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1.1 Introduction

This book deals with the theory and applications of differential
equation based numerical methods in the realm of electromagnetic
scattering. To prepare the reader for the advanced discussions of this
topic that will follow in subsequent chapters, it is appropriate to begin
the book with a tutorial review of the underlying concepts and termi-
nology. Such a review will form the heart of this chapter. In addition,
some examples of applications that are not otherwise covered in this
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2 1. Principles of Finite Methods in EM Scattering

text will be considered. It will be assumed that the reader is familiar
with the fundamental physical and mathematical aspects of electro-
magnetic theory at the graduate level. Some excellent references for
this knowledge are those by Stratton [1], Harrington [2], Van Bladel
[3] and Kong [4].

The International System (SI for the French equivalent) is used in
this text. This is a form of meter-kilogram-second (mks) system, with
electrical quantities being expressed in the units actually measured:
volts, amperes, coulombs, ohms, watts, etc. Using our mathematical
notation, vector quantities, including N x 1 and 1 x N arrays, will
usually appear with an overbar, e.g. V. Dyadics and M X N matrices

are most often denoted by a double overbar, e.g. G for a Green’s
dyadic. Other symbolism will sometimes appear, at the discretion of
individual chapter authors. Examples are the use of an underbar to
indicate a row vector of unknowns (e.g. a), or brackets to represent
arrays, as in [A]. Such chapter dependent notation will be defined
locally, either formally or by way of an obvious context. Unit vectors
are uniformly designated by a circumflex; for example, a unit normal
vector on a surface is written as 7.

As is customary in electrical engineering, sinusoidally time-varying
quantities (known as time-harmonic or frequency-domain) are repre-
sented by complex phasor quantities having assumed temporal varia-
tion of e/*. The conversion from a complex phasor, say E(T), to the
corresponding time-harmonic function, E(F, t) is effected by the opera-
tion £ = Re{Ee’“*}, where Re denotes the real part. Time-harmonic
fields will be considered in Chapters 2 through 6, with the time-domain
case appearing in Chapters 7 and 8. In this introductory chapter, both
frequency- and time-domain cases will be covered.

Numerical approximations will be considered in the next section
for the solutions of differential equations using either finite differences
or finite elements. These techniques will henceforth be referred to as
the “finite methods”. When continuous systems are discretized using
finite methods, local interactions result between unknowns. Thus, un-
knowns at discrete spatial points (nodes) are explicitly related only to
their nearest neighbors in space. This results in highly sparse matrices
for the case of time-harmonic fields, while requiring causal updating
due only to nearest spatial neighbors in time-domain applications. In
contrast, integral equation formulations typically produce global inter-
actions between discrete unknowns, thus generating full system ma-
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trices for the time-harmonic case and all-inclusive connectivity in the
transient evolution of the time-domain equations. As a result of the
numerical efficiency brought about from local, versus global, interac-
tions, the finite methods have the potential to solve larger and more
complex electromagnetic problems than can be handled by volume in-
tegral equations, given the same constraints on computer time and
available memory.

Although the finite methods offer numerical efficiency they are, by
necessity, formulated as boundary-value and initial-value problems. As
such, the solution of scattering and radiation problems in unbounded
(open) spatial regions requires a mechanism for coupling closed region
numerical solutions to the exterior space. This procedure must also
ensure that the proper radiation conditions on the scattered field are
satisfied. With the exception of the “infinite element” approach [5],
a closed region is used to bound the spatial mesh employed in the
finite methods. Various procedures for properly terminating, at least
in an approximate numerical sense, the outer boundary of the mesh
are employed in the subsequent chapters of this book. We will consider
these methods from a basic conceptual point of view, in section 1.3.

1.2 Finite Methods

The finite methods may be classified as the numerical techniques
that provide local interaction discretization for solving continuous
boundary-value and initial-value problems [6]. As such, the finite meth-
ods offer a means to approximate the solution of specified differential
equations in one or more spatial dimensions, as well as in time.

We will first consider the general idea of polynomial interpolation,
followed by its application to finite-differences, as supported by exam-
ples incorporating phasor and time-domain concepts. This will be fol-
lowed by a discussion, with examples, of the finite element method. A
particular point of view will be developed that unifies the finite meth-
ods by identifying finite differences as a special case of finite elements.

a. Finite Difference Approximation

The most common finite method has been that of finite differences,
where discrete approximations to partial derivatives are obtained by
differentiating a piecewise polynomial, or other approximating func-
tion, which has been point-matched to the actual unknown function at
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Figure 1 Point matched polynomial approximation around z=z;.

the nodes of the problem. As a simple example, consider the finite dif-
ference (FD) approximation of the various derivatives, up to the n-th
order, of an unknown function, f(z), in one-dimension. The domain of
z is partitioned into generally unequal segments, separated by ordered
nodes, zk, for k = 1,2,3,---, M, as is illustrated in Fig. 1. In the
region of z that contains the i-th node, at which point z = z;, let f(z)
be approximated by an n-th order polynomial,

f(x)zan:z:“-i—an..la:““‘l v tayz+ao (1)

The n+1 unknown coefficients can be found as linear functions of n+1
of the unknown nodal values of f(z). Usually, these particular match-
ing nodes are taken to bracket the i-th node except near the ¢ = 1
and ¢ = M endpoints of the domain on z. The linear relationship
between the coefficients and the nodal values of f(z) is developed by
point matching the polynomial in (1) at the n+1 nodes, resulting in
the linear system defined by

z": (zx)? ap = f(zx) form+1 va.lugs of k (2)

=0

After inverting this system, the resultant linear functional form for each
a, can be substituted into (1). The FD formulas for each derivative up
to the n-th order can then be obtained by analytically differentiating
(1), followed by an evaluation at z = z;. This procedure will yield
a formula for each of the derivatives which is expressed as a linear
function of the n+1 nodal values of f(z).
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Figure 2 Finite difference grid in a rectangular region.
For example, if n = 2 with equal segments z; = i Az, then (1)

results in a quadratic expression. By enforcing (1) at the three points
k=t—1,k=1and k =1+ 1, a 3 x 3 linear system,

1 zi4 2?_1 ag f(zi-1)
1z 2t |-]a| =] fl=) (3)
1 =z $?+1 az f(~'5£+1)

is obtained. After inverting this system, we substitute the a,’s into (1)
and differentiate once and then twice to obtain the well-known finite
difference formulas for the first and second derivatives,

df(z:i)  f(2iy1) = f(ziz1)
de +12A$ : (42)

L) | fin) = 2f(@) + f(Eim)
dz? (Az)?

(4b)
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Extensions of this idea can be made to higher order polynomial
approximations and to multiple dimensions. As an example, consider
overlaying a 2-D rectangular region, defined by0 < 2 <aand 0 <y <
b, with a regular grid of nodes located at (z;,y;) fori = 1,2,---,6 and
j=12,---,7, as per Fig. 2. About a given point (z;,y;) in this mesh,
we will approximate a continuous function, f(z,y), by a 2nd-order
polynomial form

fz,y)~cot+eaz+ery+ear?+eiy? (5)

The five coefficients are found by equating the expansion to the func-
tion at the five nodes: (z;_1,%;), (%i,¥;), (Zi+1,¥5)s (%i,¥j-1), and
(zi,Y;j41), followed by an inversion of the resultant 5 X 5 linear sys-
tem. Finite difference approximations to the partial derivatives are
then found by differentiating (5). All of this work results in formulas
which are identical in form to (4), e.g.

8 f(zi,9;) x L@i1:95) — 2 (20, 95) + £(Zi-1,95) (6)
Oz? (Az)?

This approach can be applied as well to irregular meshes, having non-
rectangular and non-equispaced nodal arrangements. As will be shown
in subsection 1.2d, the finite difference method can be thought of as
a special case of a more generic technique, called the finite element
method.

b. Simple Finite Difference Example

The finite difference solution of a boundary-value problem is set
up by replacing the analytical derivatives contained in the differential
equation by finite difference formulas at each nodal point where the
solution function is to be found. Thus, there results a system of linear
equations relating the unknown nodal values of the solution function
to both the known excitations (drivers) of the differential equation and
the known boundary-values of the solution function.

To illustrate this, let us set up the finite-difference frequency do-
main (FD-FD) solution to the Helmholtz equation in the same rect-
angular region, defined by 0 < 2 < a and 0 < y < b, as depicted in
Fig. 2. The partial differential equation (PDE) being considered is the
inhomogeneous Helmholtz equation,
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{V? + &} f(z,9) = 9(=,v) (™

where the Laplacian operator is V? = 8%/0z% + 8%/8y*. The forc-
ing function, g(z,y), is to be specified and the solution, f, is assumed
to satisfy homogeneous Dirichlet boundary conditions (BC’s) on the
perimeter: f(z,0) = f(z,b) = f(0,y) = f(a,y) = 0. This problem
could be found, for instance, in solving for the TM eigenmodes of a
metallic rectangular waveguide whose cross section encloses the solu-
tion region. In such a case, f = E,, g = 0 and the eigenvalues of x are
assumed to have been found through a separate procedure.

The discrete unknowns are the nodal values of f(z;,y;) for i =
2,---,5and j = 2,-.+,6. We will denote the approximate numerical
solution for these nodal values as f; ; = f(zi,y;). A five node “star”
finite difference approximation to the V2 operator can be constructed
from the sum of (6) and the corresponding form for 82 /3y*. Applying
this to (7) at each interior node yields

{fit1,; + fi-1,;} + {fi;+1+ fij-1}
(Az)? (Ayy?

+ {5"2 - (Ai)g - (AQy)g}fi,j = g(gciv yj) (8)

Enforcement of this equation at the interior nodes leads to a linear set
of equations. To cast these equations into a matrix form, we need to
define arrays for the unknowns, f; ; and the known nodal values of the
driver, g(zi,y;). By ordering these column vectors as

F=faa,fa2: s f235 s fs 6" 9)

and

ﬁ = [g(mziyZ),g(xS’yZ), te ’g(zZyy(i)’ M ,9(35, ys)]T (10)

where the T superscript indicates transpose, the linear system is given

by

|

F=G (11)
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The 30 x 30 matrix is symmetric, sparse and banded

a1
a1
= 0
A=
asy
with

ay2

az?2

as?

0 asq4 ass asg 0 0 as

Ay = Gnm

2 2
T (A2 (Ayy

1
Anntl = Bk k-1 = ‘(“"AT)j

2
Gnn =K

1
Cnnts = Ok k-4 = (‘W

(12a)

(12b)
(12¢)
(124)

(12e)

Note that the m-th row of A represents the equation defined by en-
forcing (8) at the node (%, j) corresponding to f; ; of the m-th element
of F in (9). Inversion of (11) can be accomplished by exploiting the
sparsity and block-matrix nature of A. Such procedures will allow the
practical solution of very large systems, as will be discussed further in
subsection 1.2e and in Chapters 2 and 6.

c. A Brief Visit with the FD-TD Approach

In the example of the previous subsection we considered the finite
difference solution of a simple boundary problem centered about the
Helmholtz equation in 2-D. This approach can be extended to higher
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dimensions, including the time-variable. Such is the case in Chapter 8,
where Taflove and Umashankar begin by constructing a finite-difference
time-domain (FD-TD) discretization of Maxwell’s equations in 4-D
space-time. To set the stage for this development, we will consider a
simple example of FD-TD as applied to the solution of an initial-value
problem involving the 2-D (1-D space plus time) wave equation.

