3

EFFECTIVE PROPAGATION CONSTANTS
IN MEDIA WITH DENSELY DISTRIBUTED

3.1
3.2

3.3

3.4

3.5

3.6

3.7

DIELECTRIC PARTICLES OF MULTIPLE

SIZES AND PERMITTIVITIES

K. H. Ding and L. Tsang

Introduction

Multiple Scattering Equations and Dispersion Relations

a. Quasicrystalline Approximation (QCA)

b. Quasicrystalline Approximation with Coherent Potential
(QCA-CP)

Pair Distribution Functions for Media with Particles of

Multiple Sizes

Effective Propagation Constants for Media with Small

Particles

a. QCA

b. QCA-CP

c. Dielectric Mixing Formula Ignoring Scattering Attenuation
Rates

d. Mixing Formula for QCA

e. Mixing Formula for QCA-CP

Effective Propagation Constants for Media with Moder-

ate Size Particles

Energy Conservation and Ladder Approximation for

Dense Media with Multiple Species

Conclusions

References

— 241 -
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3.1 Introduction

In a dense medium, the particles occupy an appreciable fractional
volume. In a nontenuous medium, the dielectric properties of the par-
ticles are substantially different from that of the background medium.
In recent years, studies of the propagation and scattering of waves in
dense nontenuous media have been made with applications to geophys-
ical terrain and composite materials [1-9]. Such media often consist of
mixtures of particles with multiple sizes and permittivities that are
embedded in a background medium. It has been shown both theoreti-
cally and experimentally that in a dense nontenuous medium, the as-
sumption that the particles scatter independently is not valid. A more
rigorous theory is needed to take into account correlated scattering
between particles.

In section 3.2, we outline the governing multiple scattering equa-
tions for random discrete scatterers. Various approximations to calcu-
late the first moment of the field are discussed. The treatment includes
the important case of dense nontenuous medium with multiple species
of particles. The multiple species refers to the fact that the medium is a
mixture of particles with different sizes and permittivities. Special em-
phases are placed on the Quasicrystalline Approximation (QCA) and
the Quasicrystalline Approximation with Coherent Potential (QCA-
CP) [2,8].

In section 3.3, the pair distribution function is discussed. Specif-
ically, the Percus-Yevick approximation is used to calculate the pair
distribution functions in a medium with non-interpenetrable spheres of
multiple sizes [10-16]. Numerical results of pair distribution functions -
are illustrated as functions of particle sizes and fractional volumes.

In section 3.4, the low frequency limit of the dispersion relations
under the QCA and QCA-CP approximations is considered. Analytic
closed form expressions are obtained for the complex effective propaga-
tion constants. Numerical results are illustrated as functions of particle
sizes, fractional volumes, and dielectric properties.

In section 3.5, we consider the case of moderate size particles. The
QCA equations are formulated in terms of the 7 -matrix formulism and
utilizing vector spherical waves as basis functions [4,8]. The final equa-
tions of the dispersion relation for multi-species are solved numerically
and illustrated as functions of the physical properties of the particles.

In section 3.6, we examine energy conservation. In multiple scat-

_ tering problems of lossless media or slightly lossy media, one key objec-
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tive is to calculate the second moment and the incoherent intensity of
waves [17,18]. For these problems, the calculation of the first moment
and the effective propagation constant serves as an intermediate step.
Thus, approximation of the first moment must be done with due re-
gard to energy conservation and consistency with the second moment.
It is shown in section 3.6 that QCA-CP is energetically consistent with
the ladder approximation of second moment. This is analogous to the
nonlinear approximation of continuous random medium theory [19].
‘The QCA-CP has been used in conjunction with the ladder approxi-
mation modified with the pair distribution function to derive a set of
dense medium radiative transfer equations that obey energy conserva-
tion and include multiple scattering of the incoherent fields [8,20-22].
In section 3.6, we also derive the intensity operator under ladder ap-
proximation of correlated scatterers for multiple species which will be
useful for second moment calculations and which also obeys energy
conservation.

The problem of multiple particle sizes and permittivities is an
important one for both geophysical terrain and composite materials.
The particles in natural geophysical terrain are usually not of iden-
tical sizes. They usually follow a drop size distribution which can be
discretized and represented by a histogram. Thus, the approach given
in this paper for the calculation of effective propagation constants for
such cases of random discrete scatterers of multiple sizes gives a better
description of the effects of correlated scattering.

3.2 Multiple Scattering Equations and Dispersion Re-
lations

Consider a random medium consisting of N discrete scatterers of
L different species, located at 7,7,,... ,7n in a volume V of back-
ground medium with permittivity ¢ (Fig. 3.2.1). The different species
refer to the fact that particles can be of different shapes, sizes, and
permittivities. However, interpenetration of particles is not allowed.
The different species are denoted by s; =1,2,...,L. Each species of
particles can have a distinct size, shape, and permittivity € -

To study the propagation of electromagnetic waves in such a
medium, a multiple scattering theory based on dyadic Green’s operator
can be applied. The N -particle dyadic Green’s operator G satisfies
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Figure 3.2.1 Discrete nontenuous media with multi-species particles with
different sizes and permittivities.

the multiple scattering equations [2,8]

— — N—,: .
G=G,+G,) U; G (1)

where 50 is the dyadic Green’s operator of the background medium
with propagation constant k¥ = w,/pt€, w is the angular frequency,

=
and p is the permeability. The scattering potential operator, U j’,
associated with the jth scatterer of species s; is such that

(FIT; |7) =" (F-7) T (F - 7)

=Uy (F)I6(F - 7) (2)
where T is unit dyad and
o (= = 0 for ¥ outside particle j
Ui (r-75) = { k}, —k* for 7 inside particle j (3)

with k,; = w,/f€,; being the wavenumber in the s; type scatterers.
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The particle distribution is described by the many-particle prob-
ability density function p(71,73,...,7n;81,82,...,8;). The first and
second order statistics are given by

Np(7i; 8:) =n,, (4)
(N = 1)p(7j5 8 | Tis 8) =n,,9,.; (Fi, ;) (5)

where p( | ) is the conditional probability function, n,, is the number
density of s; type particles, and g,,,, (7;,7;) is the pair distribution
functions for two particles of species s; and s, . Using Bayes rule, it fol-
lows readily that g,,,; is symmetric so that g,,,, (7;,7;) = 9oj0; (T5s i)

Generally, the Green’s function in (1) depends on the locations
and types of the N particles. The concept of configuration average (8]
is used to obtain the average Green’s function as a function of number
densities and pair distribution functions. Quasicrystalline Approxima-
tion (QCA) and Quasicrystalline Approximation with Coherent Poten-
tial (QCA~CP) are applied to derive the dispersion relations and the
results are obtained in the momentum representations.

a. Quasicrystalline Approzimation (QCA)

=%;
Given the scattering potential operator U J-, for the j th scatterer

s
of s; species, the transition operator TJ-’ associated with this particle
satisfies the Lippmann-Schwinger equation

=3%; —41 == =4

T, =U; +U, G,T, (6)

j j j
which describes the scattering of wave from the J th particle in the
absence of all other particles. In terms of this single particle transition

=4 —s
operator Tj’ » & scattering operator ij at 7; is defined as [8]
=l,' =13 =l,'= N p—}
Qj =Tj +T,' GoZQx (7)
I#5
which can be interpreted as scattering operator for the jth particle in

==
the presence of other particles. In terms of Q j’ » the multiple scattering
equation (1) becomes

N g —
G=G.+G,> Q,G, (8)
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The configuration average of G and 5;’ are

E(G) =G, +NG.E[E, (q;)] G (9)
E(Q) =T +W-0TCE[E Q)] a0

where E stands for the expectation value, E; is the conditional av-
erage given the position and species of particle j, and Ej; is the
conditional average of given the positions and species of particles j
and [. Thus,

E [Ef (5;’)} =// drjds;p (7;; $;) E; (3;’) (11)
B [E,,- (5:’)] = / / drjds;p (753 85 | 71; 1) By (5:’) (12)

Equations (9) and (10) indicate that the total average is given
in terms of the conditional average with one particle fixed and the
conditional average with one particle fixed is given in terms of the con-
ditional average with two particles fixed. In a similar manner, we can
express the conditional average with n particles fixed in terms of the
conditional average with n + 1 particles fixed. A hierarchy of equa-
tions is thus generated. Truncation at various stages leads to different
approximations.

