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2.1 Introduction

Due to the practical importance and difficulties associated with
their closed form solutions, the experimental and computational study
of conical antennas and scatterers, such as sphere-cones, round and
flat-based and loaded bicones [1,2] has been closely connected with
the evolution of numerical methods in electromagnetics. During the
past two decades, the widespread use of such methods has allowed a
broad range of important scattering problems involving non-standard
shapes, boundary conditions and material composition to be solved.
While computing speed and the availability of central memory remain
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a hurdle, interest in ever more complex processes provides a major -
driving force as instanced by recent studies involving composite objects
[3-5].

The purpose of this chapter is to outline a differential method
for the solution of composite scattering problems. In this section, we
briefly survey some current problem types and solution methods. Sec-
tion 2.2 discusses the unimoment technique [6] and the axisymmet-
ric coupled azimuthal potentials (CAPs) [7]. Section 2.3 details the
subsequent numerical procedure including the finite element method,
the mesh and linear equation solver. The procedure is validated us-
ing standard Mei series calculations for spheres. In section 2.4, fur-
ther tests of the method are performed using some standard shaped
loaded and unloaded scatterers. Next, experimental results obtained
from monostatic measurements are compared with computations for
a series of loaded bicones. In Section 2.5, some conclusions are made
about the procedure with particular regard for the method of incorpo-
rating conductors. Finally, some developments of the concepts of the
CAP/unimoment method are discussed in Section 2.6.

Due to the computational economies afforded, bodies of revolu-
tion (BORs) or axisymmetric objects as illustrated in Fig. 1 have been
the basis of many studies. The incident and impressed fields are not
in general axisymmetric although they are azimuthally continuous and
thus amenable to Fourier analysis. In order to get an approximate
quantitative understanding of a complicated phenomenon such as mi-
crowave frequency hot spots in the human cranium, axisymmetry has
been assumed [8]. Many problems remain however concerning essen-
tially non-axisymmetric objects [9] while future composite studies such
as therapeutic applicators promise to be most worthwhile [10].

Two major types of numerical method have been employed to date
to solve scattering in the Rayleigh or resonance region via Maxwell’s
equations and associated boundary conditions, namely integral equa-
tion and differential equation methods. The two can be related by suc-
cessively integrating by parts [11]. There are fundamental differences
that make either method more appropriate for different applications.
Integral equations distribute the sources over surfaces (2-D manifolds)
so that the surface element intercoupling falls off relatively slowly with
distance, generally resulting in dense matrices. However, since radia-
tion conditions are incorporated as limits of integration, infinite regions
are easily handled. On the other hand, differential methods give a de-
scription at each point in terms of the fields at the surrounding set
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Figure 1 Various axisymmetric scattering problems.

of nodes in a volume (3-D manifold). This provides a more localized
effect, resulting in sparse matrices. Some means of coupling the differ-
ential method to the exterior infinite region is required however.
Integral equation methods which utilize the surface equivalence
principle are most effective for applications involving piecewise ho-
mogeneous regions [12,13]. The missile plume problem (Fig. 1) was
treated as a layered dielectric with a conducting inside surface [3]. Use
of the moment method results in a block tridiagonal matrix consisting
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of dense submatrices. Recently, a comparison was made of different -
surface integral equation (SIE) formulations as applied to coated con-
ductors [4]. At each surface, either electric or magnetic equivalent sur-
face currents may be used, or both may be combined. The advantage of
using single source formulations is the reduction in the required num-
ber of variables. Difficulties arise however depending upon whether or
not associated over-constraints are satisfied. Thus at each single source
layer surface, the solution can be affected by uniqueness problems at
interior resonances when the permittivity of the coating is large.

Integral equation methods can be used for continuously inhomo-
geneous regions. A volume integral equation utilizing the polarization
currents inside a volume and equivalent surface currents on an enclos-
ing boundary surface can be formulated [14,15]. Three current compo-
nents are required to be solved at each node in the volume. Thus the
matrix, which is of order 3n3 where n is the number of nodes in the
volume, becomes large for anything other than a coarse grid.