In particular, the wave equation for the scalar field u(z,t) in a
lossless, uniform and non-dispersive medium is given by the PDE,

v 18%

92~ & o
where ¢ represents the frequency-independent (hence non-dispersive)
propagation velocity of the field u. In the electromagnetic case, this
field can represent, for instance, the voltage or current on a uniform
TEM z-directed transmission line. Another example is the transverse
(to 7) electric or magnetic fields in an ideal plane wave propagating
in the +z direction. There are similar examples in acoustics and me-
chanical vibration. :

To continue the example, let us first define the domain of the
solution as 0 < z < @ and ¢ > 0. This domain is illustrated in Fig. 3.
For the domain defined, (13) is to be solved subject to the following
mired initial-value and boundary-value conditions:

=0 (13)

u(z,0) =¢(z) for0<z<a (14a)
u(0,t) =0 fort >0 (14b)
u(a,t) =0 fort >0 (14c)

where g(z) is specified so that ¢(0) = g(a) = 0. These conditions could
define such phenomena as the deflection of a string which is pinned
at z = 0 and z = @ or the £,(z,?) electric field in a planar resonator
model with conductor plates at # = 0 and z = a. The analytical
solution can be obtained through a variety of elementary methods [7].

Since the wave equation is classified as a hyperbolic PDE, [8], the
solution at any point will propagate along outbound “characteristics”
which, for the example case, are lines in 2-D space-time defined by
Az /At = +c. Characteristic lines for the endpoints of the initial-values
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u {o, t) =0 S . Uf(a,t)=0

IC: U(x,0)=qlx)

Figure 3 Space-time domain for wave equation solution.

are shown in Fig. 3. For problems in 3-D and 4-D the characteristics
become, respectively, space-time cones and expanding spheres. The
characteristics can be thought of as bounding the region of space-time
which is causally influenced by an “event” at a given (7,t) point.
Characteristics play an important role in the numerical solution
of processes defined by hyperbolic and parabolic (e.g. heat transport)
PDE’s. These processes are set up as equations of evolution and their
numerical solution proceeds using a “marching in time” algorithm, with
time step At. It was recognized as early as 1928, by Courant, Friedrichs
and Lewy [9], that the ratio of spatial segmentation distance to time
step size should be constrained so as not to violate the bounds defined
by the characteristics. The result of ignoring the CFL criterion (also
referred to as the “Courant limit”) is the production of an ill-posed
and unstable numerical solution, with rapidly diverging accuracy. This
constraint applies not only to the finite method discretization of the
original PDE problem but also to the time-stepping solution of the
corresponding integral equation formulation for the same physical pro-
cess. The Helmholtz equation is an example of an elliptic PDE. These
do not have any characteristics in real space and, hence, we did not
concern ourselves with this issue in setting up the previous example
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in subsection 1.1b. The Courant limit will be discussed further in the
advanced time-domain applications considered in Chapters 7 and 8.

Let us return now to the problem at hand: discretizing (13) and
(14) using finite differences. In analogy with the Helmholtz equation
example, we first define a mesh to overlay the space-time region in
Fig. 3. This is shown in Fig. 4. The node positions are located at
(zi,t;) = (iAz,jAt), where Az = a/N. The numerical solution for
the (zi,t;) nodal values are denoted as u; ;. We next apply three-point
central difference formulas for the partial derivatives in (13), at node
(z:,t;). This is similar to what was done in (8) for the Helmholtz
equation. The result, after rearranging terms, is the time-marching
equation

wiier =77 (g1 + vicr;) + 21—y wij — iy (15)
where the dimensionless constant is

At
7= ¢ AZE (16)
The CFL condition for stability is that 4 < 1. If ¢ is not a spatial
or temporal constant then the CFL condition on 7 must be satisfied
locally in space-time. To begin the evolution of (15) at i = 1 we note
that the initial condition (IC) is given by u;0 = ¢(z:) = ¢;, with u; _y
assumed to be zero. This yields

w1 =72 (gt + ¢i-1) + 20 - 1) @ 17

where we note that go = gv = 0, as assumed in (14). After initiating
the j=1 step using (17), the updating continues with (16).

An alternate approach, [10], is to use two first-order “state equa-
tions” to represent the wave equation in (13). This is done by defining
two state variable functions: the original unknown u(z,t), plus a new
function, w(z,t), where

Jw du
R (182)
ou ow
%% (18b)
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Figure 4 Finite difference mesh for the wave equation showing forward
stepping evolution point.

This first-order coupled PDE system may be recognized as the well-
known “telegrapher’s equations” from transmission line analysis. The
wave equation can be generated by differentiating (18a) with respect
to z and (18b) with respect to t, followed by equating the resultant
2nd-order cross derivatives of w.

To discretize these equations, we will use a “leapfrog” mesh, [11:
489-496], as shown in Fig. 5. A key feature of this mesh is the space-
time offset of the nodes for defining 4 and w. In particular, let us
define

w; ; = w(zi,t;) fori=0,2,4,---,N-1; j=1,3,5,--- (19a)

ui; = u(zi,t;) fori=1,3,5,---,N ; 7=0,2,4,--- (19b)

Using central differences, we will enforce (18a) at (even,even) (¢, )
nodes and (18b) at (odd,odd) (%,7) nodes. For i = 2,4,6,---,N and
j=0,2,4,---, this procedure produces
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Figure 5 Nodal topology for the leapfrog method showing central dif-
ference points to enforce coupled first-order PDE’s.

Wij41 = Wij-1 _ Uikl = Ui-1,j 20
24t ‘T 2Ax (202)
while for ¢ = 1,3,5,---,N,and j = 1,3,5,---, it gives

Uil — Yij—1 _  Wigl,j = Wi-1,j
2 At - 2Az (20b)
where we have assumed N is odd for terminating the i-index. To begin
the leapfrog evolution, we start by enforcing (20a) for j=0, with w; _,
assumed to be zero, resulting in

Az
Wig =~ (gi+1 — Gi-1) (21)

The notation, ¢; = ¢(z;) = u(z;,0) for the nodal values of the specified
IC, was employed in (17). After the startup in (21), the relationship
in (21Db) is used to obtain u(i,2), followed by alternating applications
of (21a) and (21b). This leapfrog process has the same stability con-
straint as the original second-order system, namely the Courant limit:
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Az /At < ¢. To get around having double 2 Az and 2 At increments in
defining the central differences, a half-indez scheme is often used. This
will be the case in the time-marching algorithms presented in Chapters
7 and 8. There are numerous other methods for applying the finite-
difference method to create time-stepping solutions to hyperbolic and
parabolic PDE’s. A comprehensive reference on this topic is given in
[11].

An extension of this 2-D space-time leapfrog concept to Maxwell’s
curl equations in 4-D will result in the original Yee algorithm [12]. This
early (1966) FD-TD method employs two interleaved 3-D rectangular
spatial lattices, one for the vector E-field and one for the vector H-field.
The details of the Yee algorithm are discussed in Chapter 8.

d. Weighted Residual Method

The finite element- method can be approached for elliptic, hy-
perbolic or parabolic PDE’s through the “weighted residual method”,
which we will henceforth call WRM [11]. Let us begin in a very general
manner by considering the numerical solution of a specified PDE in an
M-dimensional spatial region or space-time region, to be denoted in
either case as V. Points in the M-D region are given by the ordered
vector, T = (71,72,...,7y ). For example, the Helmholtz equation ex-
ample in part 1.2b had M =2, where 7 was (z,y), while for the wave
equation example in the last subsection, M was also 2 and 7 = (z,t).

The generalized PDE can be written as

D(F)-F(F) =g(F) forreVp (22)

where D(r) is the given dyadic differential operator, f is the unknown
vector function and § is the known driving vector. Essential boundary
data concerning f are known on a surface, Sp, which encloses Vp. An
example is the scalar Helmholtz equation in 2-D, which we previously
considered in (7). :

To find the approximate numerical solution of (22}, we use a basis
function expansion to represent f,

fa(P) =), Un(7)-Ch (23)

where the diagonal dyadic functions,
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ﬁn(’i") = Un,1 ?1 ?1 + Un2 ) Fg +oort Unu Tu ;’}M (24)

are members of the basis set. Each basis function should, ideally,
have the same order of differentiability as does the exact solution. As
N is increased, the approximate expansion in (23) should converge
in a pointwise sense to f(¥). This last condition depends upon how
completely the set of basis functions spans the subspace of functions
occupied by the various solutions to (22). This quality is reflected in
the linear independence of the function set.
Upon substituting (23) into (22), there results,

o— N — ——
D-Fo(r) =Y {D(F)-Un(P)}-Ca =7(F) (25)

n=1

To solve for the N vector coefficients, C,, we enforce this equation
with respect to a succession of N weighted vector integrations over Vg,

J— —_— N —— == = -
(Wi(F),D-F(®)) = ) (Wi(®), D(F) - Un(™)-Cn  (26)

n=1

= (W(F), 9(F)) for k=1,N
with
(), G(F)) = /V W(r)-G(r) d** (27)

indicating an integration of the inner (dot) product of the two indicated
functions over V.
The set of diagonal dyadics,

Wi(F) = w1 P17y + we 2 Fa P2 + -+ + Wieour T P (28)

is termed the “weighting functions” in WRM. This set is called the
“testing functions” in the MoM. There are N vector equations in (28),
each of which contains M scalar equations for the M components of
each C,. Thus, the linear system has rank N - M. By using a certain
class of basis and weighting functions, this matrix system can be made
very sparse. This will be demonstrated in the next subsection.
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Before continuing with the development of the WRM, let us pause
briefly to consider some of the terminology presented here. The proce-
dure just considered could just as well have been applied to an integral
operator equation having the form of (22). In fact, when applied to in-
tegral equations in electromagnetics, the WRM concept has historically
been termed both the moment method and the method of moments
(MoM), [2]. The reference to “moments” is due to the similarity of the
inner product integral terms in (27) to statistical moments found in
probability theory. Origins of the WRM terminology are in the area of
finite elements, as applied to structural and fluid dynamics problems.

Let us now return to the details of the WRM. In setting up the
linear system in (26) there are some additional considerations that
need to be addressed. One of these concerns the support region of
the basis functions: either full-range (over all of V;) or compact (each
being nonzero over only a portion of V). An example of full-range basis -
functions is the set of complex exponentials employed in Fourier series,
where the set of C,’s are termed the “spectrum” of the expansion.
Compact basis functions are common to finite element applications,
as well as MoM solutions of integral equations. Usually, these basis
functions are selected so that at each node of the discretized problem
all basis functions, ezcept one, are zero. At its associated node, where
it is nonzero, the basis function will usually be set to unity. In such
a case, the coefficients in (23), C,.’s, represent the solution values of
F(¥) at the N nodes.

