume loading of the cylindrical rods and
§ is defined by (20). The remarks made above for the spherical model
are unchanged for the cylindrical model but we need replace 2 in (35)
and (37) by 1.

It is tempting to argue that, for the more general case, the replace-
ment of § by a fractional frequency dependence [i.e. propottional to
( jw)"k} is a reasonable supposition. In fact, if we are dealing with an
insulating particle, then p; — oo and the (:01'1'espondin§= assumption
is that surface admittance Y is now proportional to (jw) . Some sup-
port for this contention is found in a study by Olhoeft [1985] who found
that the empirical law, time constant = (radius)’/3.4 X 10~® sec., fit-
ted the experimental data for diffusion-limited processes for particle
radii varying from 10~° to 10~! m. In this case, the effective value of
the dispersion index k is 1/2.

In the next section, we consider further generalizations of this par-
ticle model and take up again the question of non-spherical particles.
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1.7 Generalizations of the Spheroidal Model

a. Problem Statement

In discussing the response of an ensemble of coated particles, we
have assumed spherical geometry. It is useful to indicate how the for-
mulation can be extended to spheroidal shaped particles. Here, we
restrict attention to small volume loadings. Our approach is based on
the Maxwell/Wagner technique of enclosing the particles in a closed
volume and then deducing the macroscopic or complex resistivity of
the ensemble. An important question is how we choose the geometry
of the reference volume. This point does not seem to have been ad-
dressed by previous workers, e.g. van Beek’s [1967] extensive review.
We present a relevant analysis here without making any claim about
whether the last word on the subject has been said.

The situation is illustrated in Fig. 1.7.1. An ensemble of N identi-
cal spheroidal particles of resistivity p, are enclosed in a spheroidally
shaped volume whose macroscopic or effective resistivity p. is to be
determined. As indicated in the inset, the basic particle has semi-minor
axis a and semi-major axis b. The surface of the particle has an in-
terface impedance Z;,. The reference volume has a semi-minor axis a.
and a semi-major axis b, . The major axes of both the particle spheroid
and the reference spheroid are taken to be parallel to each other and
to the applied electric field E,. To facilitate the analysis, we choose
the confocal model for the interface impedance [Wait, 1983a].

The total potential at an external point P for the sparse distri-
bution of particles is given approximately by

N
¥ =~ —E,Rcos 0 + Eya’bM E % cos 6; (1)
i=1 "t

where M is a normalized dipole moment of the basic i th particle. Here
R; and 6; are the appropriate spherical coordinates for the individual
ith particle. In writing (1), we have assumed that R; > a and b.
The next step now is to write down the corresponding expression for
the potential at the point P where we regard the spheroidal reference
volume, with its enclosed particles, to be an equivalent uniform medium
with complex resistivity p.. Thus

¥ = —EoRcos 6 + Eoalb M, 1—;; cos 0 (2)
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o)

Figure 1.7.1 Ensemble of prolate spheroidal particles within a prolate
spheroidal reference volume.

where R is assumed to be large compared with a, and b, and where
M, is the effective dipole moment of the volume. In accord with this
restriction on R, we can replace R; and 6, by R and 8, respec-
tively. Then, we follow the Maxwell/Wagner prescription and equate
the righthand sides of (1) and (2) to yield the deceptively simple ex-
pression to determine M,

M,=vM (3)

where v = Na?b/(a2b) is the fractional volume loading of the particles
contained within the reference spheroid.

b. Modified Effective Medium Approach

We now call upon the potential theory solution [Wait 1983 for the
dipole moment M for an isolated particle of prolate spheroidal form
with an interface impedance under the influence of a uniform applied
electric field E,. The appropriate form is

- 1-(2+p1/p)
M= M [1 -(Q+ pl/p)(Moo/MO)] *)

Here M, is the normalized dipole moment for a perfectly conduct-
ing spheroidal particle (with axes a and b) without any coating (i.e.
Z5 =0). On the other hand, M, is the normalized dipole moment of
the corresponding spheroidal particle which is perfectly insulating (i.e.
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Zo = o© ). The dimensionless interface parameter 2 is defined by

_ Zo
- L

where Z, is the actual interface impedance at the waist of the spheroid.
In analogy, we have the following expression for the dipole moment
parameter for the volume

— 1- (pe/P)
Me = Moo 100 T7) (Muon [ 3020) )

We now combine (3), (4), and (5) to write

P = pe 1-(2+p/p)
—_— M, = vM, 6
P+ a.p. Y 1+(Q+P1/P)a ( )

where a = —M,, /M, and a, = —M,,,/M,. It is also useful to note
that M, = (14+ a)/3 and M., = (1+c.)/3. In principle, (6) can be
employed to deduce the apparent complex resistivity p.(jw) in terms
of the geometrical parameters and the specified interface impedance
function Zy(jw).

While we have been talking about prolate spheroidal particles (i.e.
a < b), the theory is directly applicable to oblate spheroidal particles
(i.e. @ > b). The results are also applicable to transverse field excita-
tion where the M ’s are then replaced by the appropriate M functions
[Wait 1982, 1983a).