Under quasicrystalline approximation, truncation is made at the
second stage of the hierarchy of equations

E,; (@) ~ & (Q;) (13)

Assuming discrete values of s;, we can replace the integration with
respect to s; in (11) and (12) by the summation over s;. From the

properties of (4) and (5), E (f?_:) and E,; (5:‘) can be expressed as

E(@) =848 Y, [ 45 (T)) T (19

s;=1

g — i L —s; R
E, (Ql‘) =T" + Tl'Go Z n,,. /dFjg,,,i (F;,'f"j)Ej (Q’ ) (15)

;=1
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Assume the solution for E; (6,' ') in the momentum representa-
tion as [8]
-] (5ot T = -
(FIE(Q)17) = C-7)7T, 5,7) (16)
Further let
-1
L
=" ,_ — = _ — = = ., =—=s; o
C, (77)=Q, (,7) [I+ G. (7)) n,Q, (p,P)J (17)
;=1
=
The quantity CP' (P,P') is governed by an integral equation as follows

L
C, »P)=T, @P)+ 3 n, x / d5'T, (5,7")

s5;=1

Go (") Hovv, (3" - 7)T, (#,5) (18)
where H,,. (P) is defined as

_ 1 _ —
d H,, (p)= W/d?h,,,i (F)exp(—ip-7) (19)
h,,,,. (F) = Gays; (F) -1 (20)

=4 =4
and T; (»,7) = (1‘7| T’ |5‘> is the momentum representation of

=$,’ . . .
- For statistical homogeneous medium, the average dyadic Green’s

operator is diagonal in the momentum representation, <p | E ( ) | P )
= G(P) (P|P'), and G(p) is given by

G(p) = [5: ‘®-Y n,3 (r-,pv)} (21)

s;=1

=;
where C, (9,7') satisfies the integral equation (18). By setting the de-

termmant of the inverse of G (P) equals to zero, the dispersion relation
is obtained as

det [ﬁ:l (@) — Z n,,C. (5P } (22)

3;=1
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where det stands for determinant. The complex value of p given by so-
lution of (22) is the effective propagation constant K . Thus, the equa-

tions of QCA for multiple species consist of solving (18) for 5: (3,7
and then substituting that in (22) to calculate the effective propagation
constant K.

The dispersion equations of (18) and (22) ca.n'also be expressed in

terms of mass operator. We define the operator 5; that is a function
of 7; and s; such that

(71T} 17) = @7 T, (5,7) (23)
Equation (18) can be put in operator form

— — L =8 = =—#;
61' = Tx" + Z Ny, /dthn'i (75 —71) Tl' G°_C_; (24)

;=1

=
Thus, C; can be interpreted as the scattering transition operator
of particle ! in the presence of other particles averaged over particle
positions and properties under the QCA approximation. The operator
equation equivalent to (21) is then

B(@)=5+8.Yn, [wTE@) @

J,’:l
Let
—— L =..
M=) n, / dr; C; (26)
:;:1

be the dyadic mass operator for the medium with scatterers of L dif-
ferent species under the quasicrystalline approximation. Equation (25)
can be rewritten as :

E (ﬁ) =G, +G,ME (ﬁ) (27)

In terms of the mass operator, the dispersion relation of (21) becomes

50 =[50 -Hen| (28)
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with

(EIT17) = 617) Y, 0.7) (29)

;=1

Quasicrystalline Approzimation with Coherent Potential

(QCA-CP)

In she coherent potential approximation [8,23-26], the medium is
described by a coherent potential operator @ (5) which is constant in
space but may be a function of the momentum operator 5. By adding
and subtracting an operator nw (p), (1) can be expressed as

G= [5: @) -3 (7 - i@)] ) (30)
where

n= Z n,, (31)

=-1 =-1 —_
is the total number density of particles. Let G. =G, —nw(p) be the

v, =-j—w(p)/V be

2
=

the modified potential operator. In terms of G’ and U; , the multiple
scattering equation (1) becomes

the coherent potential Green’s operator and U =

N
G=G.+G.>.U; G (32)

The QCA-CP approximation is introduced by a.pplymg QCA to

the scattering equation of (32) with the new potential U and then
imposing the self-consistent condition that the average Green s oper-
ator must be the same as the coherent potential Green’s operator i.e.

E (G’) = G With the G in equation (6) replaced by Gc , a modified
=i
transition operator t is defined to satisfy

=5 =4 = = :‘l

1. = ll +-tf. G.t.

J L ]

(33)
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The result fir tpe average Green’s operator under QCA becomes

~1

8 =3. (®) = [b:ol ®) - D n, 5, (7P) (34)

8;=1

=4
where C, (3,1“)’) satisfies the integral equation

= L
CP (p,ﬁ') =t, (ﬁaﬁ) + Z LT,
s$i=1
= = =
X/df"@ (7,7")G. (p") H,,., (7" - 7) C, (7",P) (35)
d ';‘i = = =i =i
and ¢, (5,7') = P|t |7 ) is the momentum representation of 7 .

The dispersiop relation for QCA-CP is

——1 L =
det [Z:",, ®) - Z n,,C, ('p',i)] =0 (36)

;=1

Thus solutioy o‘f QCA-CP is provided by first solving (32) and (34).
sh. 4 =

SUbSt_lt“th C, (p,7') in (35) and solving for § gives the complex

effective propagation constant K .

Similarly “the dispersion relations of (35) and (36) can be ex-

pressed in teyms of mass operator. Let the mass operator M under
QCA-CP be expressed as

= & =
M=>n, / dr;C; (37)
;=1
where
Al == L D_ =
s;=1

The average (yreen’s operator under QCA-CP can be expréssed as

E (ﬁ) =G.=G,+G,MG. (39)
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In this case,

o L =
<§ |32 | r?'> = 512) Y n,C, (7) (40)

The mean Green’s function then becomes

ew=[c.'@-"ep)| (a1)
and thz dispersion relation is
det [ﬁ: ") - —ﬁ(ﬁ,ﬁ)] =0 (42)

Thus we can regard equations (26) and (37) as the mass operators
under QCA and QCA-CP respectively.

3.3 Pair Distribution Functions for Media with Parti-
cles of Multiple Sizes

In applying QCA and QCA-CP to calculate the effective propa-
gation constants, it is seen from (18), (19) and (35) that the results de-
pend on the pair distribution functions for multi-species. The medium
composed of N scatterers considered here is analogous to an ensemble
of mixture of L types of particles in the study of statistical mechanics,
by considering the dynamics and positions of the particles with regard
to the interparticle forces. Studies have been made in obtaining the pair
distribution functions using various approximate theories. One of the
important results is based on the Percus-Yevick (PY) approximation.

The pair distribution function g;;(r) is proportional to the condi-
tional probability of finding a particle of type j at a distance r from
the origin given that there is a particle of type i at the origin. The
total correlation function, h,;(r), is defined as

hij(r) = gij(r) — 1 (43)

which describes the total influence of particle of species i on particle of
species j. The direct correlation function, ¢;;(r), is related to h;;(r)
by means of the generalized Ornstein-Zernike (OZ) relation [11,12]

hy(r) = () + o [ drea(ehy (F-F D) (44)
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The physical interpretation of (44) is that the total correlation func-
tion can be decomposed into a sum of direct and indirect correlation
functions, and the indirect influence of particle of species 7 on particle
of species j is a result of particle of species i acting directly on a par-
ticle of species I at 7, which in turn exerts total influence on particle
of species j. The indirect influence is averaged over particle positions
7 and particle species ! and weighted by the number density n; as
indicated in (44).