Another consideration involves the set of weighting functions.
There is obviously an unlimited selection available. Three of the more
common types are:

(1) Point Collocation, (also known as simply “collocation”) uses a
delta function, wg,m = §(F — Tx) for each diagonal component of

W in (28). The effect of this is to reduce the integration moments
in (27) to simple point-matching at the respective nodes, resulting
in nothing more than a special case of the finite difference method
where the polynomial approximation in (1) and (2) is replaced by
the basis function representation being employed to construct the

U,. Thus, point collocation can be viewed as equivalent to finite
differences. An advantage of this approach is its relative simplicity
in generating the matrix elements from (26), since integrations are
reduced to enforcing the approximation at the node points. On
the other hand, there is no control on the behavior of the solution
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in-between the nodes, at least in the sense of solving the differential
equation. This usually results in the least-accurate solution of the
three methods being considered here, where we are assuming a
similar node density and computer word-length in each case.

(2) Subdomain Collocation, (also known as the “subdomain method”)
which employs a set of mutually exclusive, unit-amplitude pulse
functions, wg,m(T) = 1, in a defined region around the k-th node.
These regions enclosing each node are non-overlapping and usu-
ally are directly adjacent to one another, without unfilled space.
This approximation is usually more accurate than Point Colloca-
tion, but not as accurate as Galerkin’s method, when self-adjoint
operators are involved.

(3) Galerkin Method, which uses the same set of functions for both
basis and testing, Wi(F) = U(F). For the case of a self-adjoint
operator, D(T), it can be shown that the functional defined by

Q) =(f,D-F)-2(f.9)
is stationary about the solution to the original operator equation,
in (22), [13].

The variational principle considered above, when applied to the
basis function expansion in (23), is termed the Rayleigh-Ritz Method
and yields the Galerkin’s result for the weighted residual approach.
This procedure usually provides the most accurate solution and forms
the foundation for most of the FEM work that has been done. An-
other means of achieving this same result (the Galerkin equations,

with Wk =U k) is by way of the classical Euler-Lagrange variational
formulation. This has the advantage of reducing the order of differ-
entiation on the basis functions, vis-a-vis a direct Galerkin approach,
and will be demonstrated in the following section. Error bounds for
the above three methods are considered in detail in [13]. We will also
briefly consider this topic in subsection 1.2f.

A hybrid approach is often taken in applying the WRM to time-
domain solutions, whereby a finite-element basis function expansion
is used to represent the spatial variations of the solution while time
derivatives are approximated using finite-differences. If interpreted
in the WRM sense, this translates into using space-time weighting
functions having delta function temporal variation, thus sifting out the
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y
‘ Q.Ls (o)
dy
Vi k’o f:0
t{o, y)=fz(y) f{o,y)=0
inside of Vo
P x
] a

f{x, o) = f‘(xi

Figure 6 Helmholtz equation with mixed boundary conditions.

discrete time steps of the computational process. Such a procedure
is used implicitly in the technique described in Chapter 7, resulting
in time-domain leap-frogging of spatial basis function expansions for
E and H. A “boundary element” approach is also used in Chapter
7 for restricting irregularities in the space-time lattice (mesh) to the
interfaces between dissimilar materials.

e. Simple Finite Element Example

Consider the simple problem of the undriven Helmholtz equation
(g = 0) with free space wavenumber ky = w/¢ (where w is the radian
frequency and ¢ = 3 x 10® m/s),

{V? + K} f(z,9) =0 (29)

within the rectangular region of Fig. 6, with mized (both Dirichlet and
Neumann) BC’s,
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Figure 7 Rectangular region finite element mesh.

f(z,0) = fi(z) (30a)
f(0,9) = f2(y) (30b)
fa,9)=0 ~ (30¢)
af _
3y (@D =0 (30d)

The rectangular region is discretized into the same grid of doubly-
ordered nodes, as in Fig. 2. As before, the nodal values of the solution
will be denoted as f; ; & f(zi,y;). The Dirichlet boundary condition
nodes are specified for i=1, i=6 and j=1. Note that the nodal values
along the top row (j=7) are now unknowns since the Neumann BC is
specified there.

Proceeding with the FEM approach, triangular “finite elements”
are used to divide up the space, as per Fig. 7. These elements are used
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Ui' has linear

i
/ voriction in eoch element

‘ node {i,j)
where
»
\J Uii (xi y )= 1
- \ Uii = O on the boundary

of the element group
Figure 8 Node with surrounding element group.

to define support regions for the (compact support type) basis func-
tions that will be used to approximate the solution around each node.
We will employ piecewise linear pyramid basis functions, U; j(z,y), to
represent the solution. Following the general procedure indicated by
(23), but for the simpler scalar function case, gives the basis function
approximation to f(z,y),

6 7

fo@,9) =D D fij Uij(z,9) (31)

i=1 j=1

The support region for a given U, ; is all elements which share the (3, )
node, as illustrated in Fig. 8 for an interior node. In the ¢-th element,
we will locally number the associated 3 nodes, (k=1,2,3) as shown in
Fig. 9. Within this ¢-th element, the linear basis function associated
with the k-th node is given by the matrix product

Uk(xa y)= [ma Y, 1] ’zk (32)

where Ly is the k-th column of the element coordinate matrix,
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(x,.y,) (xy2y4)

g-th
element

)
{(x,,y,)

Figure 9 Local coordinates in an element.

- 1 (y2 = 93) (y3 — 1) (v1 — ¥2)
L= (x3 - :Eg) (.’L‘1 - a:3) (912 - $1) (33)
(z2ys — z3y2) (zays — z1y3) (1Y — T201)

The A, term is the determinant of the 3 X 3 matrix within the square
brackets in (33). This determinant also equals twice the area of the
{-th triangle.

Employing the Euler-Lagrange formulation, we seek the nodal val-
ues in (31) about which the quadratic functional below is stationary,

Q) =(Vf, V)~ k§{f. ) (34)

Note that this functional has only first order derivatives inside of the
(*, *) dot-product integrals over z,y. The proof that Q( f) is stationary
about the solution to (29), with BC’s in (30), follows directly from the
Euler equation, [14: pp.275-280],

ai[a(ng)]*%[a(iff)] 37 = (35)

The stationary functional in (34) can also be obtained through apply-
ing Green’s theorem (or multiple integration by parts) to the Galerkin
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equations considered in the previous subsection. The numerical ap-
proximation to the stationary solution is found by first substituting
(31) into (34), to give

7

6 7
Qa = Z Z Z fi.j fm,n {(VUt‘,j7 VUm.ﬂ) - kg <Ui.j7 Um,n)}

(]
i=1 j=1m=1n=1
(36)

We then differentiate this quadratic form with respect to each of the
unknown nodal values of f;; and fy, », setting the result to zero in
each case. Each differentiation of the quadratic form will yield a lin-
ear equation representing the stationary requirement for the particular
nodal value of f being considered. A linear system results, with one
equation for each unknown nodal value as given by

6 7

SN £ VUG, VUnn) = K§(Usjs Umad} =0 (37)

i=1 j=1

for m=2 to 5 and n=2 to 7. The terms in the summation involving
known nodal values for f; ; can be transferred to the right hand side of
(37) to put the equations in standard form. Note that for a given (i, )
node, only (m,n) nodes sharing at least one common element will
provide a nonzero contribution to the moment integrations in (37).
Thus, the resultant system matrix will be quite sparse, with most
array elements being zero. As previously mentioned, this sparse matrix
feature is produced by all finite methods when using basis and testing
functions having compact support.

To put (37) into a block matrix form, let us denote the nodal
unknowns across the j-th horizontal row of the mesh in Fig. 7 by the
column vector (the T superscript indicates transpose)

F; = [fojs S350 fair F5r 31T (38)

The matrix equation in (37) can then be written as a linear matrix-
vector relationship between adjacent row vectors

A; - Fio1+B; Fj+C;-Fipr1 =Py (39)

where the block-matices each have a banded structure



1.2 Finite Methods 23

"% X .

= X x 0

AjN 0 X x (40&)
L X
X X 7

= X X xX 0 ,

Bivlo x x x (40b)
! X XJ
- % -

= X X 0

Ci~lo % x (40c)
| X X/

The nonzero “x” matrix elements as well as the components of the
boundary condition vector, P, are obtained in terms of the element
integrals within the curly brackets in (37). Inside of the £-th element,
having Z—matrix defined by (33), the integrands can be obtained di-
rectly from (32). Denoting the relationship between local (in element
¢) and global node coordinates by k£ = (m,n) and ¢ = (4,7), there
results

r [2? 2y z]
UrUg=Li- |2y ¥* y| - L (41a)
lz y 1
r (1 0 0] _
VU, -VU,=I;- {0 1 0f-I, (41b)
[0 0 0

The matrix entries are thus assembled from element integrations of the
type

I,= // z"y® de dy (42)
A

which are available in tabular form in a number of references on finite
elements, e.g. [11].
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Having loaded the block matrices relating adjacent row vectors of
unknowns, the global matrix structure will have a tri-block form

B, C» 1 [F27 [P2
i‘;; f;; C 0 Fy P,
A4, By C4 Fy P,
=1 - (43)
0
_ % 7] rl L7

The finite element solution thus comes down to inverting a matrix.
As was the case for the finite difference example, the global array
is mostly filled with zeros. This is in contrast to integral equation
methods, which produce full matrix structures. A sparse matrix allows
highly economical inversion, for even very large matrix order, by any of
a number of different algorithms [15]. In addition, by properly ordering
the nodes, as was done here, the matrix can often be made to have a
block structure. A block structured matrix can be efficiently inverted
by way of the Riccati transform algorithm [16] (also see Chapters 2
and 6 of this book).

In developing the theory and examples for the finite methods,
there was no discussion concerning expected accuracy. We will now
briefly address this topic at an introductory level. Additional develop-
ments will be made in the following chapters for the specific cases to
be considered.

f. Basics of Error Analysis

Let us now consider some of the concepts and terminology associ-
ated with computational error in numerical solutions. We will begin by
using the simple example of the finite difference approximation of the
Helmholtz equation as a vehicle to illustrate some of these ideas. The
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discussion could readily be expanded to include all finite and integral
methods, as applied in both the frequency- and the time-domains.

In general, the “pointwise error” in a numerical solution at each
node is simply the difference between the exact and computed values of
the solution at the node. Referring back to Fig. 2, the pointwise error
at node (z;,y;) becomes 8 f; ; = f(zi,y;) — fij. There are a number of
ways to use the pointwise errors to attain some measure of the “global
error” in the whole numerical solution. Some of the most popular
and meaningful ways of defining global error are through “energy”,
“mean-square”, and “root-mean-square” (RMS). The energy in the
exact solution at the nodes would be defined, for the FD-FD example
first considered, as

5 6 o
Q=Y (=) (44)
i=2j

=2

where |f(z,y)|? = f(z,y) f*(z,y) indicates magnitude squared. Using
the vector definition in (9) for the ordered nodal values of f, the energy
becomes Qy =F-F .