To help understand the problem, we show plots of the normalized
dipole moment functions in Fig. 1.7.2. Complete expressions for these
functions are given elsewhere [Wait 1982, 1983a]. Here, we just indicate
the limiting behavior as follows :

For b> a (i.e. needle like particles),

M. ~ b/a)’
= 31111'223;‘ —1] longitudinal excitation

Mo o~ —'1/3

} transverse excitation
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Figure 1.7.2 Normalized dipole moments for perfectly conducting and in-
sulated spheroidal particles for axial and transverse excitations as a func-
tion of the ratio of the semi-major axis b to the semi-minor axis a. Prolate
spheroidal particles corresponds to b/a > 1 while oblate spheroidal par-
ticles corresponds to b/a < 1.

For b/a=1 (i.e. spherical particles),
Mo=1 and My=-1/2
For a>» b (i.e. disc particles),

My ~1/3 e s e
longitudinal excitation

Mo g —20/(3#6)

M, ~ 4a/(37b) .

o transverse excitation

Mo i —'1/3

In the case of the spherical limit for both the particle shape and
the reference volume, it is clear that M = M, =1 and a = a, = 2.
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Then (6) reduces to

pP—pe _ 1—(+p/p)
=v (7
P+20. 1+2(Q+p1/p)
where
Q=2
s pa

in terms of the particle radius a and the interface impedance Z,(jw)
which is constant over the spherical surface. Equation (7) is the form
given by Wait [1958]. If Z, — 0, we have

P — Pe P— P
=92 8
pt2p. p+2p ®)

which is the famous Maxwell [1891] result.

c. Choice of Reference Volume

In dealing with non-spherical particles, it is necessary to return to
(6). One obvious simplification is to allow both the particle and refer-
ence spheroids to have the same spheroidicity. That is b/a = b./a, .
Then (6) reduces to

p=pe _ 1-(R+p/p) 9)
ptap. 1+a(Q+pi/p)

where o = —M /My = —M,/M.o. When Z; =0 or Q =0, (9)
reduces to

P~ Pe =vp_p1 (10)
p+ap. p+ap
which is often found in the literature [e.g. van Beek 1967, Sen 1981,
Fricke 1924, 1953, Sillars 1937]. Here we might note that o = —14L"!
where L is the depolarization factor commonly employed.

Another possibility is to choose the reference volume to be spher-
ical even when dealing with elongated particles. This assumption was
adopted by Wong and Strangway [1981] and Wait [1982]. Further dis-
cussion on the choice of the reference spheroid and other generaliza-
tions are to be found in Flanagan [1983], Wait [1983a] and Flanagan
and Wait [1985]. An obvious consideration is whether the mean separa-
tion of the aligned particles are the same or different in the longitudinal
and the transverse directions. The general question is still unresolved.
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d. Deduced Frequency Dependence

It is useful to examine the general form given by (6) to see if we
can draw some general conclusions about the frequency dependence of
the observed conductivity in terms of the specified interface impedance
Zo(jw) . In particular, we would like to see how the empirical Cole-Cole
form [e.g. see Pelton 1977] might be related to this effective medium
formulation.

We can easily solve (9) directly for p.(jw). If we just retain terms
in first order of v, it follows quite readily that

pe(jw) = p [""(”“‘) (11+_a% )}

~ (1-9.)
p[ -v(1+a)(1+ Q)} (11)

where
Q=0+
P

We note that by simple algebra

1-0 1 1
S=1-{14—-) — 12
1+ aQ, ('+a)1+@nJ4 (12)
Thus (10) can be cast in the form
() = pof{1=mo [1- — L[} (13)
Pe\JW) = Po 0 1t (aQ,)—l
where
14+a, My 3M,
o= 1+ 55 ] <[4 Hm)
:p[1+1+“v] (14)
and
2
mo= £ QFa)lte) My _p(Ata)
Po a M po «

We now follow previous workers and direct our attention to metallic
particles located in an electrolytic host medium. Then p;/p € 1 and
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furthermore we assume that the frequency dependence of the interface
impedance is characterized by

Zo(jw) = (16)

bo

Y
(o)
where 8, is a constant and where k is an exponent typically in the

range from 1/4 to 1. We can set

7

1 1 .
o ~ 0= (]w'r)" (17)

where T is time constant (in seconds). In fact we see that

=@ @

which follows from (5). By using (17), it is evident that (13) becomes

i) = po |1 —my[1- — 2
pe(]w) = Po [1 (d (1 1+ (jw'r)k)] (19)

which has precisely the Cole-Cole form as promulgated by Pelton
[1977]. We may identify p, as the zero frequency or DC response
and mg is called the “chargeability factor”. In fact we may confirm

that ) (c0)
_ pe(0) = pe(o0
TS T R(0) (20)

which is consistent with conventional definitions, at least for small
values of mq, (i.e. mpor v < 1).