In the following, we shall describe the results for non-interpene-
trable spheres under the PY approximation. For non-interpenetrable
spheres, the interparticle forces are zero except for the fact that two
particles cannot interpenetrate each other. Let a; and a; be the par-
ticle radii of species i and j respectively. Then

gii(r)=0 for r<a;+a;j (45)

Under the PY approximation, it is assumed that for non-
interpenetrable particles the direct correlation function cij(r) is zero
for separation larger than a; + a; . This physically means that any net
interparticle influence between two particles for distance larger than
a; + a; is due to the presence of other particles and is attributed en-
tirely to indirect influence. Thus,

cj(r)=0  for r>R; (46)

where R;; = a; + a; . Next, let

—C;; f < R;;
o= {0 & Ish: )

Then using (43), (45)—(47), the OZ relation can be expressed entirely
in terms of Y;;

Y(r)=1+ an/ dr'¥a(r')

1=1 !/ <Ry;iIT-F'I<Ry

_,Zl:"‘/, 47 [Ya (F = 7') — 1]Y; ()

'<Ryj|IF-F' >Ry

4j=1,2,...,L (48)
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The solution of (48) for the case of single species has been solved by
Wertheim, Thiele and Baxter. For the case of two species, the solu-
tion can be found in Lebowitz. For the case of general L species, the
solution is obtained by Baxter based on a generalized Wiener-Hopf
technique. 5

Let H;; (P) and C;; (P) be proportional to the three dimensional
Fourier transform of h;; (F) and ¢;; () as follows

’ By (7) = (mamy " [ e 9 (89)
iy (7) = (mms)!"* [ dre™es; (7 (50)

then in matrix form, the OZ relation becomes

H(p) = C(p) + C(p)H(p) (51)

Because of the spherical particle assumption, the transform only de-
pends on p =| P |.In (51) all matrices are of dimensional L x L . Based
on the generalized Wiener-Hopf technique, the solution of the L x L
matrix C(p) can be factorized as [14]

C(p) = E - Q% (-p)Q(p) (52)

where E is the L x L unit matrix, and superscript T denotes trans-
pose of the L x L matrix Q

Q:i(p) = 6i; — / ’ dre'? Qi;(r) (53)

Sij

6;; is the Kronecker delta, and

Sij =a; — a; (54)
R,‘j =a; + a; (55)
Q:i(r) =27 (min;)'/? gij (r) (56)

where Q,;(r) and g¢;;(r) are functions only nonzero over the range
Si; < r < Ry;. Note that S;; can be negative. The solution of g;;(r)
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is [14]
2
g (r) =Ai% + B;r + D;; (57)
1-§5+6a:é;
A =—————>< 58
T-&F (5%)
6a¢;
By =— %k 59
(1 — Es)g ( )
R3.
Dij = - A,T'J —_— B.’R,'J' (60)
L
7r
fa =5 Y ny(2¢;)" (61)
Jj=1
a=1,2,3.

The process of computation is as follows. By using (54)-(61), Q;;(r)
for S;; < r < R,; can be computed. Then, Q;;(p) is calculated by
using (53). Next, the matrix C(p) is evaluated by using (52).

Next the matrix equation of (51) is solved and H(p) is calcu-
lated. Then, h;;j(r) = g;j(r) — 1 is computed by taking an inverse
Fourier transform. In this manner, the pair distribution function g;;(r)
is calculated and is numerically illustrated in Figs. 3.3.1-3.3.6.

In the QCA and QCA-CP equations H,,;(p) as defined by (19)
is needed. Comparing (19) and (49) gives

I‘?ij (—5)

(62)

In Fig. 3.3.1, the pair distribution functions for the case of par-
ticles of identical sizes are plotted for f = 0.2 and f = 0.4. We see
that the conditional probability is zero for the separation less than
one diameter of particle because the particles cannot interpenetrate
each other. For higher concentration of particles, the pair distribution
function shows more variations indicating that the particles have less
freedom in positioning themselves.

In Fig. 3.3.2, the pair distribution functions for a mixture of two
particle sizes are plotted with a; = 2a;, f; = 0.03, and f; = 0.01.
Because of small fractional volumes in this case, the pair distribution
functions show only a small deviation from the results of hole correction
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9(r)

4
t/(2q)
r/(2a).

Figure 3.3.1 Percus—Yevick results of g(r), for f = 0.2, and f = 0.4, vs

"2 2
g11 §912
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0-98%55 7500 T.00 .50 7.0 7.50
r/(2a3)

Figure 8.3.2 Percus-Yevick results of g;;(r), 1,7 = 1,2, for f; = 0.03, and
f2=0.01, vs 1‘/(203), az = 2a4.
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Figure 8.3.8 Percus—Yevick results of g;;(r), £, = 1,2, for f; = 0.2, and
f2 =0.01, vs »/(2a3), az = 2a,.
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Figure 3.3.4 Percus—Yevick results of g;;(r), 4,7 = 1,2, for f; = 0.2, and
f; = 0.1, vs 1‘/(2(13), az = 20.1.
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Figure 3.3.5 Percus—Yevick results of g;;(r), i,j = 1,2,3, for f; = 0.15,
fg = 0.1, and f3 = 0.05, v8 r/(2a3), ag = 5a1, az = 2.501.
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Figure 3.3.6 Percus—Yevick results of g;;(7), i,7 = 1,2, 3,4, for f; = 0.15,
fa = 0.1, f3 = 0.05, and f; = 0.02, vs r/(2a4), a4 = 5ay, as = 3.5a,
a3 = 1.5a;.
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(HC). In the HC approximation,

0 r<a;+a;
wn={ [Salu (63)

When the pair distribution function is equal to 1, the two particle
positions are independent. Thus, the hole correction approximation
assumes that the particles are independent aside from the fact that they
cannot interpenetrate each other. The deviation of pair distribution
function from unity is a measure of the freedom of particle positions
with larger deviation corresponding to a smaller freedom.

In Figs. 3.3.3 and 3.3.4, particle concentrations are higher so that
the deviations of pair functions from unity are significant with less
freedom for larger concentrations. The results also indicate that g, is
more different from unity than g;; . This is true in spite of the fact
that the fractional volume of particle size 2 in both figures are small
because the high concentration of particle size 1 affects the freedom
of positions of particle size 2. Also, g,; is more different from unity
because particles have less freedom in positions as particle size 2 be-
comes larger and larger. Fractional volume of particle size 2 in Fig.
3.3.4 is higher than that in Fig. 3.3.3 while fractional volume of par-
ticle size 1 is the same in both figures. Nevertheless, the increase in
concentrations of particle size 2 affects that of particle size 1 as indi-
cated in the figures. In Fig. 3.3.5, the results of a mixture of particles
with three different sizes are illustrated with ag > a; > a;. We see
that gas exhibit the least freedom while there is more freedom in g,
than in g,; . We also note that the value of g;; generally lies between
gi; and g;; . In Fig. 3.3.6, the results of the pair distribution functions
for a medium containing particles of four different sizes are also illus-
trated. Because of the symmetry relation g;; = gj:, there are 10 pair
distribution functions for this case as illustrated in the figure.

3.4 Effective Propagation Constants for Media with
Small Particles

To calculate the effective propagation constants for QCA and
QCA-CP, we need to solve the integral equations (18) and (35). In gen-
eral, it requires numerical techniques to solve the integral equations for
cases where particle sizes are comparable to or larger than wavelengths.
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The numerical technique for calculating the effective propagation con-
stant for moderate size particles under QCA will be discussed in section
3.5. In this section, we consider the case of small particles. Closed form
expressions of the effective propagation constants can be derived in the
low-frequency limit when particles are much smaller than wavelength.
The results facilitate the understanding of effective attenuation rates
and effective phase velocity for wave propagation in discrete random
medium of multiple species.

The effective propagation constant is denoted by K = K, + K.
The real part K, is related to the effective phase velocity while he
imaginary part K; is related to the attenuation. Generally, K, > K;.
We shall, in solving (18) and (35), (i) keep only the leading term of the
real part and the leading term of the imaginary part and (ii) ignore
terms of order less than (ka)® [2,8].

a. QCA

The momentum representation of T’ , i.,i (P,P'), can be cal-
culated by using the mixed representation [2,8]. In the low-frequency
limit

T. (3,7) = Ttv,I (64)
where v, = (47/ 3)af’. is the volume of s; type particle, and
" .2
Ty =3ky,, [1 + zgksaf’, y,j] (65)
€, — €
Y = .,+ 2¢ (66)

Further, let C (p, ') = C,,I in the low-frequency limit. Using (64)
in (18) gives the relation

) ) 1 4 k
Coj = T,:"v,,. + T Us; Z n,Cy, [3k2 +i—— u ':‘l (= )] (67)

‘l=1
By keeping only the leading term in the real part and the leading term
in the i nnagmary part, equation (67) can be solved for C,; . Substitut-

ing C (p, P) into the dispersion relation (22), the eﬁ'ectlve propaga-
tion K? can be solved and is given by

L
K? =k + Zn,,C.,. (68)

;=1
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After simplification, this gives

3k?
kz + e Z fllyl]

0,-—1

2k* =z _
X {1 + 3’33 [afly‘" + Z af’_swsﬂ"-ya,-Hqu (P = 0)] } (69)

;=1

where L
=1- Z f:qu (70)
lx:l
and
fo, =n, 4:;" 3 (71)

is the fractional volume occupied by particles of type s, .

b. QCA-CP

The low frequency QCA-CP solution can be obtained by solving
(33), (35) and (36). The solution for (33) is

=
=3 -

t, (7:7)=1tiv,I (72)
where
i =3K73,, [1 + ngsa“y,,] (73)
k’ — k3
%, = (74)

3K? + (kf,, - #?)