Extending this energy definition to the pointwise error at each .
node gives

5 6
Qy=_Y l6fisl* (45)

i=2 j=2

The relative mean-squared error is then defined as the ratio of error
energy over solution energy. This leads to the definition for RMS error,
which is often expressed as a percentage,

/Q
EpMs — “S{—f’ X 100% (46)
!

Errors in the numerical solution result from two sources: dis-
cretization and roundoff. The net effect of these error sources depends
upon several interrelated factors, including:

(1) Properties of the physical system being modeled,

(2) The basis and weighting functions being used,

(3) The level of segmentation being employed (number and spacing
of nodes and for time-steps) and
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(4) The numerical resolution (wordlength) of the computer’s numeric
data processor and /or co-processor.

Physical system properties affect the conditioning (for frequency
domain formulations) or the stability (for time-domain representations)
of the numerical solution. Poorly conditioned or marginally stable
physical systems tend to be intolerant of small errors in either the
discretized model or the numerical roundoff of the solution process.

For frequency domain problems, this is manifested as error ampli-
fication in the linear system solution, as is reflected in the “condition
number” of the system matrix [17]. Consider the FD-FD solution for

the Helmholtz equation, which resulted in A - F = G, as presented in
(11). Relative errors in the solution for F will involve an amplification

of the relative errors in computing both A and G. This amplification
factor is the condition number of the A-matrix.

To be more specific we need to define an appropriate norm, de-
noted by || ||, for the arrays involved. The usual Euclidean vector
norm just equals the RMS value of the vector (square-root of the en-
ergy). As an example, for the vector F, as defined by the ordered
nodal values in (9), we have ||F|| = \/— The norm of a square ma-
trix, denoted by ||4||, is generated in terms of the maximum norm of

all vectors found from the product A-%, where ||z|| = 1. The condition

number of A is then defined by C(A) = ||A|| - |]|A~|. Using this defi-
nition for the condition number, it can be shown [18] that the relative
error in the solution is bounded by:

6F|l ¢ [H5AH H5GH]
IFI — 1= ClisAll/NAlNL N4l 1IGI

(47)

where 64 and 6G are the respective arj’_ays formed from the cumulative

numerical errors in the evaluation of A and G. The condition number
is thus seen to amplify the errors in both matrix and driving vector
approximations.

As mentioned earlier, the conditioning of a physxcal system is re-
lated to the sensitivity of the solution function to small changes in the
input data. A closely related term is “ill-posed”, which refers to a
mathematical problem whose solution is not unique, at least not from
the way it was specified. An example of a poorly conditioned physical
problem would be in computing the field strength and modal configu-
ration internal to a low-loss metal cavity with a small excitation port.
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As a resonant frequency is approached, large relative changes in the
internal field will be produced by small relative changes in the physical
system, such as the cavity and excitation port geometry. This is a
physical case which results in a poorly conditioned numerical solution,
accompanied by a large condition number.

An additional factor which adversely influences the condition num-
ber is the rank of the numerical solution matrix. As the mesh density is
increased for a fixed physical problem, an increasing matrix size results
which is accompanied by a growing condition number. There is a two-
fold reason for this. First, the increased number of calculations needed
to invert the larger system will tend to enhance computational round-
off errors. Secondly, after a certain point a further increase in the
number of discrete equations begins to become somewhat redundant.
This results in a lower degree of linear independence of the individual
equations in the matrix system.

The numerical solution errors induced by the WRM discretize-
ment process can be expressed in terms of an “order” which is in-
versely related to some power of the number of basis functions, N
employed in (23). Assuming that the mesh resolution is enhanced by
using more nodes one would expect the error in the numerical solution
to decrease, at least to some lower bound. More specifically, con-
sider a second-order PDE system in M-dimensions, such as either the
Helmholtz equation or the wave equation in the examples that were
considered. Note that coupled first-order state-equation systems (such
as Maxwell’s curl equations) are usually also second-order decoupled
systems. For a second-order system, if p-th order polynomial basis

functions are used for U, (), while ¢-th order polynomial weighting
functions are used for W(F), then it follows from results derived in

[13] that the discretization error is of order:
Eams = O(N™%) (48a)

where

a = Min{M(p+1),M(p+q)} (48b)

An obvious constraint for convergence to occur (namely, Erms — 0 as
N — 0) is that @ > 1. This requirement is satisfied for each of the
three special cases of the WRM that we considered in subsection 1.2d.
Recall, for instance, the 2-D example problems that we have previously
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encountered (with M=2). The FEM case used the Galerkin method
with piecewise linear basis and weighting functions (p=¢=1). This
gives

ehws = O(N~*)  Galerkin FEM Case (49)

which indicates a strong tendency towards quick convergence, as N
is increased. On the other hand, the finite-difference solutions (both
time and frequency domain examples) employed point collocation using
quadratic basis functions (p=2) and Dirac weighting functions (g=-1),
resulting in weaker convergence:

ehws =O0(N~?)  Finite Difference Cases (50)

A similar result to (50) is obtained for subdomain collocation using
linear basis (p=1) and pulse weighting (¢=0) functions.

It should be emphasized that the error in (48a) is ezclusive of nu-
meric round-off error and the associated condition number error am-
plification. This error is thus based on the assumption of an infinite
wordlength computer. In reality, as N is increased the condition num-
ber also tends to increase, thus offsetting some of the reduction of error
found by using more nodes. As N is increased further still, there comes
a point where the growing round-off errors will overcome any further
gains in accuracy, and the solution error will begin to creep upward
with N. This behavior is illustrated in Fig. 10, where the effect of
computer wordlength is depicted by different curves. In general, as
the numeric wordlength is decreased the point of optimum accuracy
occurs at lower N, beyond which the error increases. The effect of
ill-conditioning in the physical system being discretized is to raise all
of the exps(N) curves.

In the time-domain case, poor stability of the system translates
into more rapid divergence of the transient numerical solution than
for a more stable system, all other parameters being equal. For the
case of the wave equation, we have seen in subsection 1.2c that the
Courant limit on space-time step size provides a well defined condi-
tion for stability — one which carries over into the temporal leapfrog
solution of Maxwell’s equations. There are similar, but not identical,
stability conditions for parabolic PDE systems such as the diffusion
equation. An excellent treatment of stability effects in time-domain
integral equation solutions is given in [19] with much of this being
valid for finite methods as well.
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Figure 10 Solution convergence versus wordlength.

1.3 Mesh Termination

Having considered basic concepts related to discretizing frequency-
domain (boundary-value) and time-domain (initial-value) electromag-
netic problems in closed spatial regions, we will now turn our attention
to some techniques for employing finite method solutions to field prob-
lems in open, unbounded regions.

a. Unimoment Method

The unimoment method, as developed by Mei [20], provides a self-
consistent approach to coupling interior and exterior frequency-domain
field problems across separable surface interfaces. This method was
employed by Chang and Mei [21], Stovall and Mei [22] and Morgan
and Mei [16] to open region scattering and antenna problems involving
inhomogeneous 2-D and axisymmetric 3-D dielectrics. Further applica-
tions of the unimoment method, using finite elements, have been made
to problems involving raindrop scattering [23], microwave energy de-
position in the human head [24], scattering by multiple bodies [25] and
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even buried objects [26]. A recent unimoment application, considered
by Fleming in Chapter 2 of this book, is scattering from composite
axisymmetric objects having both metallic and penetrable parts.

As developed in the unimoment method, the exterior region fields
are represented by a functional expansion in one of the separable co-
ordinate systems for the vector Helmholtz equation [14: sect. 5.1].
The spatial interface for coupling the interior numerical solution to
the unbounded exterior region is thus a constant coordinate surface
of the separable system employed in the outside expansion. Spherical
interfaces were utilized in [16] and [22-26] due to the relative ease of
generation of exterior region spherical harmonic field expansions.

To understand the conceptual basis of the unimoment method,
consider the solution of a scattering problem involving a 2-D cylin-
drical penetrable object of arbitrary cross section which is, perhaps,
inhomogeneous. For either TE or TM (to Z) cases, having respectively
H = fZor E = fZ%, the undriven scalar Helmholtz equation in (29) is
again applicable, but with a variable wavenumber, & = /¢(r,8) p(r, 8),

within the scattering object

{V? +£%(r,0)} f(r,6)=0 (51)

where we are using circular coordinates (r,6).

The unimoment solution proceeds by enclosing the scatterer
within a separable mathematical boundary, which we will choose to
be circular in the 2-D (r,8) cross section, as is illustrated in Fig. 11.
Notice that there are two concentric circles, of radius ry and r2, both
of which enclose the scattering object. With specified Dirichlet BC’s
on the outer boundary, f(ry,0) = g(8), a finite method can be used to
solve for nodal values of f(r,8) for r < ry. A necessary attribute of
the interior mesh construction is that a set of the solution nodes lies
on the inner circle, 7 = r;. An example mesh, using linear triangular
elements, is shown in Fig. 12.

Of course, in the scattering problem we do not know the total field,
f1(8), on the r; boundary. With a knowledge of the incident field, we
are to solve for the scattered field. To do this, we will first express
the total field in the free space region (with wavenumber ko) outside of
the smallest circle centered at » = 0 which encloses the scatterer. The
total field equals the sum of the known incident field and a truncated
cylindrical harmonic expansion for the unknown scattered field
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Figure 11 Unimoment matching contours for cylinder scattering prob-
lem.

N
f(r,0) = £i(r,6) + a0 Co(r) + Y 8 Cu(r,8) + by Su(r,0)  (52a)

n=1

where the cylindrical harmonics for the scattered field are

Co(r,0) = HD (kor) cos(nf) (52b)
Sn(r,8) = H? (kor) sin(n#) (52¢)

with H(? equal to the Hankel function of the second kind. It is im-
portant to note that each cylindrical harmonic term satisfies the 2-D
radiation conditions in the far-field of the scatterer, as r — oo:
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X

Figure 12 Cylindrical finite element mesh.

e-—jkar

f(r,8) - x(9) VFar (53a)

—f{i — 1o (TE case) (53b)
E,

~== =17 (TM case) (53¢)
Hy

where 79 = 1207{2. Notice that the series representation in (52a) is
only an approximation due to the truncation of the series at N + 1
terms. In practice, this truncated series will converge rapidly to the
exact scattered field for increasing N, when N > kors.