It is interesting to note that much of the experimental data on in-
duced polarization in rock/mineral environments shows that k ~ 1/2
as evidenced by the fact that 7 varies as the mean particle size [Ol-
hoeft 1981]. This factual statement lends some support for the Warburg
diffusion process at metal/electrolyte interfaces.

e. Eztension to Asymmetrical Ezcitation

In our previous discussion we have selected identical spheroidal
particles with their axes of symmetry parallel to the applied field. It



142 1. Complex Resistivity of the Earth

is a simple matter to extend the formulation to the case when the
applied field is transverse or perpendicular to the axes of symmetry of
the particles. As we indicated above, we merely replace the functions
M, and a, by M, and @, in (6). The formula now gives the apparent
resistivity p, in the transverse direction. Another interesting extension
is when we are dealing with a random orientation of the particles. Then,
the medium is isotropic at least in a macroscopic sense. In this case,
we have

(b= p)(1ta) o
P+ aep. —5(1 * a) [

1-(Q+pi/p) ]

1+ (2 + p1/p)e
1-(Q+pi/p) ]

1+(Q+ p/p)a

+ e (21)
where a, is the polarizability coefficient for the reference spheroid
while @ and @ are the polarizability coefficients for the longitudinal
and transverse excitations of the particles respectively. In this situa-
tion, we should probably select the reference spheroid to be a sphere
in which case a, = 2. When the coating parameter § is set equal to
zero, (21) agrees with Fricke [1953].

The extension of the mixture formulas, to the case where the load-
ing parameter v is not small, is not simple. A sizeable literature on this
topic exists at least for particles of spherical shape [e.g. Bruggeman
1931 and Hanai 1968]. Also uncoated spheroidal particles have been
given some attention even for fractional volume loadings approach-
ing unity [e.g. Sen 1981 and Wait 1983b]. Here we indicate how this
so called Bruggeman-Hanai approach can be applied to the coated
spheroid model.

We begin with (6) which is written in equivalent form as

A, - A Ar—-A

LA, —(Lo—-DA  "IA - (L-1DA (22)

where the newly defined admittance functions are defined as follows

1l e L%
= p, = P K=t

and where the often used depolarization factors are defined by

L.=1/(1+a) and L=1/(1+a)



1.7 Generalizations of the Spheroidal Model 143
1O 1

0 T T T T TTTTT
0.05 01 02 05
b /o

Figure 1.7.3 The axial (L) and the transverse (L) depolarization factors.
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Plots of L and L (for transverse excitation) are shown in Fig. 1.7.3.

In (22), we can set v = 1—¢ in terms of the porosity ¢ whichis 1
if the particles are absent. We now point out that (11) can be applied
in a sequence of small steps to handle any value of v or ¢. At least
that is the claim following the original proposal of Bruggeman [1931].
We return to (22) and we argue that, as a result of filling the composite
with grains to the intermediate concentration 1 — ¢, a medium with
effective admittivity is obtained. We now augment every unit volume of
this intermediate medium with a small volume du of spheroids (with
the same common eccentricity and alignment) having an admittivity
A;. Then, according to (22), we can assert that the corresponding
increment of effective admittivity is

dA. A —A,
A, LA, - (L-1)A,

du (23)

which is independent of the parameter L. for the reference spheroid.

Now some of the augmented grains of volume vdu have actually
replaced grains already present. Thus, the resultant increment dv is
related to du by the equation

dv = (1-v)du
or
4 _

p —du (24)
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Using (24), we can write (22) in the form

LA, —(L—-1)A. ] dA. _ d¢
[ a9 (25)
This can be arranged to
L 1 1
X’:dAe -+ "“““"Al — A;dAe + gd¢ =0 (26)
which is equivalent to
dl,, 1 ‘
d¢ [A‘ A - AI] =0 (31)

The solution of this differential equation is trivial if we use the initial
condition that A, = A when ¢ =1 (or v = 0). Then, we obtain the

interesting result .
A, A-A _
(%) (=) e=1 28

This formula reduces to the classic formula first derived by Bruggeman
[1931] for spherical particles with no interface impedance (i.e. L =
1/3 and Z; = 0). There is now convincing experimental data [e.g.
Hanai 1968 and Sen 1981] that the Bruggeman formula, at least for
spherical particles or occlusions, is more accurate than the Maxwell-
Wagner forms at larger values of v or 1 — ¢. But the jury is still
out on this question and doubts concerning the iterations of the first
order formulation to higher volume loadings are without any rigorous
foundation.

As we have indicated, (28) satisfies the initial condition A, = A
for ¢ = 1 corresponding to the absence of grains or particles. It is
interesting to note that, in the limit ¢ — 0, we have A, — A or
p. — p1 in the case of uncoated particles. This limit is highly artificial
because the particles would fill all the space and the dipole induced
moment concept, for individual particles, would obviously break down.
Nevertheless, the trend of this limit does instill some confidence in the
usefulness of the Bruggeman/Hanai type formulas for dense packing of
the particles (i.e. low porosity).
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f. Sen’s Geometrical Model

We have tried to be fairly general in our discussion of the mix-
ture or effective medium concept. Both particle shape and interface
impedance properties can be included via our definitions of the ad-
mittivity concept. However, it is useful to digress here and consider
just the influence of particle shape following up some of the cogent
comments of Sen [1981]. Thus we dispense with electrochemical char-
acteristics and just focus on the geometrical effects. To this end, we will
consider the particles or occlusions as being pure dielectrics character-
ized by a permittivity €, .In (28), A; = je;w where we have already
noted that Z, = 0. We also assume that the suspending medium is
effectively brine with a real conductivity A = ¢ (i.e. 0 < ew). For
L=1/(1+ a), (28) can be written

l1+a 1+
A, 1-(jaw/a)]  a _
(%) 5= Gew/A.) =4 @ (28)
We further argue that €w/o and € w/A, will be small. To first

order,A, ~ g, + je.w where the effective (real) conductivity is given
by

1+a
o, =~ a(¢)T (30)
and the effective (real) permittivity is
l1+a
e,:lzael 1-¢ a (31)