Solving (35) and (36) gives a nonlinear equation for the effective prop-
agation constant as follows

¢, #7)=0C,1 (75)

-~ A‘. A‘ L -
C,, =tiv,, +tiv,, E n,,C,,

s1=1

2
sga i3 Hyu(P= 0)] (76)
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L
Kz =k.2 + Z nnjoc;

s;=1

3K?
_k? + = E flgy”

=1

.2Ka 3~ = 3 8 ~ F—1
x <1+ 2—3—5— a, Y, + Z a,,,81r n:,-yo,-H:,-u p= 0) (77)

;=1

L
=1- Z f-,@., (78)

81=1

Note that ¥,, depends on K? so that (77) is a nonlinear equation
of K2. Solution of (77) for K? can be conveniently computed in the
following manner. First, the terms in the square bracket in (77) are
ignored. The remaining terms can be cast into a polynomial equation
for K? which can be solved readily. Experience indicates that only
one solution of K? has the correct physical meaning of effective prop-
agation constant. This solution is used as an initial approximation and
inserted into the right hand side of (77). The solution quickly converges
after a few iterations.

Thus solutions (69) and (77) give K? under QCA and QCA-CP
respectively. The real part of K is the angular frequency divided by
the effective phase velocity. The imaginary part of K gives effective
attenuation rate due to both absorption and scattering.

In Figs. 3.4.1 to 3.4.10, by solving the equations (69) and (77),
we illustrate the normalized attenuation rate 2K;/k and the effective
dielectric constant (K?/k?), where subscripts r and i denote real and
imaginary parts respectively. The parameters chosen represent typical
values found in microwave and millimeter wave remote sensing in snow.
Dry snow is a mixture of ice particles and air with fractional volume
of ice between 0.2 and 0.4. The permittivity of ice particles is 3.2¢,.
The ice particles are not of identical sizes and are usually described by
a particle size distribution ranging from 0.01 mm to 2 mm. Wet snow
is a mixture of air, ice particles and water droplet with sizes of water
droplets comparable to that of ice particles [27,28].

In Figs. 3.4.1 and 3.4.2, the case of particles of identical sizes is
considered. The attenuation rate 2K;/k and the effective dielectric
constant (K?2/k?), are plotted as a function of f for ka = 0.1047
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Figure 3.4.1 Attenuation rate 2K;/k as a function of f, for ka = 0.1047,
and € = 3.2¢, € = ¢, is the background permittivity. The results of Qua-
sicrystalline Approximation (QCA) and Quasicrystalline Approximation
with Coherent Potential (QCA~CP) are compared.
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Figure 3.4.2 Effective dielectric constant (K?/k?), as a function of f,
for ka = 0.1047, and € = 3.2¢, € = ¢, is the background permittivity. The
results of QCA and QCA-~CP are compared.
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Figure 3.4.3 Attenuation rate 2K;/k as a function of fi, for (1) f2 =0
and (2) f2 = 0.002, where ka; = 0.1047, kaz = 0.2094, and €; = €3 = 3.2¢,
€ = €, is the background permittivity. The results of Quasicrystalline Ap-
proximation (QCA) and Quasicrystalline Approximation with Coherent
Potential (QCA-~-CP) are compared.
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Figure 3.4.4 Effective dielectric constant (K?/k?), as a function of f1,
for (1) f; = 0 and (2) f2 = 0.002, where ka; = 0.1047, ka; = 0.2094, and
€1 = €3 = 3.2¢, € = €, is the background permittivity. The results of QCA
and QCA-CP are compared.
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Figure 3.4.5 Attenuation rate 2K;/k as a function of fa, for (1) kaz = X
0.2094 and (2) kaz = 0.3141, where f; = 0.2, ka; = 0.1047, €; = €3 = 3.2¢, -
€ = €, is the background permittivity.
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Figure 3.4.6 Attenuation rate 2K;/k as a function of fa, for (1) kaz =
0.2094 and (2) ka2 = 0.3141, where f; = 0.2, ka; = 0.1047, ¢; = €3 =
3.2(1+ i0.001)¢, € = ¢, is the background permittivity.
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Figure 8.4.7 Attenuation rate 2K;/k as a function of f3, for f; = 0.2,
and f; = 0.002, where ka; = 0.1047, ka; = 0.2094, kag = 0.3141, and
€1 = €3 = 3.2¢, €3 = 66.2(1 +i0.55)¢, € = €, is the background permittivity.
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Figure 3.4.8 Effective dielectric constant (K?/k?), as a function of f3,
for f; = 0.2, and f3 = 0.002, where ka; = 0.1047, ka; = 0.2094, kag =
0.3141, and €; = €3 = 3.2¢, €3 = 66.2(1 + i0.55)¢, € = ¢, is the background
Permittivity.
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Figure 3.4.9 Attenuation rate 2K;/k as a function of f3, for f; = 0.2, and
fa = 0.002, where ka; = 0.1047, ka; = 0.2094, kag == 0.3141, and €; = €3 =
3.2¢, €3 = 6.205(1 + $1.224)¢, € = ¢, is the background permittivity.
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Figure 3.4.10 Attenuation rate 2K;/k as a function of f;, for f; = 0.005,
fs = 0.003, and f4 = 0.001, where ka; = 0.1047, kaz = 0.1571, kag = 0.2094,
kag = 0.3141, and €, = €3 = €3 = €4 = 3.2¢, € = ¢, is the background
permittivity.
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and for real particle permittivity ¢, = 3.2¢,. In this case there is no
absorption. Attenuation is due entirely to scattering. We note that
the attenuation rate first increase with f, then rises to a peak and
decreases when f further increases. This indicates that the medium
appears more homogeneous as the particle concentration further in-
creases beyond a certain value.

In Figs. 3.4.3 and 3.4.4, the attenuation rate 2K;/k and the ef-
fective dielectric constant (K?/k?), are illustrated respectively as a
functionrof f for f; = 0 and f, = 0.002. The two particle sizes
are ka; = 0.1047 and ka, = 0.2094. The results based on QCA and
QCA-CP are illustrated. In spite of the much smaller fractional volume
(f2 = 0.002), larger particles have a larger weighting factor in scatter-
ing and can contribute significantly to the scattering attenuation rates.
This indicates that it is generally not valid to use the average particle
size to calculate the scattering effects. On the other hand, Fig. 3.4.4
shows that the larger particles with a very small fractional volume have
relatively a small effect on the effective dielectric constant. The results
in Fig. 3.4.3 also indicate that QCA—CP generally predicts a larger
scattering attenuation rate than QCA. This is apparent by comparing
equations (6) and (33). The scattering operator for a single scatterer

for QCA is embedded in medium with propagator G, . For QCA-CP,

=%;
the single particle transition operator ?j’ is embedded in an effective
medium with propagator G..

In Fig. 3.4.5, the attenuation rates are plotted as a function of f2
with f; = 0.2. Because the concentration of f; is small, the attenu-
ation rate increases almost linearly with f,. In Fig. 3.4.6, the atten-
uation rates are illustrated for the case of slightly lossy particles with
€1 = €3 = 3.2(1410.001)¢, . The particle sizes in the figure are such that
the attenuation rate due to absorption is comparable to that due to
scattering. In Figs. 3.4.7-3.4.9, we illustrate the case when the medium
is a mixture of three particle species with different sizes and permit-
tivities. In Figs. 3.4.7 and 3.4.8, particles of species 3 are largest in size
and have permittivity equal to €3 = 66.2(1+10.55)¢, corresponding to
that of water at 5 GHz. In Fig. 3.4.9, €3 = 6.205(1 + i1.224)¢, which
corresponds to that of water at 90 GHz. Thus the model can be used to
represent wet snow. We note that both the effective dielectric constant
and the attenuation rate increases rapidly with f; which corresponds
to wetness content of wet snow. In Fig. 3.4.10, we illustrate the case
when there are four different particle sizes.
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c. Dielectric Mizing Formula Ignoring Scattering Attenuation
Rates