To find the scattered field coefficients, a,, and b,,, we first solve the
interior region problem for 2N +2 separate BC’son r = r;. These BC’s
are composed of the incident field, fi(r;,8), and each of the scattered
field modes: C,(ry,8) for n = 0,1,2,---,N and S,(r,0) for n =
1,2,---, N (all evaluated on the outer boundary, ry). The numerical
solutions in the interior, r < 7y, which correspond to these applied
BC'’s, are indicated by a tilde overbar. For example, the incident field

BC, fi(r1,8), produces an interior solution f‘(r, ) for r < ry while a
BC of S,(r1,6) produces Sy(r,8).
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Using the principle of superposition, the numerical solution for
the total field inside of the outer boundary will be given by

N
f(r, 0) = f‘(r, 0) + ao éo('l') + Z ayn C-'n(ra 6) + by S'n("" ) (54)

n=1

To set up conditions obeyed by the the a, and b, coefficients, we
simply equate the numerical solution in (54) to the analytical solution
in (52) along the circular contour, r = ry, resulting in

N
z an {Cn("2,0) - én("'%o)} + by {Sﬂ(r%o) - gn(r% 0)}
n=1

+ ap 00(7'2) = f‘.(7‘210) - fi(r%o) (55)

The unknown scattered field coefficients may be approximated by using
the weighted residual method (WRM) to generate a system of linear
equations. To employ the WRM, we integrate (55) with respect to
each of 2N + 1 linearly independent weighting functions, W,,(8) for
m=0,1,2,---,2N. In this case our inner product integrations will be
defined by

2
(W (68),2(80)) = | Win(8) Z(6) d6 (56)

Using this definition, and representing the difference terms in (55) by
a A notation, the WRM equations become

N
Z an (W (0), ACn(0)) + bn (Win(8), ASn(9))

n=1
+ ao (Win(8), ACo(8)) = (Wi (0), AS(8)) (57)

enforced for m = 0 to 2N.

By selecting Dirac function weights, Wp,,(8) = 6(8 — 6,,,) with 6,
representing nodes along r = r3, (57) will provide the point-matched
form of the solution. A more accurate approach is to enforce (55) in
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the least-squares sense over the circle, including in-between the nodes.
This is done by forming the least squares residual

2r .
Qay = ]0 \f(ra,8) = F(ra, 8)?d0 (58)

Upon substituting (57) and (58) into this equation, a quadratic form
in the coefficients will result. The minimization of (58) is found by
differentiating with respect to each of the unknown coefficients and
nulling the result. In such a case, there results a system of linear
equations for the coefficients having the form of (57), but with specified
weighting functions which are proportional to the complex conjugates
of the A-function differences

AC(6) for m=0,1,2,---,N
Win(6) = (59)
ASy(6y for m=N+1,---,2N+1

The integrations to evaluate the matrix elements in (59) are per-
formed either numerically, or semi-analytically by using the basis func-
tion expansions employed in the interior solution to represent both the
difference functions and the weighting functions. In either case, the
resultant 2N +1 square matrix can be inverted to obtain the scattered
field coeflicients. The scattered field at any exterior point may then
be obtained from its expansion in {52) and, if desired, the interior field
can be found by using the weighted superposition of the stored inte-
rior field solutions. For r — oo, we have the well known asymptotic
approximation [2-3]

2 -
HO (kor) — /;r?f)_;]ne kor (60)

which can be used to obtain far-field expressions for the scattering
pattern, as defined in (53a),

N
x(8) = \/‘:}g {ag + E 1" [an cos(nB) + b, sin(nd)] } (61)
n=1

In the original unimoment method [20], the expansion coefficients
were found by equating the analytical radial derivative of (52a) at r; to
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Figure 14 Finite difference mesh for the imaged conical antenna.

the finite difference approximation to the radial derivative found from
use of the numerical solution in (54). The above procedure for match-
ing fields, rather than derivatives, was adopted to both simplify the
technique and to avoid extra error incurred by use of a finite difference
derivative.

As mentioned earlier, the unimoment method has been employed
in several computational efforts. One of the earliest of these involved
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Figure 18 Comparison of measured and computed input impedance for
loaded biconical antenna of half-height b.

the finite difference solution for radiation and input impedance of a
finite length biconical antenna, loaded by various inhomogeneous di-
electric configurations [22]. One such structure is depicted in Fig. 13.
Since both the fields and material structure are axisymmetric (invari-
ant to the ¢-coordinate) the solution domain can be reduced to a single
meridian plane, (7,8) in spherical coordinates. A section of the the fi-
nite difference mesh is shown in Fig. 14. The interior region solution
for this antenna problem was formulated using a special case of the
“coupled azimuthal potential” (CAP) formulation, where the vector E
and H fields are represented using two coupled scalar potential func-
tions which are related to the azimuthal (@) field components. For the
special case of axisymmetric fields in rotationally-symmetric material,
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Figure 18 Semi-annular conformal finite element mesh.

as is found for the biconical antenna structure, only one azimuthal po-
tential is needed. A sample result from [22] is shown in Fig. 15, which
compares the computed and measured input impedance of a plexiglas
loaded biconical antenna. The computation was performed at discrete
frequencies over a 10:1 range, wherein the bicone height ranged from
16 Mg to 1.6 Ap.

Details of the original CAP formulation for axisymmetric material
are discussed in Chapter 2 of this book, as well as in [27]. A recent
extension of the CAP formulation to arbitrary 3-D inhomogeneous
isotropic media is the subject of Chapter 6.

A second application of the unimoment method is that of scatter-
ing by inhomogeneous bodies of revolution [16]. This effort employed a
tri-regional finite element mesh in the (r, ) meridional plane, as shown
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Figure 17 Comparison of flnite element computation for bistatic scat-
tering to experimental results at 9.33 GHz.

in Fig. 16. The CAP formulation was employed to represent the non-
axisymmetric fields using a Fourier series in the ¢-coordinate. Spher-
ical harmonic expansions were used to represent the scattered field
outside of the mesh and the total fields within the spherical “core” re-
gion surrounded by the mesh. The sets of coefficients used in these field
expansions were found by applying the various expansion modes for the
potentials as BC’s along the contours r = a and r = b. In addition, the
various incident fields being considered were applied along r = b. A fi-
nite element solution for each applied BC was then evaluated along the
inner contours, 7 = r; and r = r,. The total fields were assembled from
these numerical solutions and equated in the least-squares sense to the
original analytical expansions, resulting in a matrix equation for the
coefficients. Such a procedure is a direct extension to that employed in
our simple unimoment example which resulted in (59). Numerous com-
parisons to bistatic scattering measurements at 9.33 GHz were made
for solid and hollow dielectric bodies of various shapes. A typical result
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is shown in Fig. 17, where the bistatic scattering is from a plexiglas
body having cylindrical, conical and hemispherical portions.
Although the unimoment method offers a straightforward proce-
dure for finite element or finite difference mesh termination in un-
bounded regions, the numerical solution within a 2-D circular or 3-D
spherical interior region becomes inefficient for scatterer or radiator
shapes that occupy only a small portion of the enclosed region. Ex-
amples of this are highly elongated or flattened structures such as thin
cylinders and flat discs. Although it is possible to utilize a separable
surface which is not circular or spherical to increase the numerical ef-
ficiency of the interior region solution, this will be offset by additional
requirements in both generating the special functions that are needed
in the exterior expansion and in computing the required moment inte-
grations of these functions over the interface. ‘

b. Boundary Integral Equation

Another approach to mesh termination is to replace the use of
an exterior region modal expansion in the unimoment method with
a surface integral equation system on the mesh boundary. After all,
one purpose of the exterior field expansion was to ensure that the
resultant numerical solution satisfied the radiation conditions in the
far-field region of the scatterer or antenna. A properly formulated
integral equation system will also ensure this, and will do so without
any explicit restriction to use of a separable mesh boundary surface.
Let us now look at this idea and the results of an early effort [28] in
using it for scattering computations from 3-D axisymmetric objects.

A recent application to 2-D scattering by irregularly shaped and
inhomogeneous objects is presented in detail in Chapter 3 of this book
wherein the term “boundary element method” (BEM) is used. In
the context of Chapter 3, BEM refers to the discretization procedure
for solving surface (in 3-D) or contour (in 2-D) integral equations.
The boundary element terminology is also used in Chapter 7, where it
indicates special case finite elements being used at material interfaces
to couple otherwise regular spatial finite difference lattices between
homogeneous regions.

To consider the use of a boundary integral equation for mesh ter-
minatjon, let us return to our previous unimoment method example.
This example considered 2-D scattering by an inhomogeneous dielec-
tric object, as illustrated in Fig. 11. Rather than using a circular outer
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Figure 18 Boundary integral equation contour enclosing inhomogeneous
dielectric cylinder.

mesh boundary, let us use a conformal boundary, Sy, as per Fig. 18.
This boundary must enclose the scatterer and may, in fact, be con-
gruent with the boundary surface of the object, to be denoted as Sp.
Within the enclosed region, which contains inhomogeneous ¢(7) and
#(F), we can use the finite element method to approximate the solu-
tion of the Helmholtz equation in (51) (but using ,y coordinates) for
any specified Dirichlet BC on Sp. Let us define this BC using a ba-
sis function expansion (with unknown ¢ coefficients) to represent the
total field along the Sy contour, having position variable s,

I

N |
=Y cegi(s) (62)
k=1

So

where g are the basis functions. These basis functions may have either
full-range support (e.g. Fourier modes) or compact-support such as
polynomial pulse functions. For the latter case, it may be expedient
to use the unit amplitude finite element basis functions, ug, associated
with the Sp nodes as the gi’s. With such a choice, the ¢;’s in (62)
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become the nodal values of the total field on So. The use of the finite
element basis functions on the Sy contour is adopted in Chapter 3. We
will follow a more general route here in explaining the concept.

As in the unimoment example, let us use a tilde overbar to de-
note the finite element numerical solution which results from a given
functional BC. For example, a BC of gx(s) on the boundary S is said
to produce a finite element solution within Sy given by §x(7). Explicit
enforcement of the radiation conditions in (52) will result by requiring
the finite element solution to also satisfy a proper integral equation
on the boundary, So. Such integral equations are readily found by
using a principle-value limiting process, where an exterior field point
is brought onto the So surface [29]. For the special case of a smooth
surface, one form of the integral equation is

36+ [ [G( D ) 52 4y = 1) (6)

where s and s’ are both points on S and 7’ is the outward unit normal
at 8'. The free-space Green’s function is given by

G(s,s') = — 3 B (Kol ~ ]) (64)

with |[F —7'| equal to the distance between the s and s’ contour points.
The Spy notation indicates Cauchy principle-value (PV) integration,
where the point-wise singularity at s = s’ is removed. A similar integral
equation is found for the TE case. Additional forms of 2-D integral
equations are derived in Chapter 3.

To implement (64), using the BEM, the 3f/0n’ integrand term
needs to be approximated from the finite element solution. This ap-
proximation is obtained through numerically differentiating each §i(7)
(due to the specified gi(s) BC). Using superposition, in terms of the
still unknown c;’s, the integrand term becomes,

af N k(s
a—f,- = Ck ____g;(f ) (658.)
" lresy = n
where
agk(s)

(65b)
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The BEM discretization is completed by substituting (62) and (65a)
into (63), followed by rearrangement of terms to give

N
Y e Iu(s) = fi(s) (66)
k=1
with
Ix(s) = % (3)+/ [G( s,s') ZIKE) 391:(8) — (s :) aG(S, ’)] ds' (67)

A system of linear equations for the ci’s can be generated by weighted
residual enforcement of (67)

N

S ek (Win(s), Tu(s)) = (Win(s), £(s)) form=1,2,-+,N  (68)
k=1

where the weighting functions W,,(s) can correspond, for instance, to
any of those discussed in subsection 1.2d. Once the total field solution
is found on Sy, the far-zone scattered field can be obtained by using
a simplified Green’s function integration. This integration formula is
developed in the next subsection.