We note here that (28) has the same form as Archie’s law written
as 0, = 0¢™ where m = (1 + a)/a in our notation. For spheres, we
have m = 3/2 which indicates that o, = 0¢*?, a form that has been
verified experimentally by Sen, Scala, and Cohen [1981] for polystyrene
glass beads in a salt solution. In actual porous media in a geological
setting, the observed value of m, called the cementation index, may
vary from 1.5 for loosely compacted rocks to 2.5 or hlgher for tight
material [Sumner 1976]). We can also write m = (1 — L)™' where L
is the depolarization coefficient. For disc shaped occlusions, L =~ 1
and m becomes very large. For example, if b/a < 1, m =~ 2a/wb
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which leads to a strong dependence on porosity when the current flow
is perpendicular to the axis of such pancake-shaped dielectric particles
even when their volume is relatively small.

The effective permittivity e, as given by (31) for disc particles
with their axes parallel to the field, is given by

€ ~ %el (1 - ¢_5) (32)

The relative dielectric constant €./e¢;, can be very large if a/b >
1 (i.e. very thin discs) even for moderately large values the porosity
¢. In this case, the discs are acting as small condensors with very -
high capacitance. This phenomena is related, of course, to the classical
Maxwell-Wagner effect in the context of planar layered media [van
Beek 1967).

When we deal with transverse excitation of the aligned spheroids,
wereplace L by L or a by @. For needle like particles (i.e. b/a > 1),
we see that @ = 1 so that the cementation index m ~ 2. In the case
of discs, @~ 4a/xb> 1 for m~1.

Another possibility is that we work with (21) corresponding to
randomly oriented particles. The resulting differential equation for the
effective isotropic conductivity is then found to be

_d¢ 1 2
dhe = =35 - A [1 I —A)/A T T I - A,)/A,(]
33

An analogous equation was derived by Veinberg [1967] for magnetic
systems such as a ferromagnetic powder cemented with non-magnetic
material. Following Veinberg, we may integrate (33) with the initial
condition that A, - A as ¢ — 1 but the result is complicated. A
simple limiting case is when the occlusions are pure insulators such
that A; ~ 0 (which is only strictly possible at DC'). In this case, (33)

reduces to d¢ 1 0
dA, ~ _— 34
36 ( 1o L) 39
The solution now reads
A, = A¢M (35)

where
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2(l+a 14+a 1 1 2 )
=2 =l + —== 36
M 3(2a+ E) 3(1—L+1-—L (36)
In terms of resistivities,
pe = pp~M (37)

which again has the same form as Archie’s empirically derived law
mentioned above.

As expected, M reduces to 3/2 for spherical cavities or occlu-
sions. For needle-shaped cavities &« — o0 and @ — 1 whence M ~
5/3 = 1.66.... For disc-shaped cavities, a ~ 7b/2a and @ ~ 4a/7b
in which case M =~ (1/3)(2a/xb) can be very large in spite of the
weighting factor 1/3.
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1.8 The Electrochemical Perspective

a. Introduction

The actual processes of electrical polarization are found to occur
at the microscopic level in the electrolyte filled pores at the grain and
pore interfaces. On a macroscopic level, the complex resistivity effect
is a consequence of these polarization effects. The frequency disper-
sive charge separation effects at the grain interfaces can be included
explicitly in the model by undertaking a rigorous analysis of the elec-
trochemistry of the metal grain interface such as propounded by Wong
[1979] who employed a spherical model of the ore particle. The analysis
was extended to spheroidal shaped particles by Wong and Strangway
[1981] which allows rock texture into the model. Sometime earlier [Wait
1958, 1959] *, the electrochemistry at the metal-electrolyte interface
was described phenomenologically by an interface impedance with any
desired frequency dependence. Such an approach was also employed
by Komarov [1972]. More recently, the electrochemical charge separa-
tion effects around small resistive spheres was treated by Chew and
Sen [1982]. They assumed that the diffuse double layer is given by the
Boltzmann distribution in terms of the potential following the Guoy-
Chapman theory. Chew and Sen obtain analytical results in the limit
that the double layer thickness is small compared with the radius of
the particle. Their results are highly relevant to the important question
of the huge dielectric enhancements observed in clay bearing geological
materials.