Classical dielectric mixing formulae aim at calculating the effec-
tive permittivity of a mixture of components. For these cases, the parti-
cle size is much smaller than wavelength so that scattering attenuation
rates can be ignored. Such dielectric mixing formula can be obtained
from the results of effective propagation constants by setting particle
size a,; to zero and number density n,; to infinity such that fractional
volume f, of (71) remains finite. The effective permittivity €., is
given by

=l = Ilf—: (79)
d. Mizing Formula for QCA
From (69), we get the mixing formula
L
3) fuu,
e (80)
1- Y f,u,
si=1

Using expression for y,; as given by (66), the QCA result of (80) can
be rearranged to give

SLesr — €

€ess + 26 Z f" e,, + 2¢ (81)
which is the same as the classical Rayleigh mixing formula [29].
e. Mizing Formula for QCA-CP

The mixing formula for QCA~CP, from (77) and (74), is
6 —
3e. v
) H-,Z-:tf’ 3€ess 6 —
€epy =€+ (82)

€;
1- A i
Zf’ 36.,, + E,i

;=1
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3.5 Effective Propagation Constants for Media with
Moderate Size Particles

Generally, for cases where particle sizes are comparable to or
larger than wavelengths, it requires numerical technique to solve for
the effective propagation constants. Such cases will be illustrated us-
ing the quasicrystalline approximation. We also find it convenient to
use the T -matrix formulism with vector spherical wave functions as
basis to formulate the multiple scattering equation and dispersion re-
lation [4,8].

Let E " (F) be the incident electric field in a medium with multi-
species of particles and Ff (F) be the scattered field form the jth
particle. The total field E(7) at point 7 is the sum of the incident
field and the scattered fields from all particles,

o N s
EF=E"F+ ZE,. (7) (83)

The scattered field Ej () is related to the j th particle exciting field
E; () by

=3

E, (7)=T, E; (7) (84)

=7
where TJ-’ is the transition operator for the particle j of the s,
species. The exciting field for the jth particle can also be expressed
as the total field less its own scattered field

N
—B ,_ —inc ,__ —S ,_
E;(F)=E " (F)+ EEz Q)]
£
{ N —=$1—E
=E™ 7+ T, E (F) (85)
I#j
with j =1,...,N.
Under the quasicrystalline approximation, the integral equation
for the conditional average of the j th particle exciting field, <Ff (F)) K
. j
is

(B 7)), =E™ () + " [ #90 )T(EE ), (89)

=1
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Figure 8.5.1 Plane electromagnetic wave normally incident on a half
space of multiple species of particles with different sizes and permittivi-
ties.

where i" <E,E (F))l is the field scattered by a scatterer of s; species
at #; when excited by the field <E,E (F)>z .

For a plane electromagnetic wave normally incident on a half-

space of spherical scatterers (Fig. 3.5.1), the incident field is E (F)=
ye'** and can be expanded in vector spherical waves

Einc (F) = ™% E % Var(2n +1) [Ryﬁm (k775) — RgM_,, (k775)

n=1

+RgNy, (k775) + RgN . (k77;)] (87)

where RgM,,, (k77;) and RgN v (k77;) are regular vector spherical
wave functions [8,30]

(2n 4+ 1)(n — m)!

RgM ., (k7) = 4rn(n+ 1)(n + m)!

V X [Fin(kr) P (cos 9)e'™?] (88)

Rgﬁ,,m (kF) =%V X RgHmn (kF) (89)
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and jn(kr) is the spherical Bessel function and P;*(cosf) is the as-
sociated Legendre polynomial. The symbol 77; is used to denote the
vector pointing from 7; to 7. To solve (86), we express the exciting
field and the scattered field in terms of vector spherical waves. At a
point 7 in the vicinity of the jth particle, let [4,8]

(B ™), = X [at() R Mo (k775) + b3, () Ry N o (k775)]
v=1 uy=—v
; (90)
Then, for scattering by spheres

THEE () =30 3 (T8 att (2] (77)

n=lm=-n

+ T (VN (k7)) (91)

where M, (k77;) and N,..(k77;) are vector spherical functions with
the spherical Bessel function j, in (88) and (89) replaced by spherical
Hankel function of the first kind A, ,and a,,b,%,a%,,b:, are the un-
known expansion coefficients. The scattering coefficients, 7{¥)*t and
T for spheres with radius a,, and permittivity ¢,, , are those of
Mie scattering [4,8]

T(M)q — [p'xjﬂ(pn)]l jn(cu) — [C‘xjn(g't)]l jn(pn)

(92)

T [puba(pa)] () = [€idn(C)] Ralpu)
[P dnl(ps )]' 2 3n(Cer) = [€a13n (s )]l P}, Jn(Psy)
(N)sy — _ ! ! 1 i 1 1 1 1
T b (pa )T € 3l = il Go ) 72, )

where p,, = ka,, and (,, = k,,a,,. We can further make use of the
vector translational addition theorem to expand the spherical vector
waves M, (k77) and N, (k¥7;) about 7; as center. Since | ¥ —
;i |<| F; — 71 |, the vector translational addition theorem is [8,30-33]

Mo (k770) = 3 D [Apmn (k7571) RgM o, (K775)

v=l p=—v

+Bymn (k7571) RgN,, (k775) ] (94)

Non (k777) = Z Z [ Buvmn (kﬁ?‘?) Rgﬁnv (kﬁ)

v=1 y=-v

+A,ymn (k7;71) RgN ,, (k775) ] (95)
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where

A#V"m (er_rl‘) 7'”“( 1)“ Z a’(m’ n l ~HyV I p)a(n, v, P)

p=0
X by (k| 7577 |) B~ (cos bryag) 75T (96)

[= -]

Z a(m’n | —V I bp - l)b(n,v,p)

=0

X hy (k| 7577 |) B * (cos b55;) €% (97)

Buyvmn (kﬁ) =7"m -
Yuv

(2n + 1)(n — m)!
4rn(n + 1)(n + m)!

Ymn = (98)

sman v |5) =1y )l

x(r?z Z —(mp+p)) (8 '(; f)’) (99)

(n—m)li(v - p)i(p + m + p)!

<(m i olew) (35 8)  om

a(m,n | ~p,v | p,) =(~1)"*(2p + 1)\/ (nt mPy+ 4o —m - w)

oy 1,0) =g [y 1) + i+ 1) — plp + 1)) 101
b p) = = oL (v p 4 ) 49— )
X (n+p-v)n+v-p+1)' (102)

and
v Ja Js
m; my; —(my +my)

is the Wigner 3; symbol [33].
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Equations (87), (90), (91), and (94)-(97) can be substituted into
(86). To solve (86), we assume the trial solution

a’(z) =a;{,e‘K“ (103)
bii(z;) =Piie™* (104)

where K is the effective propagation constant. Equating terms with
the same RgM,, (k77;) and thesame RgN,, (k77;) give the following
two equations:

a;‘,;’eiKz,' —e'ki % A /4,;(2,, +1) (5“1 - 5“(_1))
L o0 o

le, Z Z z n"( l)p 7Im ( 1)p Ia,q

51=1n=1 p=0
X {T(M)" Va(p,n | —p,v |p)a(n,v,p)
T(N)‘l a(#,n | — by V Ip,p 1) b(n’V’p)} (105)

Bt =etu = \/47r(2v+ 1) (8 + 8u(-1))

L o0 oo

&K% E Z Zn"( 1)[4+1 VYpn ( l)pIa,q

l,—l n=1 P—O
X { T(M)" a" a'(/-"a n|—p,v|pp- 1) b(n’ u,p)
— T g2t a(p,n | —p, v | p)a(n,v,p)} (106)

where §,,, is the Kronecker delta function and

I;i" = dF;g,,.,, (F( - Fj) e‘K("“‘i)hP (k | m |) Pp (COS 0;‘—,—,‘)

220
(107)
The volume of integration of (107) consists of the half space z > 0
less a sphere of radius R,,,, = a,; +a,, centered at the point 7;. This
is due to the fact that particles do not interpenetrate each other so
that g,,, (F) =0 for r < R,;, . We rewrite g, ,, (f; — 7;) as follows

o0 Fi = 73) = 1+ [gs0, (Fr = F5) = 1] (108)

so that the integral I,**' in (107) can be decomposed in the following
manner
I;‘“' = I1 + I3 (109)
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hm o e ), ot
F1=Fj1>Raj 0

27 Pt etksi

~R(K — k)
I, =/ dFl [g:,'ag (Fl - Fj) - 1] eiK(z;-—z,')
F1-7iI>R.; 0

X hy (k| 7175 |) P, (cos O7)
=4wi* M, (k, K | R,,,,) (111)

e~*%% + 4x? L, (k, K | R,,.,) (110)

where

2

Rl ]
L, (Ic,K | R,,.,,) = ——21 [kh’ (kR,,,,)ip(KR,;,,)
- th(kR'in)]p(KR';n)] (112)

M, (k,K | R,,,,) = /00 drr? [g,,4,(r) — 1] hp(kr)jp(Kr) (113)

Ruju

Substituting (110) and (111) into (105) and (106) gives two types
of terms in (105) and (106). One type of terms has a
exp(ikz;) dependence corresponding to waves travelling with the prop-
agation constant of the incident wave. The terms with propagation
constant k should balance each other giving the generalized Ewald-
Oseen extinction theorem [8,34]. The physical interpretation is that
the medium generates a wave that extinguishes the original incident
wave.