Note that (68) represents a full matrix system. When using the
finite element basis functions for the g;’s, the order, N will equal the
number of nodes on the Sy contour. If the material inside of Sp had
been homogeneous, we could have formulated the problem using just
an integral equation on Sp; there would have been no need to take
on the extra effort required for the finite element solution. On the
other hand, for the case of a general inhomogeneous material inside
of S, an integral equation approach would incorporate all unknowns
spanning the internal region. A very large full matrix could result.
The hybrid approach just considered incorporates a sparse matrix so-
lution for the interior region while needing a full matrix only on the
enclosing boundary. For problems involving multi-wavelength sized
inhomogeneous scatterers, the computational savings incurred can be
very significant.

An application of the boundary integral technique to scattering by
axisymmetric 3-D objects was developed by Morgan, Chen, Hill and
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Figure 19 Surface conforming finite element mesh.

Barber [28]. This hybrid approach, named the “finite element bound-
ary integral” (FEBI) method combines a finite element solution of the
interior region with the surface integral equations found in Waterman’s
“extended boundary condition method” (EBCM) [30].

The FEBI procedure allows the use of a surface interface that
conforms to the outer boundary of the scattering object, as is shown
for the finite element mesh in Fig. 19. The finite element solution
Proceeds in a similar manner to that of the unimoment method, with
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incident field and scattered field spherical harmonic expansion modes
being applied as BC’s at the outer boundary, S¢. Numerical solutions
are then found at the surface of the scattering body, Sp, for each of
these applied BC’s.

It should be noted, that for a specified origin, a truncated spher-
ical harmonic scattered field expansion is uniformly convergent (with
increasing truncation index) outside of the smallest geometrical sphere,
centered about the origin, which encloses the scatterer. Since the
boundaries at Sg and S do not usually conform to a spherical surface,
the truncated spherical harmonic expansion for the scattered fields, as
applied on Sp, may not be complete at all points on that surface. Such
a phenomenon is related to the classical “Rayleigh hypothesis™ [31]. As
a result, we may not be able to obtain as a good match between the
numerical solution at Sp and the original truncated analytical expan-
sion, as we were able to do on the spherical surface for the unimoment
method.

To evaluate the expansion coefficients for the boundary field in the
FEBI, we can use a system of two combined field integral equations,
as employed in the EBCM [30]. These integral equations are vector
field 3-D versions of that in (63); they relate the tangential fields just
inside of the boundary Sp to that just outside, without making use of
a knowledge of the material structure inside of Sp.

The FEBI method has been shown to work well for scattering cal-
culations involving moderately elongated lossy dielectric objects. An
example computation, with comparison to that performed using the
EBCM, is illustrated in Fig. 20. This approach tends to have conver-
gence difficulties if the surface interface becomes extremely elongated
or flattened (e.g. length to diameter ratios exceeding about 10). As
just discussed, the culprit in this failure is the poorly convergent ex-
terior region spherical harmonic expansion when used to represent the
field over the surface of the scattering body.

The use of poorly convergent spherical harmonics as basis func-
tions on radically non-spherical surfaces in the FEBI technique was a
result of the attempt to combine the usual EBCM concept with finite
elements. A better approach would be to have used the innate ba-
sis functions of the FEM on the surface. This has been done for 2-D
cylinder scattering, as it appears in Chapter 3 and in a recent paper
by Peterson [32].
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Figure 20 Scattering amplitude comparison for FEBI computation.

¢. Field Feedback Formulation

The field feedback formulation (F3) combines features from the
unimoment method and the boundary integral equation technique to
allow increased flexibility in coupling interior and exterior region time-
harmonic field solutions [33]. As with these other two approaches, the
interior boundary-value problem is initially decoupled from the outside
region. The interior problem may then be formulated and computed
using the most expedient approach that can accurately accommodate
the level of material complexity that is present. Instead of using scat-
tered field harmonic expansions {(e.g. cylindrical in 2-D and spherical
in 3-D), the exterior region scattered field is represented in terms of
modes generated from Green’s function surface integrations of equiv-
alent currents which are obtained from the interior region solution.
These modal scattered fields innately satisfy the radiation conditions
but do not rely upon the use of separable coordinate surfaces for their
completeness. A major advantage of the F3 is its modular solution
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topology, where forward and feedback transfer matrices can be inde-
pendently computed. These modules are connected for the complete
scattering problem as a simple closed loop feedback network. This ar-
rangement provides for either closed-form or iterative approaches as
natural options in attaining the final scattering solution.

To explain the details of the F3 approach via example, refer back
to the problem of scattering by a dielectric cylinder, as depicted in
Fig. 18. As shown there, the surface boundary contour of the object,
SB, is enclosed within a geometrical surface, Sp. Unlike the boundary
integral equation method, where Sp could have been equal to Sp, these
two surfaces must now be distinct, with Sy enclosing Sp. As before,
the scattering problem is approached by first solving the Helmholiz
equation inside of Sy subject to the correct total field being applied as
the boundary condition, as per (62). The gi(s) will now be denoted
as gx(s,) to emphasize that.they are surface basis functions on Sp and
¢i are still to be determined.

Let us again assume that the finite element method is applied to
the problem and that each of the gx(s,) BC’s on Sy generates a numer-
ical solution denoted by §x(F). We will further assume, although it is
not necessary, that the gi’s are the unit-amplitude finite element basis
functions evaluated on Sy, so that the ¢i’s become the corresponding
nodal values of the total field on this surface. Next, we represent the
numerical solution and its normal derivative (D, = 0/0n), evaluated
on the object’s surface Sp, as

M
Gk(ss) = D amk hm(sh) (69a)
m=1
M
Dy gx(ss) = Y, amk Dnhum(ss) (69b)
m=1

where h,,(8p) is the m-th indexed unit-amplitude finite element basis
function for nodes on Sg. The need for the normal derivative will
be justified shortly. As an aside, the reader should note that we are
assuming that there are N nodes on So and M nodes on Sp.

Proceeding, we note that due to linearity a given ¢i in (62) will
produce a finite element solution and normal derivative along Sp given
by ¢k Gk(ss) and cx Dy, §(sp). Expanding on this idea, we can see that
the total field on Sp is given in terms of its nodal values, dy,, as
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M
f(ss) =) dmhm(ss) ~ (70a)
m=1
_ M
Dy f(ss) =Y dm Do hm(ss) (70b)
m=1
with
N .
dn = Z @m k Ck (71)
k=1

As is apparent from (71), the finite element solution nodal values on
Sp are given in terms of the nodal values of the BC on Sy through the
M x N array A, whose components are ak,,,. We will term this array
as the “forward operator”. By defining vectors of nodal values for the
total fields on Sy and Sp as

.F“(t) = [61,02,"~,CN]T (728,)
Fy=[d,dp, -+, du]” (72b)

there results,
F,=4-F, (73)

Note that the cx’s in (72a) are the same total field coefficients as were
defined in the basis function expansions of (62) and (65).

Our original assumption was that we had the total field available
as a BC on Sy, via (62). Since only the incident field is known a priori,
there remains the need to find the scattered field on Sp. On the other
hand, if we know the total field and its normal derivative on Sp, we
can evaluate the scattered field anywhere outside of Sp through a free-
space Green’s function convolution type integration, [14]. Applying
this to find the scattered field on Sy gives

rey= [ [G0or) 2520 - g0 2t 4y, (a4
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where 7 is the outward unit normal at s;. The free-space Green’s
function is given by (64), with 7 positioned on So and 7 on Sp. It
should be noted that by using the convolution operation in (74) we are
implicitly enforcing the radiation conditions in (53) on the scattered
field solution. This follows because the point source Green’s function
being used obeys these conditions. It was this property that guaranteed
the proper far-field behavior of the scattered field produced by a surface
integral equation solution.

As an aside, the total field and normal derivative within the
Green’s function integral in (74) can be replaced by the corresponding
scattered field quantities on Sp. This is a well known result which
follows from the equivalence theorem [2]. In essence, the Green’s func-
tion integration of the incident field on Sp is zero for evaluation points
outside of this contour, (e.g. the points s,). Likewise, if s, in (74) is
changed to a point inside of Sp the result will be equal to the negative
incident field, where the contribution of the scattered field component
on Sp is zero.

Let us now return to the near field evaluation for points on Sp.
Consider the scattered field on Sy due to a single basis function, ., (ss),
existing on Spg,

N
fa(s0) = bim gi(s0) (75)
F 33

Assuming for the moment that we have available the numerical
solution on Sp, as indicated by (70), we can use superposition, along
with (75), to obtain the corresponding scattered field on Sp,

fs(so) 2 ekgk(so) - Z d fm(‘go) (76)

m=1

where the nodal values of the scattered field are given by

M
ex = Z bk,m dm (77)

m==1
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The role of the N x M array, B, whose elements are by, is to generate
the scattered field on Sp due to a specified total field on Sp. This
array is termed the “feedback operator”. Denoting the nodal total
field vector on Sp using (72b) and the nodal scattered field vector on
So by

Fg = [e1,€2, -, ex]" (78)

we obtain
Fo=B-F, (79)

It may now be apparent what is going to happen next: we are
going to “bootstrap” the solution by combining the scattered field in
(76) with the known incident field, thus obtaining the total field on Sp.
This, in turn, will allow us to find the total field on S, using (70), so we
can then find the needed scattered field on Sg. Such a scheme describes
a basic feedback system, as is illustrated in Fig. 21, where the forward
and feedback operators represent the respective finite element solution
and near-field Green’s function integration. The F-arrays represent
the nodal values of the fields on the Sy and Sp contours. On the outer
geometric contour, Sy, the total field is the sum of the incident plus
the scattered field: T"; = Fy + Fy. Each of these nodal value arrays
has N components. On the body contour, Sp, the total field nodal
values are embodied in the M-element array, F,.

With the above ideas in mind, the matrix relationships in (73)

and (79) provide the following geometric series representation for the
total field on Sp

+5.§.§+...].ﬁ,=%.ﬁ (80)

<

Fo=[I+Q+Q-

Q=384 (81)

is the “closed-loop gain” operator of the F'3 system.

In looking at Fig. 21, it should be apparent to the reader that the
stability of the closed-loop system is an important issue. In particular,
if the closed-loop gain operator has an array norm, ||Q|| > 1, then the
series in (80) will not converge, indicating an unstable system. For a
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Figure 21 Field feedback system.

passive physical system, exhibiting either radiation damping and/or re-
sistive dissipation, it can be argued that ||@]| < 1. On the other hand,
real scattering structures exist, such as reentrant cavities, where, at
selected resonant frequencies, large amounts of energy may be stored
while relatively little power loss occurs due to radiation or dissipation
per oscillation cycle. Such scatterers are said to be “high-Q” (borrow-
ing the term gquality factor from circuit theory). If the F3 method is
applied near the resonant frequencies of very high-Q structures, where
[|QI| = 1, then convergence of the iteration in (80) will be difficult to
achieve numerically. This is not only a case of prohibitive computer
time required to continue the iteration to large order in n; the major
concern becomes the accumulation of roundoff error as this process
proceeds. The difficulty in attaining accurate scattering solutions for
ultra high-Q structures is not confined to the F3 approach, but spans
the whole gamut of numerical methods. An advantage of the F? is
that the stability issue is obvious and well-defined.