Common to all of the microscopic theories, the induced electric
dipoles in the elemental particles are superimposed to deduce an effec-
tive complex conductivity or permittivity of the assemblage. Attempts
to generalize such theories to dense packing of the basic particles lead
to fundamental difficulties. But some interesting and ingenious sugges-
tions have been made to extend the validity of the mixture formulas
beyond the sparse loading idealization. (e.g. see discussions in sections
1.4, 1.5 and 1.6)

Here, we review some of the basic electrochemical concepts which
hopefully provide needed insight into the underlying mechanisms. Also,
we wish to provide a justification for the phenomenological model
which represents the boundary region adjacent to the particle as an in-

* see Section 1.4 references.
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terface impedance or surface admittance or some combination thereof,

b. Classical Diffusion Concept

Basically, an electrolytic solution is a mixture of positively charged
cations and negatively charged anions. Normally, the solution is re-
garded as being in equilibrium where the net charge density ¢ is zero.
Thus,

g=ep—en=10 (1)

where p and n are the densities of the anions and cations, respectively,
while e is the unit electrical charge. Now a net movement of charged
ions (i.e. current flow) will occur when an electrical field E is applied
or when the ionic concentrations p and n are perturbed. Thus, the
respective cationic and anionic flux densities are

J, = ~DVp+ upE 2)
and

Jo=-DVn — punE (3)

where D is the diffusivity coefficient and u is the electrical mobility.
Clearly, the second terms on the R.H.S. of (2) and (3) describe the
migration of the ions under the effect of the electric field. On the other
hand, the first terms on the R.H.S. of (2) and (3) describe the diffusion
of the ions under a concentration perturbation. For a uniform external
field applied to an electrolyte initially at equilibrium, the charge flow
is described exclusively by the migration term since there is no initial
concentration gradient.
Now, according to the divergence theorem

— _ap
V'Jp—a (4)
and
- on
V.J”_E (5)

Thus, the accumulation of charge with time are described by

8. —
a—f = DV?p— uV - (pE) (6)

and
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% = DV?n 4 uV - (nE) (7
where V2 = V .V is the Laplacian operator. In what follows, we
also assume that E = —VV when V is a potential. Actually, (2)
and (3) are Fick’s first law while (6) and (7) are Fick’s second law
[Bockris and Reddy, 1973]. Here, we have assumed single valence ionic
species. Of course, if the divergence terms on the R.H.S. at (6) and
(7) are ignored, we have the simple diffusion equation for p and n.
This is a good approximation when the ion concentration gradients are
sufficiently small.

In actual rock-electrolyte systems, the gradient of the charge den-
sities may be large near interfaces when an electric field is applied.
In fact, charge separation may occur spontaneously in the electrolytic
pore fluid. When the external field is removed, the charge accumu-
lation may discharge in a manner roughly akin to a charged capac-
itor. This particular process is known as the Maxwell-Wagner effect
[Hasted 1973]. The relaxation is very rapid except in special cases of
thin pancake shaped occlusions which exhibit high effective internal
capacitances [Sen 1981].

c. Chew and Sen’s Model *

In the frequency range of interest (0.01 — 1000 Hz), it has been
observed that small resistive particles such as clays occurring in sizes
of the order of 107®m in diameter do indeed give a large dielectric
enhancement. As indicated by Chew and Sen [1982], the surface con-
duction around the periphery of the resistive or insulating particle can
lead to a major dielectric enhancement. In their electrochemical model,
the frequency dependence of the conduction or admittance layer is a
consequence of their theory rather than an “ad hoc” supposition.

In the case where the basic particles are metallic ore grains, there
are species of ions present in the electrolyte which produce a redox
reaction across the given interface during the charging and discharg-
ing process. This redox reaction constitutes a leakage current that in
effect shunts the equivalent capacitance of the interfacial charge sepa-
ration. Thus, the rate or time constant of the discharge of the induced

* W.C. Chew and P. N. Sen, “Dielectric enhancement due to electro-
chemical double layer ; thin double layer approximation,” Jour. Chem.
Phys., 77, 4683-4692, 1982.
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dipole is no longer controlled by this capacitance of the interface as it
would be in the Maxwell-Wagner model. Instead, it becomes a com-
plicated function of the diffusion rate of the reactive ionic species in
the neighborhood of the grain and of the rate of the associated redox
reaction.

d. Butler-Volmer Equation

Here, we will look at the charge transfer mechanism at a metal/
electrolyte boundary. The ore mineral grain will be modeled as a metal-
lic conducting particle while the rock matrix is described as an elec-
trolyte by virtue of the conduction in the fluid field pores. As indi-
cated by Angoran and Madden [1977], only Cu*t and S~~ ions have
measurable activity in copper/iron sulfide ore systems. Thus, it seems
reasonable to use a model of a single active species electrolyte for the
rock pore fluid.

Actually, for a metal particle immersed in such a system, there will
be a continuous charge transfer across the interface occurring even at
equilibrium conditions. The redistribution of charge on the electrolyte
side of the interface sets up a plane of charge a short distance away.
A corresponding plane of image charges then appears in the conductor
with equal and opposite polarity. The resultant structure is referred to
as the “double layer” and it is depicted in Fig. 1.8.1a. The quantity
Ag,. is the equilibrium potential associated with the interface decays
from a constant value at the particle surface to zero at a point within
the electrolyte as sketched in Fig. 1.8.1b. The position of the clos-
est approach of non-adsorped cations is termed the QOuter Helmholtz
Plane (OHP) as shown in Fig. 1.8.1c. The charge balancing the im-
age charge in the metal does not all lie in the OHP but some of it
is diffused into the bulk electrolyte. The region is the Gouy-Chapman
diffuse layer. However, most of the potential drop occurs between the
electrode and the Outer Helmholtz Plane. As a consequence, the struc-
ture behaves as a capacitor when the intervening dielectric is affected
by the oriented water dipoles between the OHP and the metal surface.
The water dipoles are shown as arrows in Fig. 1.8.1a. For time varying
conditions, the capacitive property will allow passage of displacement
current even if there were no charge transfer. This contribution to the
total effective current flow is described as being “non-faradaic”.