Where continuously varying inhomogeneities are present, such as
biological systems, a differential method is appropriate. Furthermore,
where inter-regional surfaces involve sharp reentrant angles, a numer-
ical method based on differential equations accounts for the rapidly
changing field solution near the cusp in a more direct manner; the
mesh density is increased near the point. With the SIE approach,
special care must be taken with the equations of continuity at such
points.

Two differential methods, finite differences and finite elements
have been used. With the finite difference method, approximate par-
tial differences are applied directly to the field equations while the
finite element method uses a weighting procedure to obtain a system
of derived equations in which the errors are more evenly distributed
throughout the problem domain.

While several techniques exist for coupling differential methods
to the exterior region, such as infinite elements [16], ballooning [17]
or the field feedback formulation [18], one effective means is the uni-
moment method [6]. Together with the unimoment method, the ax-
isymmetric CAPs have been used to analyze structurally axisymmet-
ric scattering, radiation, penetration and absorption problems. The
CAP /unimoment formulation has proved over the past decade both
powerful and flexible. Some applications have involved lossy dielectric
objects [8,19,20]. Other extensions and hybrid techniques have been
used [21,22]. Recently, the CAP equations were allied with the field
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feedback formulation to analyse thin dipoles [18].

Stovall and Mei [2] studied radiation from loaded bicones using
the finite difference method allied with the unimoment method and a
symmetric form of the CAPs which results in a single potential. No
account as to the end shape of the bicone was taken. The present study
was initiated in part to examine the effect of shifting the surface of the
unimoment method outwards and thus allow the analysis of various
composite antenna structures. It was considered that this shifting of
the unimoment method surface might also avoid possible continuity
complications at the cone-hemisphere junction.

A finite element method based on the theory of the axisymmetric
CAPs was used together with a conductor surface skin model which
was included in the finite element mesh. This part of the mesh which
approximates the field distributions at an imperfect conductor surface
was used instead of applying perfect conductor boundary conditions.
The important parameters were found to be the conductivity of the
skin region and the ratio of the internal nodal separation (the mesh
density) to that used external to the conductor. Reducing the size of
the mesh as it proceeds radially inside the conductor surface accounts
for the large wave numbers inside the skin.

2.2 Formulation

The following formulation is specialized to bodies of revolution,
but could be generalized to arbitrary 3-D inhomogeneous structures.
The unimoment method is quite flexible and extensions of the CAP
equations to piecewise axisymmetric, quasi-axisymmetric, and full 3-D
have recently been suggested (see Chapter 6), [23].

We address a generic problem involving axisymmetric composite
structures where the conducting region is assumed to enclose the ori-
gin of a normalized cylindrical coordinate system and the dielectric
either totally or partially surrounds the internal metallic region. Bire-
gional or triregional unimoment methods can be used to separate the
inhomogeneity depending on the shape and nature of the conductor.
In the inhomogeneous region, Maxwell’s equations can be written as
time-harmonic modal expansions (the axisymmetric CAP equations)
appropriate for coupling to the free-space and core region spherical
harmonics.

The inhomogeneities involve isotropic regions where the shape and



74 2. A Finite Element Method for Composite Scatterers

the constitutive parameters are both assumed to be rotationally invari-
ant: €(r,0) = eoer(r,0); u(r,0) = popr(r,6).

a. Unimoment Method

For the general case of an arbitrarily shaped scatterer, the unimo-
ment method [6] uses a series of boundary trial functions in order to
numerically enforce electromagnetic continuity at a surface surround-
ing the inhomogeneous region of the object under analysis. As illus-
trated in Fig. 2, this region can be surrounded both internally and
externally by homogeneous core and free-space regions. Care needs to
be taken in the selection of the boundary trial functions which should
form a complete polynomial set.

Savings are possible by choice of canonical surfaces which allow
the reuse of computed modal expansions. Using the appropriate modal
series at nodes on the canonical surface, C, either for the scattered,
incident or interior fields, continuity of the total electromagnetic fields
and their normal derivatives is sought. Use of modal boundary condi-
tions along C for the interior fields automatically ensures modal and
total field continuity along C. What is needed then is to obtain the mix
of modal coefficients which also ensures normal derivative continuity.