Assuming that ||Q|] < 1, where the concept of an array norm was
defined in subsection 1.2f, the series in (80) can be summed to give the
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feedback system transfer matrix

T=[T-Q]" O (82)

This, of course, is analogous to the usual scalar transfer function for-
mula for the total input to a feedback system. It may appear that we
have overcome our convergence problem, due to roundoff, of numeri-
cally summing a truncated version of the series in (80). This is not
the case; a marginally stable system having ||@|| — 1 will produce a

poorly conditioned matrix, T — @, which needs to be inverted in (82).
Referring back to the discussion of matrix conditioning which resulted
in (47), we can use the same approach as employed in [18] to show that
the condition number is bounded by

1+ 11l |

CI-4)< =10l (83)
It thus becomes obvious that as system stability is reduced, so is the
conditioning of the direct matrix inversion in (82). It should be em-
phasized that in a recent study [34] no severe stability-conditioning
problems were uncovered in computing the closed-loop gain, ||@Q|l, for
simple metallic and penetrable scatterers, including thin-wire struc-
tures. In the case of the highest Q scatterers, such as lossless cavities
with small excitation ports at resonance, stability-conditioning prob-
lems should be expected in using the F3, just as they should with other
numerical methods.

An example 2-D finite element mesh for a semicircular dielectric
cylindrical shell was shown in Fig. 12. Nodes are arranged to lie on both
the body surface and the enclosing geometrical surface, as will usually
be the case in implementing the F3. Also, in this case, a single layer
of triangular elements separates Sp from S; and N = M. The mesh
could have been constructed with additional layers of elements between
the two contours. The cost would have been additional unknowns to
solve for in the finite element solution. If the extra element layer(s)
had provided additional spatial separation between Sp and Sy then
the payoff would have been a less demanding accuracy in performing
the near-field Green’s function integration in (74) and (75).

After solving for -F'f, using either iteration, via (80), or closed form
matrix inversion using (82), we may obtain the far-zone scattered fields
by performing a simplified Green’s function integration over Sp. Points
on Sp will be denoted by the vector 3,. Starting with the integral form
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in (74), as applied to the Sp contour rather than Sp, let us consider -
the case of the field point receding radially to infinity. We can then
employ the asymptotic form for the Hankel function, as given in (60),
to obtain a simplified integration for evaluating the complex scattering
pattern, x(8), using the definition in (53a). This results in

x(8) = J;—‘; [gﬂ {]Dn ft(so) +ko(R-T) ft(so)} e’k°-’.°':dso (84)

Using the basis function expansions for the total field in (62) and (65),
we can evaluate the scattering pattern as

N
J ~ -~ EO'A
X(g) = V .8-; g Ck /So {]Dn gk(so) + ko(fl . T) gk(so)} elkoFo-r ds,

N
k=1
where

T(6) = [1(8),72(8), -+ -, 7w(8)] (86)
with

7(6) = \/BIW [S ! {105 gi(s0) + ko(R - 7) ge(s0)} %7 ds,  (87)

The far-field I-operator is shown in Fig. 21 as a matrix. The j-th row
of this matrix is formed from the elements of I'(6;), where the set of
6; is the discrete scattering angles desired for evaluating the pattern
in (85).

The bistatic radar cross section (RCS) can be easily obtained from
a knowledge of the scattering pattern. Assuming a unit magnitude
incident field, | f{(F)| = 1, the result is

o 2mr (6P
0=l —\fp

= X X(O) (88)
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For the case of 2-D scattering, this RCS represents the effective cross
sectional width. If the incident field power density is multiplied by
a(6o) the resultant power is equal to that which would be radiated by
an isotropic scattering pattern, xo = x(6o), which is constant in 8.

Let’s pause now to summarize the steps in the F'3 solution for
scattering. These steps are:

(1) Enclose the object within a geometrical boundary, Sy,

(2) Formulate the numerical solution of the mtenor problem using an
appropriate finite method,

(3) Find the interior solution for each of the applied basis functions
on Sp, saving the nodal values of the function and its normal
derivative on the boundary of the object, Sp (these solutions form
the columns of the forward operator, A-matrix),

(4) Perform near-field Green’s function integrations on Sp to find the
nodal fields on Sy due to each basis function on Sp (these inte-
grations form the columns of the feedback K operator, B-matrix),

(5) Form the closed-loop operator, Q B- A and evaluate the 7T-
matrix, which relates the total field on Sy to the known incident
field, using either the closed form matrix inversion approach of
(82) or the series iteration of (80),

(6) Finally, perform far-zone integrations over Sy, per (84), thus com-
puting the radiation field and the RCS in (88), if desired.

The initial demonstration of the F*3 was for scattering by a finite-
length metallic thin-wire, with associated finite element mesh shown in
Fig. 22. This is obviously a case where the unimoment method would
be quite inefficient, requiring a meridian spherical mesh to enclose the
wire unless a spheroidal mesh was adopted, with the associated dif-
ficulties of generating the spheroidal harmonic functions. Using the
F3, the mesh has only a single column of triangular elements, which

produces an interior solution matrix (whose inverse is A) having a
nonzero bandwidth of only 3 matrix elements in this case. The Ric-
cati transform allows ultra-fast inversion of this matrix. Comparisons
of the magnitude and phase of current on an L = 1)y thin-wire, as
computed from the F3 and Hallen’s integral equation, is shown in Fig.
23. One source of error in the F? computation was the use of linear
basis functions in the finite element calculation. These were used to
represent the ¢-component of the magnetic field. In the immediate
vicinity of the thin-wire, Hy is characterized by a rapidly decaying
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Figure 22 Finite element mesh for the thin-wire scatterer.

evanescence which is difficult to accurately interpolate using simple
linear basis functions. More specialized basis functions would allow
faster convergence of the solution for the thin-wire case. Much more
rapid convergence was observed for thick cylinders.

A recent application of the F2 has been made to scattering by 2-D
dielectric cylinders, [35]. Uniformly excellent results in all validations -
were observed. An example is scattering by a dielectric semicircular
shell of outer radius 0.3A¢, as originally computed by Richmond, using
an E-field integral equation for the TM-case [36] while employing a
cylindrical harmonic expansion approach for the TE-case [37]. The
finite element mesh for the semicircular cylindrical shell is shown in
Fig. 24, where the average element size is about A/20 within the e,
= 4 dielectric material. A comparison of the computed normalized
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Figure 23 Comparisons of computed magnitudes and phases of complex
current on a thin-wire scatterer.

bistatic RCS using the 3 and Richmond’s E-field integral equation is
displayed for the TM-case in Fig. 25.

Efforts are underway to apply the F? to scattering by 3-D ob-
Jects of general shape and composition using the generalized CAP for-
mulation, as presented in Chapter 6, for computation of the forward
A-operator. A major hurdle to overcome in applying the F3 to scat-
tering by large 3-D objects, having multiwavelength dimensions, is the
tremendous CPU resources required to compute the near-field surface
integrations in the feedback B-operator. The exact field at a point out-
side of the surface, Sp, depends upon the field (and normal derivative)
over the entire Sp, as evidenced by the Green’s function integral for-
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Figure 24 Conformal finite element mesh for a semicircular dielectric
cylindrical shell.
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mula in (74). In this integration, the effect on the field at 3, due to the
Sp field at 3, dies away with increasing distance when |3, — 3| > Ao.
In 3-D, this decrease is even more rapid than in 2-D.

One approach to reducing the integration demands for large 3-D
problems is to adaptively neglect the integration contributions outside
of a local neighborhood of the field point. The cutoff would be depen-
dent upon relative convergence of the integration. Along these same
lines is the idea of local radiation boundary conditions for terminating
the finite method mesh. Let us now briefly look at some of the basic
concepts behind this topic. Our elementary level considerations will
pave the way for the more advanced applications to be discussed in
Chapters 4, 5, 7 and 8.

d. Radiation Boundary Conditions

Additional methods exist for employing finite method solutions in
open region problems. One approach imposes a homogeneous Dirichlet
BC on the tangential field components at a sufficiently large distance
from the antenna or scatterer, [38]. For such an artificial assumption
to result in any degree of accuracy, the mesh termination boundary
must be far removed from the scatterer or antenna. This means that a
large finite method mesh is needed, with an accompanying large matrix
size in the frequency domain case. For time-domain calculations, the
null BC condition also results in an extended mesh, requiring much
computational effort in the causal updates of the many included nodes.

Another method employs “infinite elements”, where unbounded
angular sections are used to surround the scatterer [5]. Within these
infinite elements, special basis functions are used which correspond to
assumed far-zone behavior of the scattered field. This requires that
the interface between the main mesh and the infinite elements lie in
the quasi far-field region of the scatterer. The result is again a large
mesh region, although not as big as that resulting from the zero BC
assumption.

We have seen one form of the far-zone conditions in (53), as applied
?0 2-D scattering. For the 3-D case, the far-field behavior is embodied
In the Sommerfeld radiation condition [39]. For a scalar scattered
field, f*, which satisfies the source-free Helmholtz equation in spherical
Coordinates, (r,8,¢), this far-field condition becomes

r1_1_’1139 r L(r) f*(r,0,0) =0 (89a)



58 1. Principles of Finite Methods in EM Scattering

where
£ = |2+ ko (89b)
ar
By applying (89) to the 8 and ;5 vector components of E° and H',

followed by a substitution from Maxwell’s curl equations, we will obtain
the vector field form of Sommerfeld’s conditions

. ~ 5T 2 B
1r1_1_)1{.101'[1;«)1"‘XH +E}-0 (90a)
. -~ 1 =58 -
rllg)xor[er -nH|=0 (90b)

Several efforts have used the Sommerfeld radiation condition, with
applications in both the frequency and time-domains, as exemplified
by [40-41].

To allow reduced mesh sizes, while retaining adequate accuracy
of the enforced conditions on the outer mesh boundary, improved
approaches have been developed in recent years involving radiation
boundary operators. These operators come in two “flavors”: extended
annihilation [42-43], and one-way wave equations [44], both of which
we will look at briefly. The equations that result from applying these
operators at the mesh boundary are termed radiation boundary condi-
tions (RBC’s). A related RBC idea, as applied to time-harmonic sur-
face integral equations, is the on-surface radiation condition (OSRC)
[45]. The effect of the OSRC is to reduce the integral equation to either
an ordinary differential equation on the surface, or a simple integration
of known functions.

The annihilation operator approach can be considered as an ex-
tension to the far-field boundary conditions of Sommerfeld. As shown
by Wilcox [46], outbound radiating fields which satisfy the Sommer-
feld radiation condition in (89) can be represented by an inverse power
series of the form

P9 =er 3 %89 (91)
n=1

As r becomes larger, the series can be truncated at a decreasing index
for a fixed level of accuracy. Ultimately, as r — oo, only the n=1 term
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is needed, producing a far-field condition which is the 3-D version of
the 2-D result in (53). The L(r) operator in (89), when applied to
(91), is seen to reduce the leading order term from =1 to r~2. Thus,
for increasing r, £ - f* decays to zero much faster than does f°.