Under truly non-equilibrium conditions, there is a net charge flow
across the interface and this portion is called “faradaic.” It may occur
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Figure 1.8.1 The electrochemical double layer. In Fig. (c), J,(jw) is the
net normal current density at the interface and Av(jw) is the voltage
drop.
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if there is a perturbation in the concentration of the ionic species in the
interphase region or alternatively there is an “overvoltage” v applied
across the interface. This excess current i, is described by the Butler-
Volmer equation which, followed Bockris and Reddy [1973], is written

. __.F _?_'U_ i _ ev
i, = iy exp (2kT) iy exp ( m2kT) (8)
where e is the electronic charge, k is Boltzman’s constant, T is the

absolute temperature and where i5 and i? are the forward and back-
ward equilibrium reaction currents. For sufficiently small overpoten-

tials, (8) can be approximated by the linear form

2kT) (1~ 2kT) ©)

which corresponds to the common assumption that the I.P. response
is linear with respect to low current densities in the bulk volume. We
can further write

i =1ig(1+

iy =eKp and i =eKn (10)

where K is the forward or backward reaction rate (assumed equal).
Then (9) is reduced to

i =K [(p-n) + (o + m)5 ] (1)

e. More on the Interface Impedance

We proceed further by noting that the thickness of the double
layer (e.g. 10~° m) is certainly small compared with the radius of the
typical mineral grain (e.g. 10~® m). Thus, it is safe to assume that
the surface of the grain and the interaction region can be described
locally in a planar geometry where z > 0 represents the electrolyte
and where z < 0 is the metal. We abstract here from Flanagan and
Wait [1985] and Flanagan [1983]*.

With the one dimensional geometry indicated, we may reduce (6)
and (7) to \

oV e
327 = —p—1n) (12)

* see references in Section 1.4
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op? Op 8V %

fwp = D2 — fgo — — up—— 1
wp= Daz’ oz 9z ~ P o2 (13)
) 8’n oV v

jon =Dt 9: 00 "o (14)

where we have adopted a time factor exp(jwt). Solutions of (12), (13),
and (14), which are the basic electrokinetic equations for the problem
can be obtained under appropriate boundary conditions. An obvious
condition, is that the potential V' at z = 0 on the metal surface
is a constant. Then the voltage v(jw) across the interface region of
thickness £, is related to the net current flow i,(jw) by the linear
relation

v(jw) = Z(jw) i.(jw) (15)

where Z(jw) can be aptly defined as the interface impedance. On the
basis of (11) and (15), we have

1 V(¢)
ek (p—n)+ (p+ n)eV(L)/2kT

Z(jw) = (16)

where V(¢) is the voltage drop and where p and n are the effective
values at # = £. The point being made here is that the electrochem-
istry of the double layer can be represented by a frequency dependent
impedance which is merely the voltage drop across the layer divided
by the normal current density. Linearity of the response is a vital in-
gredient of this conclusion. But linearity is always something that can
be checked in the laboratory or field setting (e.g. by confirming lack of
harmonic distortion)

f. Perturbation Approach

An alternative approach is to deal only with first order pertur-
bation of the time varying ion densities. Following Wong [1979], we
set

P =po + p(z,t) (17)
and

n = ng + n(z,t) (18)

where p, and n, are background concentrations and p(z,t) and
n(z,t) are perturbations. When the time variation is according to
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Figure 1.8.2 Fit of Olhoeft’s [1982] data for pyrite/electrolyte interface
to modified Warburg model.

exp(jwt) , we can linearize the resulting equations provided second or-
der quantities are neglected. The interface impedance concept then
refers to the proportionality of the net perturbation current flow (at
a frequency w/27 ) and the corresponding perturbation voltage across
the double layer. It is also possible to include the non-faradaic portion
of the alternating current flow in the interface impedance current flow
because it is basically in parallel with the faradaic portion.

We make no attempt here to calculate the actual interface
impedance Z(jw) for a given situation. But certainly, such an ap-
proach is possible following the lead of Angoran and Madden [1977],
Wong [1979], and Wong and Strangway [1982]. Instead, we will argue
that Z(jw) is an intrinsic parameter of the interface which can be
specified at the outset. Fortunately there are good data (e.g. Olhoeft,
[1982]) on actual measurements of the frequency dependence of the
interface impedance for a pyrite/electrolyte solution. An example of
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many such data is shown in Fig. 1.8.2 where both the amplitude and
phase of Z(jw) are shown for a wide frequency range. Olhoeft [1982]
found an empirical fit, for the frequency dependence, to be of the form

Z(jw) = Zoo + Z1/(jw)? (19)