L Viar(2v +1) (6n1 - #(—1))
L o oo

+ZZZ"H( —-1)*( z)"‘y“"k,(K—ﬂ.zk)

81=1 n=1 p=0
X {T(M)u a" a(p,n | —pey v |p) a(n, V,P)
— T Bta(p,n | —p,v | pyp — 1)b(n,v,p)} =0 (114)

T (a4 )

L o0 oo

1 »Tun 27t
LD IPIOILACACD ot =t 2

31=1n=1 p=0
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X {T(M)” oy a(psn | —p,v | pyp— 1) b(n,v, p)
— T it a(uyn | —p, v | p)a(n,v,p)} = 0 (115)

The other type of terms has an exp(iKz;) dependence corre-
sponding to waves travelling with the propagation constant of the ef-
fective medium. Balancing the terms with propagation constant K
gives the generalized Lorentz-Lorenz law [8,34].

L oo oo

i =453 303 m (-1 —ip e

#;=1 n=1 p=0
(L, (k. K | R.,.,) + M, (k,K | R,,.,)]
X {T(M)"a a(”’n I — v Ip)a(n,V’P)
T(N)n L a(p,n | —pyv | pyp— l)b(n,u,p)} (116)

=tn 355 3 iy e

s51=1n=1 p=0
(L, (kK |R,..) +M, (k, KIR-,-.)]
x {T‘“"' oyt a(p,n | —p,v | p,p — 1) b(n, v, p)
= T8 g2t a(p,n | —p, v | p) aln, v, p)} (117)

The generalized Lorentz—Lorenz law provides the necessary dispersion
relation for the effective propagation constant K.

On examining the generalized Ewald—Oseen extinction theorem
and using the relations [8],

(n— p)i(v + p)!
(n+ p)i(v — p)!

a(—p,n | p,v|p)= ra(pyn | —pv|p)  (118)

EZ J_r :3:8: J_r Z;;“(l"" | —p,v | pp—1)
(119)

it follows that a’';, = —a}} and B, = Bi.. Furthermore, by making
use of the following summation identities

a(—#,ﬂl,u,lllp,p-l)'—‘ -

- i(—i)’a(l,n | =1,v | p,p — 1)b(n,v, p)

p=0
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=Y (~iya(1,n| ~1,¥ | p)a(n,v,p)

»=0

= -i"-"(2”;; (13';(’;;’ . (120)

and setting
ol =X1’,"z2—\/47r(2n +1) (121)
=Y 5 V/Ar(2n 1 1) (122)

equations (114) and (115) of the generalized Ewald-Oseen extinction
theorem can be simplified to a single equation

. L oo '
T s F ] 8 r ]
K—k=-33 n, [TP0nX{ + IOV (20 4+1)  (123)

;=1 n=1

Equations (116) and (117) of the generalized Lorentz—Lorenz law are
also simplified to

L o o

Xp=-2r) > > "n,(2n+1)

51=1n=1 p=0

[LP (k’K I R‘i’l)+MP (k’K | R‘:"l)]

X {T,EM)" Xiva(l,n | -1,v | p) A(n,v,p)

+ T Yiia(l,n| —1,v | p,p— 1) B(n,v,p)}  (124)

L o o

Y, =- 2#2 ZZn.,(2n+ 1)

s1=1 n=1 p=0
[Z, (k, K | R,,.,) +M, (k, K | R,,.,)]
X {T,fM)" Xita(l,n| -1,v|p,p— 1) B(n,v,p)

+ T,&N)” lfl": a(l,n I -1,v |p) A(n” V,p)} (125)
where
_vr+1)+n(n+1)-pp+1)
A(n,v,p) = A(n 1) (126)
B(n,v,p) = Vin+tv+p+1)(v+p-n)n+p-v)(n+v-p+1)

n(n + 1)
(127)



8.5 Effectrive Propogation Constants for Media 277

Equations (124) and (125) form a system of simultaneous homoge-
neous equations for the unknowns X;! and Y} . For a nontrivial solu-
tion, the determinant of the coefficients must vanish. The requirement
for the vanishing of the determinant gives an equation for the effective
wavenumber K . Thus, for given particle sizes a,, , number densities
n,; and permittivities ¢,,, s, = 1,2,..., L, we calculate the Mie scat-
tering coefficients T{*)*+ and T(M)*: | the pair distribution functions
9,4, (), and the expressions L, (k,K | R,,,,) and M, (k, K | R,..) .
The effegtive propagation constant K is then calculated by search-
ing it in the complex plane such that the determinant of equations
(124)-(125) will vanish.

In the following, we summarize the numerical algorithm that we
used to compute the effective propagation constant K . For the values
of ka up to 2.5, and L species of particles, the determinant of the
coefficients of X} and Y, is computed numerically by retaining a
maximum of 12.L simultaneous homogeneous equations for X;! and
Yo, v = 1,2,...,6;8 = 1,2,...,L. The Wigner 35 symbols are
generated by a computer code. The elements of M, (k,K | R,,,,) for
p=0,1,...,12 were computed by numerically evaluating the integral
in (113) for r between R,, and 5R,,, , the value of g, ,,(r) -1 is
assumed to be zero for r larger than 5R,,,,-

For the given values of ka,; and f,, , the roots of the determinant
were searched in the complex K plane (K, + iK;) using Muller’s
method. We have used two good initial guesses. One initial guess is
provided by the low frequency solution for the effective propagation
constant under quasicrystalline approximation of (69). The other good
initial guess is the result under Foldy’s approximation obtained by
replacing X,, and ¥, by 1in (123)

. L oo

K® = Z—: 3N n, [T 4 T (20 4 1) (128)

5 1=1n=1

where K(F) denotes the effective propagation constant under Foldy’s
approximation. These two guesses could be used systematically to ob-
tain quick convergence of roots at increasing higher values of ka,, .
In the following, we shall present the results for the normalized phase
velocity k/K, and the effective loss tangent 2K,;/K, . The effective
loss tangent accounts for attenuation due to both scattering and ab-
sorption.
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In Figs. 3.5.2-3.5.5, we illustrate the effective propagation con-
stant for the case when the particles are of identical sizes. In Figs.
3.5.2 and 3.5.3, the normalized phase velocity and the effective loss
tangent are plotted as a function of ka for f = 0.1 and f = 0.2.
The results for the case of lossless particles, € = 3.2¢,, and the case of
lossy particles, € = (3.2 + 10.15)¢,, are also illustrated. We note that
the phase velocity first decreases with increasing particle size and oscil-
lates as particle size increases further. The oscillation is a characteristic
of resonant scattering for large particles. Comparing the loss tangents
for the two cases of lossy and lossless particles, we note that, for small
particles, absorption dominates over scattering as the effective loss tan-
gent for lossy case is much larger than that for lossless case. For ka
up to 2.5, the loss tangents are comparable in magnitude in the two
cases. In Figs. 3.5.4 and 3.5.5, we show respectively phase velocity and
loss tangent versus f for ka = 1.5 and ka = 2 with ¢ = 3.2¢,. We
note that the phase velocity decreases as f increases since the phase
velocity for the scatterers is lower. As a function of f, the effective loss
tangent first increases, then rises to a peak and decreases as f further
increases. This indicates that the medium appears more homogeneous
as f further increases beyond a certain value.