This can be done by obtaining the field values along a congruent
curve C', enabling the normal derivative to be numerically estimated
by using field differences between the two curves. This can be inaccu-
rate depending on how the gradient estimates are derived. A simpler
more accurate method of obtaining the desired continuity between re-
gions is to ensure the total fields are also matched along C'.

For coupling with the CAP formulation the surfaces which sep-
arate these regions can be of any shape that permit the convenient
orthogonal separation of the azimuthal coordinate, ¢ , into the spec-
tral modes, /™%, In the present application, spheres and spherical
harmonics were used. Figure 3 shows in cross-section, a loaded dipole,
the two spherical separable surfaces Syc (homogeneous core) and Sp
(free-space) and their congruents Sp and Sj.

The modal azimuthal fields may be derived from

1 azAr,m 1 6Fr,m
Egm = jwersing Ordo t %0 (12)
1 82 Fr'm “1- aAr,m

Hom = Joprsin® ordg r 08

(1b)
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Figure 2 Unimoment surfaces: (a) Triregional and (b) Biregional.

with the radial electric and magnetic vector potentials given by

Fom = Y 32 annPP(con OBu(kr)e™  (10)

h
o3
3
l

@
= 7\10/16—0 Z bm n P*(cos 6) B, (kr)e’™? (1d)
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Figure 83 Semi-annular region for loaded dipole.

The complex propagation constant, in the assumed homogeneous ma-
terial, is given by k& = w, /€. Also, 7% = /pio/€0 = 1207 ohms, P;* are
associated Legendre functions of the first kind, B, are Riccati spherical
Bessel functions, N,, is a truncation limit on the radial modal index,
n, and m is the azimuthal modal index. The modal coefficients, ann
and b,,,, are determined to numerically enforce continuity of the fields
via the moment method.

While the above form of the unimoment method works well with
nearly spherical objects, other three dimensional orthogonal systems
may be used for other shapes, for instance thin wires, where spher-
ical harmonics are inefficient and converge slowly. Similarly, objects
such as the human body could be better modelled using spheroids and
spheroidal harmonics.
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b. Analytic CAP Formulation

The analytical derivation of the axisymmetric CAP formulation
[24] begins by taking a Fourier series in the azimuthal coordinate ¢,
thus separating the azimuthal variable,

E(R,Z,¢)= Y &Em(R,Z)e™ (2a)
WERZ,8)= Y Fn(R, Z)e™ (2b)

The magnetic field is scaled by the free-space impedance, 79, which
simplifies the resulting coupled set of partial differential equations. Use
of a normalized cylindrical coordinate system (R = kop, Z = ko2z) en-
ables the application of cartesian finite elements in the cross-sectional
plane (r,0).

In the inhomogeneous isotropic region, Maxwell’s curl equations
for time-harmonic, source free regions where conductive media may be
present, are rewritten using equations (2a — b). The resulting set of
equations may be written in partitioned matrix form

€ 4 g 1
hia o ! o =19 —
R | ToR | 192 | rumt T O
Broy_ 0 b,
_0_ R 175z _0_ | 'oR _OM Ya,m 0
d | | T T
0 <t
jaz | Re, m | 0 0 €Rm _ 0
9 ‘ [ hzm| | 0
7 I o T Il I
al T T ez 0
0 13% | 0 0 | R, m
6 ' ! -hR,m- - 0 .
157 0 o0 0 I m Ry,

3)
where e’™# terms have been omitted and the modal CAP variables
¥1,m and 92 are defined in terms of the azimuthal modal field com-
Ponents, ey, and hg -
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Yim = Regm (4a)
¢2,m = Rh¢,m (4b)

The 6 X 6 system of modal equations in (3) is seen to be block-
reducible and any of the three pairings indicated can be used to convert
these first order equations into an equivalent system involving only a
collapsed 2x 2 set of coupled second order partial differential equations.