While the particular form of the frequency dependence given by
(19) is not universal, it is a convenient reference to employ in further
theoretigal studies. Also, while it is referred to as a Warburg impedance
because of the 1/(jw)!/? term, we are certainly aware of other electro-
chemical factors that may contribute to the frequency dependence. For
example, Fink [1980] and more recently Klein et al. [1984] have indi-
cated that there are two physical processes responsible for the electrode
polarization at mineral/electrode interfaces. For minerals such as cha-
cocite, the response is related to a reversible oxidation-reduction couple
with copric ions in solution. But for other minerals such as pyrite and
chalcopyrite, diffusion of active species in the electrolyte as propounded
by Wong [1979] is not the controlling process. Alternative mechanisms
are surface controlled processes such as surface diffusion or adsorption
phenomena. In any case, the interface impedance is a valid description
from the standpoint of formulating a boundary value problem for a
given particle or mineral grain located within the electrolyte.
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Appendix — Thin Sheet Boundary Conditions

The transition region between two homogeneous media can often
be handled by effective boundary conditions in order to simplify subse-
quent applications. To illustrate the concept, we present here an anal-
ysis of a sector of a cylindrical shell whose thickness is small compared
with theﬂradius of curvature a.

The situation is illustrated in Fig. 1.A.1 with reference to cylin-
drical coordinates (p,¢,z). We assume here the problem is entirely
two dimensional so that 3/9z = 0. The shell is composed of two re-
gions such that the conductivity is oy for a +£ > p > a, and the
conductivity is o, for a > p>a—s.

We do not need to specify explicitly the regions outside the shell
(i.e. p> a+{ and p < a—s) except to say their properties do not vary
with ¢. Also we will assume that the fields are everywhere solutions
of Laplace’s equation. This means that the frequency is sufficiently low
that all significant distances of the problem are small compared with
the effective wavelength in any of the regions [Wait 1985]. Displacement
currents can be included in the problem by regarding o, and o, as
being complex (e.g. let oy — o1 + jaw, 03 — 03+ jeaw; €, €; are
the respective permittivities). Another possibility is to replace o, by
(p1)™" and o, by (p2)”" in terms of the complex resistivities of the
two shell regions.

For later convenience we specify that the conductivity in the ex-
ternal region (i.e. for p > a + £) is o and the conductivity for the
internal region (i.e. for p < a—s)is o;. We later let £ and s become
vanishingly small.

Solutions for the potentials ¥, and ¥, in the two regions are

e o
s @] o

where m is the order of the harmonic. Here A, B, C and D are
constants. The corresponding radial current densities (using J, =

and
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Figure 1.A.1 Segment of the cross section of the cylindrical shell model
used to justify the effective boundary conditions for a curved interface.

—~og0¥ /8p) are then

m—1 m

Jpy = —oym [A (pam ) - B (Pi‘“)] e~ime (3)
m—1 m

Jpy = —0am [C (pam ) -D (pj'“)} e~ime (4)

Continuity of ¥ and J, at p = a leads nicely to

A(1+ﬂ)+B(1_i'-‘—)=2c (5)

o3 o3

A(1—i'—‘)+3(1+%)=2p (6)

O3

which, of course, indicate that C and D are linearly related to 4
and B.
The “voltage” v across the shell is given by

v =¥y(a~—s) - 'Illfga-%t) _
{4 (%) -2 ()
() (e e o

e +
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Using (5) and (6), we see that

+3 (1 n :—) (1-2) '"‘] } e (8)

which so far is exact! We now let £ and s become small compared
with, say, a. Also we assume o, >> oy (i.e. inner shell region is a good
conductor, relatively speaking). Now (8) reduces to

v = —({m/a)(A — B)e™’™® (9)

The other quantity of interest is the radial current density at the
outer surface of the double shell. Clearly, it is given by (3) at p = a+£.
That is

m-1 m
J(a+8)=-oym [A(a+l) B a ]e—jm¢

a™ - (a + t)m+1
m-1 —mt1
=am [A(1+£) —B(1+£) ]e'j”‘"
a a a
(10)
Then, if £ < a (i.e. thin shell),
Tp(a+t) > —222(4 — B)e i (11)

which is proportional to (9). The latter fact suggests that we define an
interface impedance Z, according to

v

Zy = —F— 12
R ACEY) (2
In terms of the thin shell approximation, we simply have
L

(41
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but, in general, we need to use (8) and (10) in the definition of (12).
In that case Z;, the “interface impedance” depends on the ratio B/A4
which is a function of the fields internal and/or the external to the
shell. As defined, (12) is also a function of m since a general repre-
sentation of the potentials involve summation over all integer values of
m . However, in the thin sheet approximation, Z, is independent of
m as given by (13).