In Figs. 3.5.6-3.5.9, we illustrate the case when the particles are
of two different sizes. In Figs. 3.5.6 and 3.5.7, the normalized phase
velocity and the effective loss tangent are plotted as a function of ka,
for f =0.1 and f; = 0.2 with ka, = 0.5 and f; = 0.1. The results
for the case of lossless particles, €, = €; = 3.2¢,, and the case of lossy
particles, ¢, = ¢ = (3.2 + 70.15)¢, , are illustrated. In Figs. 3.5.8 and
3.5.9, we show respectively phase velocity and loss tangent vs f; for
Ica, = 1.5 and ka, = 2 with kal = 0.5, fl = 0.1, and €1 = €3 =
3.2¢,. We see that the location of maximum attenuation occurs at a
larger f; for the case of larger ka. This indicates that independent
scattering has a wider regime of validity for larger particles.

In Figs. 3.5.10-3.5.13, we illustrate the case when there are four
species of particles represented by four different sizes. In Figs. 3.5.10
and 3.5.11, the normalized phase velocity and the effective loss tangent
are plotted as a function of kay for fy = 0.05 and f; = 0.1 with
kal = 0-2, kag = 0.3, kaa = 0.5 and f]_ = 0.1, f) = 0.15, and
fs = 0.05. We also compare the results for the lossless particle case,
€ = €3 = €3 = €4 = 3.2¢, and the lossy particle case, ¢, = €3 = €5 =
€ = (3.2 4+ 70.15)¢, . Figs. 3.5.12 and 3.5.13 plot respectively the phase
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Figure 3.5.2 Normalized phase velocity k/K, as a function of ka for

(1)f = 0.1 and (2)f = 0.2. The results of lossless particles, ¢ = 3.2¢,, and
of lossy particles, € = (3.2 + i0.15)¢,, are illustrated.
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Figure 3.5.8 Effective loss tangent 2K;/K, as a function of ka for (1)f =
0.1 and (2)f = 0.2. The results of lossless particles, ¢ = 3.2¢,, and of lossy
particles, ¢ = (3.2 + i0.15)¢,, are illustrated. N
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Figure 3.5.4 Normalized phase velocity k/K, as a function of f for
(1)ka = 1.5 and (2)ka = 2, and € = 3.2¢,.
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Figure 3.5.5 Effective loss tangent 2K;/K, as a function of f for (1)ka =
1.5 and (2)ka = 2, and € = 3.2¢,.
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Figure 3.5.6 Normalized phase velocity k /K, as a function of ka; for u
(1)f2 = 0.1 and (2)f2 = 0.2, where ka; = 0.5 and f; = 0.1. The results
of lossless particles, € = €3 = 3.2¢,, and of lossy particles, €; = €2 =
(3.2 + 0.15)¢,, are illustrated.

100

— lossless

i

102 3

LOSS TANGENT (23 /Xr)

W‘JE

0.000 500 1.00 1.5 2.00 2.5

to)
Figure 3.5.7 Effective loss tangent 2K;/K, as a function of ka; for (1) f; =
0.1 and (2)f; = 0.2, where ka; = 0.5 and f; = 0.1. The results of lossless
particles, €; = €3 = 3.2¢,, and of lossy particles, €; = €3 = (3.2 + ¢0.15)e,,
are illustrated.



282 8. Effective Propagation Constants In Media
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Figure 3.5.8 Normalized phase velocity k/K, as a function of f; for

(1)kaz = 1.5 and (2)kaz = 2, where ka; = 0.5 and f; = 0.1 and €; =¢3 =
3.2¢,.
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Figure 3.5.9 Effective loss tangent 2K;/ K, as a function of f; for (1)kaz =
1.5 and (2)kaz = 2, where ka; = 0.5 and f; = 0.1 and €; = €3 = 3.2¢,.
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Figure 8.5.10 Normalized phase velocity k/K, as a function of ka4 for
(1)fs = 0.05 and (2)fs = 0.1, where ka; = 0.2, ka; = 0.3, kag = 0.5 and
fi = 0.1, fa = 0.15, f3 = 0.05. The results of lossless particles, €¢; = €3 =
€3 = €4 = 3.2¢,, and of lossy particles, €; = €3 = €3 = €4 = (3.2 + i0.15)¢,,
are illustrated.
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Figure 3.5.11 Effective loss tangent 2K; /K, as a function of ka4 for
(1)fs = 0.05 and (2)f; = 0.1, where ka;, = 0.2, kaz = 0.3, kas = 0.5 and
fi=o01, Ja = 0.15, f3 = 0.05. The results of lossless particles, €, = €2 =
€3 = €4 = 3.2¢,, and of lossy particles, €; = €3 = €3 = €4 = 3.2+ 10.15)eo,,
are illustrated.
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Figure 3.5.12 Normalized phase velocity k/K, as a function of f; for
(1)kasy = 1.5 and (2)kay = 2, where ka; = 0.2, ka; = 0.3, kazg = 0.5,
fi=0.1, fa =0.15, fs = 0.05, and ¢; = €3 = €3 = €4 = 3.2¢,.
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Figure 3.5.13 Effective loss tangent 2K;/K, as a function of f; for
(1)kay = 1.5 and (2)kay = 2, where ka; = 0.2, kazg = 0.3, kag = 0.5,
f]_ = 0.1, f) = 0.15, f3 = 0.05, and €1 — €3 —€g = €4 = 3.260.
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velocity and the loss tangent as a function of f, for ka, = 1.5 and
kay = 2 with ka1 = 0.2, ka, =0.3, kas = 0.5, f1 = 0.1, fz = 0.15,
fs = 0.05, and € =€ = €3 = €4 = 3.2¢,.

We have shown the numerical results for the cases of one, two
and four different species. The numerical algorithm can be extended
to more number of species.

¥
3.6 Bnergy Conservation and Ladder Approximation
for Dense Media with Multiple Species

In multiple scattering of waves in lossless media or slightly lossy
media, one important problem is to calculate the second moment of
the incoherent fields (such a problem is often neglected for media of
moderate loss or for cases of extremely long wavelengths). A common
approximation to the Bethe-Salpeter equation of the second moment
is the ladder approximation. The second moment equation also utilizes
the first moment Green’s function and the first moment of the field.
Thus, the result of the second moment and the question of energy
conservation depends on the choices of approximations for the first
moment equation as well as that for the second moment equation.
A test of energy conservation is provided by the integrated optical
relation [8].

In the following, we shall show that the ladder approximation and
the quasicrystalline approximation with coherent potential satisfy the
integrated optical relation exactly. In the process, we have also derived
the ladder approximation for dense medium with multiple species of
particles taking into account the effect of correlated scatterers.

The time-averaged Poynting’s vector S is defined as

1

5= 4iwp

{—FX(VXF)+FX(VXF)} (129)

We also use angular bracket to denote ensemble average. The inte-
grated optical relation states that, for lossless background and parti-
cles, the integration over space of the divergence of the time averaged
Poynting’s vector must be zero.

/dF(V-F) =0 (130)
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The vector wave equation governing the electric field is
— 3 N e
EM=F"F+> / &G, (7P U F)EF)  (181)
i=

Let the operator W be defined by
x V x E (F) - k*E (7) (132)
so that
—— — N ——
WE-EF=) U'FE®F (133)
=1

The integrated optical relation of (130), by using (129), (133), and the
fact that U} is real for lossless scatterers, assumes the form

‘ 4iwp/d?(7.'§(i-’)) =/sz;l'i_12_{Wap (7) (Ed (F) B (7))
a,B
— Wap (7) (Bs (7) B3 (7))} (134)

In (134), the Greek index subscripts o, =1,2,3 are used to denote
the Cartesian field components.

The coherent field (E (7)) and the coherent Green’s function
both obey the Dyson’s equation [8,17]

VxVx(E®) -k (B(F) = / & FF)-(E(F)  (135)

VxVx (Grm) - # (G#m))

=T6(F - )+/d’"M(r 7). (‘E‘( 7 )) (136)

where M is the mass operator. Equations (135) and (136) are generally
true and the exact mass operator contains an infinite number of terms.
Comparisons with (28) and (41) of section 3.2 show that the QCA and
QCA-CP can be cast in the form of (135) and (136). Thus, (26) and
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(37) give the approximations for the mass operator under QCA and
QCA-CP respectively.