To extend this idea, consider the possibility of discovering en-
hanced annihilation operators, B,,, which can cancel the first m terms
of the series in (91) at finite values of r. The approximate boundary
conditions, B, f* = 0, for increasing m, should then be applicable to
surfaces of decreasing distance from the scattering object. The con-
struction of such operators was the approach taken by Bayliss and
Turkel in [42]. As an example, consider

Bi(r) = £(r) + - (92)

which will annihilate the n=1 term in (91), while

Ba(r) = {ﬁ(r) + g} By(7) (93)

cancels both the n=1 and n=2 terms. This procedure can be continued
through the recurrence formula

2m + 1
r

Bpia(r) = {E(r) + } B(r) (94)

Since the RBC using (94) will have to be enforced using numerical
differentiation in r, it becomes impractical to use large ordered B,,’s;
the m-th order operator contains 3/8r™ along with all lesser ordered
derivatives. Asit turns out, lower orders (e.g. m=2) are often sufficient
to allow termination of the mesh close to the object’s surface, at least
for the class of 2-D convex homogeneous scatterers, as evidenced by
results in Chapters 4, 5 and 8. For the 2-D case, slightly modified
formulas are found for the By,’s since the Wilcox expansion in (91)
must be changed to have the r* term in the denominator replaced
by r"~1/2_ Also, for the 2-D case, the 2nd-order radial derivatives in
B, can be replaced using a combination of a 2nd-order 8 derivative
with 1st-order radial derivative, using the Helmholtz equation. The
annihilation operator RBC approach can be extended to the time-
domain, as shown in [47] and Chapters 7 and 8.

Let us now investigate another method for generating the RBC.
This is based upon the idea of a one-way wave equation, as developed
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by Engquist and Majda, [44]. As an example, let us reconsider the
simple 2-D space-time wave equation that was covered in subsection
1.2c. In particular, assume we want Yo solve for the scattering due
to an incident 4z directed pulse which impinges upon the Dirichlet
BC, u(a,t) = 0, as illustrated in Fig. 26. A finite difference mesh
as in Fig. 4 (or Fig. 5 for the leap-frog method) is overlaid on the
truncated problem domain: 0 < z < a and ¢t > 0. Since this is a
scattering problem the actual spatial domain is unbounded, —oco <
z < a. The purpose of the RBC is to properly terminate the mesh
at z = 0 so that the scattered wave is absorbed without reflection;
hence, the term “absorbing boundary condition” is often used. Of
course, this same terminology is equally applicable to the annihilation
operator approach.
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Figure 286 RBC applied to simple space-time scattering problem.

“Factoring” of the wave equation is a common technique for at-
taining one-way operators. Factoring of the (z,t) wave equation in
(13) is particularly simple, resulting in the decomposition
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Pu_1ow_ [0 1072, 10],.,
9z ot |oz cotl|oz T cat| T

= L*(z,t) L™ (z,t) u(z,t) = 0 (95)

The Lt operator cancels waves propagating in the +z direction, such
as the incident field in Fig. 26, while L~ cancels —z traveling waves.
Analytically applying L~ to the mesh termination boundary, at z=0,
will provide an RBC to absorb the scattered wave without reflection

L~ (z,t)u(z,t)] =0 (96)
=0 -

For the grid in Fig. 4, with u;; = u(z;,t;), the following finite differ-

ence approximation results by enforcing the RBC at z = Az /2

up,j+1 = Uo,j-1 + 277 (u1,; — %o ;) 97)

where 7 is given in (16). This relationship would be used in lieu of
that in (15) for the i=0 boundary nodes.

Formulation of one-way space-time operators for the cases of two
and three spatial dimensions follows from the factoring concept in (95),
but with some additional approximations required. For example, in
(2,y,t) coordinates, the one-way operators can be written as

L:h(ms y,t) = 3% *R (98)

where R is a “pseudo-differential” operator which may be defined as

/1 0 o2

The implication of this symbolism is that a double application, R - R,
results in the operator within the radical in (99).

To be numerically usable, the radical in (99) may be interpreted
as a convergent expansion of the derivatives contained within. An
approximate RBC can then be generated by properly truncating the
expansion and applying the resultant operator at the enclosing bound-
ary. Such an approach was developed by Mur [48], who employed
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a two-term Taylor series. Accuracy of the resultant RBC becomes
sensitive to the arrival angle of the scattered wave on the local bound-
ary. Optimizations are possible using rational polynomial interpolates
(Padé, Chebyshev, etc.) for the one-way operator. The objective is to
improve the approximation of the operator and reduce the sensitivity
to arrival angle. Further details on the development and application
of one-way operators are given in Chapter 8. In addition, an excellent
review article on RBC’s is also available [49].

1.4 Conclusion

The objective in this chapter has been twofold: (1) to provide a
tutorial overview of the concepts and terminology that are employed at
more advanced levels in later chapters; and (2) to consider some scat-
tering applications which are not subsequently covered in this book,
such as those of the field feedback formulation (#2). Our itinerary
in developing the principles was to first consider finite difference and
finite element methods (denoted as finite methods), as solved within
enclosed spatial regions. In the second part of the chapter we turned
our attention to various approaches for properly coupling closed re-
gion finite method solutions to the unbounded exterior domain of the
scattering problem.

Having a confining boundary is, in fact, the natural setting for
time-harmonic and time-domain PDE’s, which form the basis for the
finite methods. Examples were developed in the first half of this chap-
ter for discretizing differential equation formulated problems within
closed spatial regions. Finite difference grids were employed in the fre-
quency and time-domains, and a basic finite element mesh was used
for a time-harmonic example. Pertinent equations were deduced for
solving each of the example problems and some specialized numerical
procedures were introduced for effecting these solutions.

Along the way, an attempt was made to unify the finite method
numerical procedures through introduction of the weighted residual
method (also known as the moment method in the realm of integral
operator equations). Within such a context, the finite difference tech-
nique can be seen as a special case of the finite element method -
one which employs Dirac weighting functions. It was demonstrated
that, when used with compact-support basis and weighting functions,
the finite methods yield only local interactions between discretized un-
knowns. This is a key advantage of the finite methods over integral
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equation based techniques, where global type relationships usually ex-
ist among the unknowns. Local interactions, as produced by the fi-
nite methods, result in sparse matrix equations in the time-harmonic
case and yield highly efficient causal updating algorithms in the time-
domain. The topic of error analysis was also developed to give some
basic insight into the numerical attributes of conditioning and stability,
as associated respectively with frequency and time-domain solutions.

Since finite methods are innately posed as boundary- and initial-
value problems, an ad hoc enforcement of the proper spatial “boundary
conditions” at infinity (Sommerfeld radiation conditions) are required.
Such an enforcement allows a finite-sized mesh to be used for the scat-
tering problem in an unbounded domain. Different approaches are
considered in section 1.3 for permitting mesh termination. Once again
a sequence of examples was used as part of the tutorial to illustrate the
basic ideas and methodology. Both time-harmonic and time-domain
cases were considered, but with emphasis on the frequency domain.

One of the earliest of these techniques, the unimoment method,
was presented here through a simple 2-D example. Some representative
computational results were also given for 3-D axisymmetric scatterers
and the unimoment method will be considered again in Chapter 2.
For cases of highly elongated or flattened scattering structures, the
unimoment method becomes somewhat inefficient. This is due to its
fixed outer boundary shape which, for convenience, is usually circular
in 2-D and spherical in 3-D. A large percentage of the enclosed mesh
region becomes filled with a vacuum. In such cases, a more efficient
approach is to use a mesh which is conformal to the scatterer.

The use of a boundary integral equation is one way to guaran-
tee proper behavior of the scattered field. A simple 2-D example was
presented to clarify the procedure. An early application to 3-D scat-
tering was also considered using what was termed the finite-element
boundary-integral method (FEBI). More will be said on the topic of
boundary integral equations in Chapter 3, where a detailed application
of this method is made to 2-D scattering from highly inhomogeneous
structures.

The F3 technique is similar in spirit to the boundary integral
approach, but with increased flexibility. In fact, the boundary inte-
gral equation can be shown to be a special case of the F3, when the
two bounding surfaces become congruent and proper limiting condi-
tions are applied. As with the boundary integral approach, the F3
Permits the use of a conformal mesh for field solutions within com-
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plicated scatterers composed of inhomogeneous and even anisotropic
materials. As was shown, the F? casts the scattering problem into a
vector-matrix equivalent of a simple feedback system, wherein the for-
ward (interior problem) and feedback (radiated field) matrices may be
computed independently and then combined to obtain a self-consistent
scattering solution. Because of the F*3 system topology, either iterative
or direct processing may be readily employed. The associated stability
and condition number issues, and their relationship, were discussed.
Results for scattering by 2-D penetrable objects and 3-D thin-wires
were also presented. The future of the F3 resides in extending the
realm of practical electromagnetic calculations to electrically large, and
quite complex, scattering configurations where volume integral equa-
tion techniques are numerically “bottlenecked” by their associated full
matrices. :

One of the most exciting (and controversial) recent developments
in computational electromagnetics is in the area of radiation boundary
conditions (RBC’s). Such conditions are based upon numerical ap-
proximations to the behavior of outbound radiation fields. An RBC is
applied at an enclosing boundary which does not need to be in the far-
zone of the scatterer. In some cases, the boundary has been very close
to the surface of the scattering object. RBC’s have been developed
through multiple approaches, two of which we briefly considered.

The computational power of RBC’s stems from their potential for
requiring only local interactions in the mesh termination equations.
This is in contrast to the analytically exact boundary integral and F3
approaches, where full global coupling at the mesh boundary is pro-
duced because of innate Green’s function integrations. Within these
boundary integrations, the scattered near-field at a given point is de-
termined by the actual (or equivalent) source contributions over the
entire integration surface. This dependence is stated as the classical
Huygen’s Principle [1]. However, the weighted effect of source con-
tributions falls off with increasing distance from the field point. An
important computational question concerns the possibility of ignoring
the source contributions beyond some distance in exchange for a small
increase in integration error. Although the RBC’s do not explicitly
perform the source integration, the implication of their success is that
the scattered field at a near-field point is not strongly determined by
other than the local behavior of equivalent sources in its immediate
vicinity. This point is a major source of disagreement at the present
time. Of particular concern are the cases of reentrant structures and
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highly resonant objects whose reactive fields are much stronger than
their radiative fields over at least a portion of the equivalent source sur-
face. In support of the RBC’s is their record of success, as displayed
by the results in Chapters 4, 5, 7 and 8. Very efficient computational
algorithms result by combining the local mesh interactions in the finite
methods with the local boundary interactions of an appropriate RBC.
This global sparsity of interactions, if accurate, may ultimately drive
virtually all large-scale electromagnetic computations (metallic as well
as penetrable) into the use of finite methods.
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