Another property of the double shell is the difference of the radial
current densities at the inner and outer surfaces. Clearly, this quantity
is given by

AJ, = Pa(a" 3) - Jpx(a+ ¢)
m-1 m
com A€ 0

am™ (a+ )™+
S 1 Clnl) ) SR DSV
7am a™ (a — s)mtt ¢

Using (5) and (6) again, we have
_ om N\™' om s\m-1
AJ,_{A[ - (1+a) - (1+02)(1 a)
oam ~(m+1)
+52 (1-2) -9
-{m+1) m-1
+B[ﬂ"*(1+£) o (12 (-9
a a 2a o a

2 EY e o

In passing to the thin shell limit, we need be a bit more subtle
here. First of all, we consider only that o, > &, (i.e. inner shell is
a relatively good conductor as before) but there is no restriction on
geometry. Then (15) reads

St B (S G

[ T T (e |
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(16)

Now, we regard s/a and {/a as small such that terms containing
(s/a)**and (£/a)® and higher powers can be neglected. Then (16)
looks like

AJ, ~Ae=imé { T [1 - 2(m-1)-1- ~(m+ 1)]

+”‘am -1+—(m—1)—--—(1——(m—1)+1+£(m+1))-}
+Be-1'"‘¢{ gam [1——(m—1)—1——(m+ 1)]
_U1am -1—;(m+1)——2—(1—;(m—1)+1+;(m+1))-}

(17)

which, after cancellation of terms, gives
AJ, ~ (A + B)%mzaze"'m‘* (18)

noting that 0/0¢ = —jm , we see that the effective boundary condition
for the discontinuity of the normal current density is

so, 0¥, (a
T(as) = Iy (ot )= 2000 (19)

where
¥,(a)=(A+ B)ei™* (20)

is the potential at p = a. For operational convenience, we note that

Ty(a—s) = [C (1- %)m +D(1- %)_m] eI~ §y(a)  (21)

which is simply a statement that the potential drop across the inner
shell is negligible. Thus, the boundary condition (19) is replaced by

3023 ¥

T(a=a)=J(a+0)x -2 (a =)

(22)
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Figure 1.A.2 Portion of inner shell and elemental volume.

which, with the use of Laplace’s equation, is equivalent to

Yof 0 3‘1‘]
p=a~s

Iia=9)-Ja+0x 2 p

- (23)

" op
where Y, = so; is the conductance of the inner shell.
It is useful to consider the physical aspects of the boundary condi-
tion given by (23). Here, we just focus on the inner highly conducting
shell of thickness s which is shown in Fig. 1.A.2 (not drawn to scale).

We now apply the divergence theorem A.J = 0 to the volume bounded
by a<p<a-—s and by ¢ and ¢+ A¢. We can write approximately

Ab(a-Ty(a=9) - Agady(@)+ [ [7(8) = To(o+ A¢)]dp =0
(24)

or, using differentials,

20

o¢

Noting Jy = —(03/a)(0¥/8¢) within the shell, we obtain

a[J,(a~3) - J,(a)]dg + s (- ) dp=0 (25)

Ia=s) = I(a) = -2 20 (26)

or

Ia-9) =@ =2 [omeS] (27)

az
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Figure 1.A.3 The double shell spherical model for the solid particle of
conductivity ¢; immersed in a medium of conductivity o.

which, not surprisingly, are consistent with (21) and (23). Again, we
note that Y, = so,.

It is now clear that in the limit where £ and s — 0, the boundary
conditions for the double shell model can be succinctly written

B‘I') [ 0¥ Y, ( g B‘I’)]
o— = loy=—+ — | p—p—— 28
( ap p=a+0 8p a? papp BP p=a—0 ( )
and 0%
Y — Zoo— = (¥) e 29

(2= 205;), .= O )
where o; and o are the conductivities inside and outside the shell
respectively.

The thin sheet boundary conditions are useful to solve problems
involving particles where the source of the field is outside the parti-
cle. We have attempted to show the development and justification for
a cylindrical model. The corresponding case in spherical geometry is
illustrated in Fig. 1.A.3. The spherical particle has a radius a. To ac-
count for bound ions or other related surface conduction mechanisms,
we imbue the particle with a surface admittance Y. Then, the outer
more resistive region (i.e. diffuse ionized layer) just adjacent to the
particle is represented by an interface impedance Z,. The effective
boundary conditions, which connect the interior potential for r» < a
and the exterior potential for » > a, are then written as follows

o) [, 08, %0 (00)]
({r 37’)r=a+o B [a. or * a? 31‘ (r 61‘) r=a-0 (30)
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and

(@ - Z°a%_‘f>,=.+o = (¥)y=a-0 (31)

These two equations are completely analogous to (28) and (29). Their
application was already indicated (e.g. Chap. 2 in [Wait 1985)).
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Epilogue

This (survey) deals with the electromagnetic theory and the phe-
nomenology of the complex resistivity of geophysical media. The phe-
nomena are important in understanding the bases of subsurface prob-
ing for mineral and petroleum resources using electrical methods. An
attempt is made to lead the reader from the basic potential theory to
quasi-static concepts and culminating in comprehensive discussions of
the prevailing macroscopic theories from the current literature.

The material presented has been used as lecture notes in first year
graduate courses in geoelectromagnetism at the University of Arizona.
The author has benefitted from many useful suggestions from students
and interested colleagues in the geophysical community in the U.S.,
Canada and abroad.

While the topic selection may seem rather specialized, the results
are relevant to other fields such as sub-surface telecommunications,
earth conduction and corrosion, non-destructive testing, and hyper-
thermia. However most of the illustrative examples are shown in a
geophysical context to permit an orderly flow of information.
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pitality extended by Professors Ed Jull in Electrical Engineering and
Doug Oldenburg in Geophysics.
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useful suggestions.
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