Generally, the second moment of the field obeys the
Bethe—Salpeter equation [8,17]

(Ea(7) E3 (7)) = (Ea (7)) (E5 (7))
+ dry [ dr, [ dFy [ dF
WL LIS
* <Gaa’ (F’ Fl))(ggp' (FI, 7'41))
Loraniprpn (Fus 72 74,75 )( B (72) B (7)) (137)

From (135)-(137), it follows that
Zp:Wap () (Ea (F) E; (7)) =
(Ea(N 3 [ ity (7,72 (53 )
+3 Y /ﬁl/ﬁ,/m(am,(r,ﬂ))

al all ,pll

. Ialall;ap" (Fl, Fz; -'i'-l,?'lz) (Eall (Fz) Esu (F;))

+ 25 S [an [ o [ [ (Guurim)

p al,pl all,ﬁll
- [ ariny (77 (G (7207)
Toramppn (F1,723 71, 73) (Ban (F2) Eju (73)) (138)

Next apply the Bethe-Salpeter equation of (137) to the second
term on the right hand side of (138). This gives

;wap (7)(Ea (7) B3 (7)) =
(Ba ()Y [ dradtzy (7,7 (B (72))
B
+ 2 3 [an [dm [ dry(Gow (77

o’ all’ﬁll
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Ia tat;ap! (?’1, T2 7‘ 1"2) <Eau (7‘3)) (Eﬁu ( ))

+Z Z /d‘I/d”,/J* (Gaor (F, 71)) Intarsapn (Fi, 7237, ”z)

al ot ﬂll

E Z /d—?'/d—*/d—’ /d*' at'ay (F2,73))

a1,B1 az,Ba

' < BBy (1‘2,1‘3)) Iaxﬂ::ﬂxﬁz (?317:4;'_"_;,?;) (Ea, (F.;) EE: (F;»

+ XX S [an [an [ [ miGenimr

p ol ﬁl all ﬁil
‘/d\—u -—: -u (Gﬁﬂ’ (7'2!'7_"1))
a’a" BB (7‘1,1‘2, 71 7'2) (Ean (7‘2) Eﬂu (1‘3)) (139)

Similar manipulation can be applied to Z Wes (F)(E (F') Eg (F)) .

B
The result expression and (139) are then substituted into the right hand
side of equation (134). The limit 7 — 7 is taken and the integration
is carried out over dF . There are eight terms. By interchanging dummy
indices and arguments, the eight terms can be rearranged, factorized
and cast into the following form

4@/% (V-37) =

/d—z‘/d'q Z { Nﬁf! (Fz,?’g) "'Mﬁ"a" (Flzii:?)

o pll

 Taramapn (F1yT237,73) } (Ean (""2)) ﬁ“ (ﬁ))
+>.0) Z/d‘,/d‘sfd‘4/d"/d"/d"

a1 By a3,83 o' B

* (Ga"a;l (7277'3)) (GB“pl (7‘2’ T3 )

: Iaxa:;ﬁxﬂ: (ﬂ;,ﬂ;ﬁ,ﬂ) (Eaz (:’74) E/;g (ﬂ))

. { a"ﬁ" (7'2, 7'2) -— Mﬂ"a“ (7‘2, 1'2) + /d—l Z/d—

o,af
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. [(Gaa' (Fa F1)) - (G;'ox (FI,F))] Ia'a";aﬂ" (‘7—'1’?2;_’ qu) } (140)

From (140), it follows that the integrated optical relation is sat-
isfied exactly if

My (77) = Mpa (77 + Y [ s [ a
al’pl
£
 [(Gatr (F1372)) = (s (72 70)) | Tprasarp (Far s, 7) = 0 (141)
In the following we shall show that the condition is obeyed by
QCA-CP and the ladder approximation that is modified | for dense
medium. From (37), the mass operator under QCA~CP is M which

== L =4
M=) "n, [dFC; (142)

si=1

Let superscript { denote Hermitian adjoint such that

(7 7 = T (72 (143)
It follows from (33) and (38) that
= __,. L -
8 =T+ [drg,u -7)T/CE, (149)
where "
Qjo (T5 —T1) =6,,,,8 (F; — 1) + n, b, (F5 — F1) (145)
From (142), (144), and
ﬁ;’i =T, (146)
for lossless scatterers, it follows that
=} = L L
M=M= Y n, [dr [a0,.,6-7)
85=14=1

E"lf: =t; —sj=— =t
. [cl G:ru. ~-U, G.C, ] (147)
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Next, use ﬁ;’ from (144) to substitute in the first ﬁ;’ in (147). For
the second U;’ in (147), use
?"‘thzi,'

=*%; ;".T L
UJ-, = Cj - Z /dFmQJj:m (Fj _‘Fm)om Gc UJ (148)

sm=1

which is a consequence of (144) and (146). Thus, we get four terms in
the right hand side of (147). Two of the terms cancel on exchange of
dummy indices and arguments. The result is

1‘ = L L
—M=Z Zn,j/df'j/d'ﬁq.,-.,(ij_ﬁ)

8;=1 =1

[%"Tz]‘;‘i =it ="]

M

¢, G.C; -C; G.C, (149)

Since h,,,, (F; — 71) is symmetric with respect to s; and s; as well as
FNN"Y J

T; and 7;, it follows that Ny, qs;, (75 —T1) = n,,4,,4; (F; — 7). Thus

(149) is of the same form as the requirement of energy conservation of

(141) provided that the intensity operator is chosen as

L L
Logrp (5 757,7) = 30 3 [ ary [ 8,08 (55 - 7)

s;=13=1

+ ny, b, (75-7)] Gl (7,71) T, (75 7) (150)

The intensity operator represents a sum of contribution form the same
scatterer as represented by the first term in (150) and from different
scatterers weighted by n,, n,,h,,,, (F; — 1) as represented by the sec-

=|'j

ond term in (150). As noted in the previous sections, 6"j represents

transition scattering matrix of the jth scatterer in the presence of
other scatterers.

It is interesting to compare (150) with the usually ladder approx-

imation. In the usual ladder approximation, the second term in (150)

is absent and secondly the C; in (150) is replaced by T, which is the
transition matrix of the [th particle in the absence of other scatterers.
Obviously, the two cases reduce to each other for sparse concentration
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of particles when n,;n,h,,,, cé.n be neglected and 6'1 is approximately

equal to T;. Equation (150) is also the intensity operator under lad-
der approximation for multiple species which will be useful for second
moment calculations.

3.7 Conclusion

In this chapter, we have studied the problem of effective propa-
gation constants in media with densely distributed dielectric particles
of multiple sizes and permittivities. The problem is complicated by
the fact that for high concentrations of particles, the particles do not
scatter independently. In this chapter, we have employed QCA and
QCA-CP approximations to calculate the effective propagation con-
stants incorporating the effect of correlated scatterers. The imaginary
part of the complex effective propagation constant gives the attenua-
tion rate of the coherent wave due to both scattering and absorption.
The particles in natural geophysical terrain usually follow a drop size
distribution which can be discretized and represented by a histogram.
The approach described in this paper can find useful applications to
such problems of random discrete scatterers of multiple sizes. It also
finds applications to problems of random discrete scatterers of multiple
permittivities in geophysical terrain and composite materials.

The results of the effective propagation constants under QCA and
QCA-CP depend on the pair distribution functions of particle posi-
tions. In this chapter, the pair distribution functions of non-interpene-
trable spheres of multiple sizes are calculated by the Percus—Yevick
approximation.

For the case of small particles, analytic closed form expressions are
derived for the effective propagation constants under QCA and QCA-
CP. The effective propagation constants for moderate size particles
under QCA are solved by numerical techniques.

For problems of lossless particles or slightly lossy particles, it
is also important to calculate the second moment of the incoherent
fields. A common approximation for the Bethe-Salpeter second mo-
ment equation is the ladder approximation which can include the ef-
fect of correlated scattering through the pair distribution function as
discussed in section 3.6. It is also seen in section 3.6 that the QCA-
CP is consistent with the ladder approxixgation in that the integrated
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optical relation is satisfied. The ladder approximation has been used
in conjunction with QCA-CP to derive a set of dense media radiative
transfer equations that includes the effect of correlated scatterers.

Finally, we will mention a few other approaches that have been
used to calculate the effective propagation constants in dense media.
The strong permittivity fluctuation approach uses the bilocal approx-
imation of continuous random medium theory and takes into account
the singularity of the dyadic Green’s function {8,35-37]. The effective
medium approximation consisting of a set of coupled integral equa-
tions for the effective T -matrix and effective distribution functions
has also been used [9,38-41]. The QCA approximation has been used
to consider the case of nonspherical particles [42]. Monte Carlo calcula-
tions have also been made on the pair distribution function of aligned
identical spheroidal particles [43].
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