For the axisymmetric structures involved, the CAP variables, 91
and ), m, are continuous everywhere. This is so at all source-free
cross-sectional junctions, even across conductor and dielectric inter-
faces. Naturally, field components in the cross-sectional plane normal
to the CAPs may be discontinuous. Choosing the CAPs as problem
variables results in the following 2 X 2 coupled system of partial differ-
ential equations:

6r""[)l,m

7 = 0 (5a)

V- {fm(R€,~V¢1,m + m‘; X V¢2,m)} +

V- [FnlRpr Vbam = mx V)] + L2222 =0 (5b)
where the cross sectional gradient operator is defined by

~80 50

and

f = (B, 2)pn(R, Z)R? = m?] ™ (6b)

is the media variable which is a determinant of the disjoint first order
system. It presents a complication in the form of a singularity at the
cylindrical surface defined by

Im|
\/er(Rma Z)pr(Rim, Z)

for the lossless case when the relative parameters, €, and p,, are both
real. Numerical errors are observed in the vicinity of these singularities.
At points close to such surfaces, and there may be several when layered
dielectrics are considered, these errors can be minimized by taking an

R,(Z)=

M
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averaged value at the point from the CAPs at the surrounding nodes,
[25].

Using dyadic operator notation, the system in equation (5) can be
rewritten as

L-Y(R,2)=0 (8)

where the dyadic operator, f(R, Z), is given by

- V- (fmRexV) + €, /R mV - (fmd X V) } 00
9a
—mV - (fmdX V) V-(fmRp,V)+ pr/R

and where the column vector is

k577 — 'ﬁbl,m
Y(R,Z) = [%’m} (9b)

The operator in (9a) can be shown to be self-adjoint where the
boundary conditions along the unimoment perimeter are Dirichlet and
homogeneous Neumann along the Z-axis. If an appropriate numeri-
cal procedure is used, this self-adjointness results in symmetry of the
resulting system of linear equations.

2.3 Finite Element Method

The CAP equations require numerical solution within the inho-
mogeneous regions associated with the scattering problem. The choice
of finite elements leads to two equivalent numerical procedures in this
case, namely the variational method and the Galerkin method.

The variation statement of the problem is an energy density func-
tional which again can be derived in two ways, one a heuristic method
using the system Euler Lagrange equations, the other from a general-
ized stationary theorem.

F= /S L(R, Z, %1, %2, Vib, Vibo) dR dZ (10)

where the modal subscripts have been omitted for clarity and the La-
grangian is given by
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L =fm[V1 - (Re, Viby + m X Veh3) + Vio - (RurVipy

h v (1)

— mé X Vip1)] - (e + pr3)/R

The physical nature of this functional can be shown to be related

to the difference between the time-varying and time-average radiated
power densities via a pseudo (non-conjugate) Poynting vector [24]:

F=-j f (@m X Fim) - R |de] (12)
&5

In (10), S is the finite element cross-sectional area and 45 in (12)
is the contour which bounds § while ¢ is the length variable around
this contour.

The variational method as applied to finite elements begins by
using an approximate piecewise polynomial model of the true solution
and then a representative approximation at each node of a mesh de-
scription of the problem. The problem variables now become the nodal
approximates. Since the system is in dynamic equilibrium, the mini-
mum energy condition can be used to derive the equivalent requirement
on each nodal variable. Simply, equation (10) is differentiated with re-
spect to these nodal variables and the result set to zero. The fact that
the first variation gives a functional which is quadratic in form with
respect to these nodal variables results in a system of linear equations.
Using the interpolation base chosen, each finite element associated with
each node contributes to the resulting linear system of equations.

Alternatively,the weighted residual Galerkin method can be ap-
plied to the CAP system of equations given by (8) and (9)

(Wi,L-T(R,2))=0 fori=1,ng (13)

where nj is the total number of internal nodes within the finite ele-
ment mesh, W;(R, Z) are weighting functions, ¥ (R, Z) are piecewise
polynomial approximations to the exact CAP solution and the (-,-)
represents an inner-product integration in (R, Z). The * superscript
notation employed here and in the next section indicates the numeri-
cal approximation to the functional term and does not mean complex
conjugation. In Galerkin’s method, the weighting functions and the
basis functions for ¥ are chosen to be equal.
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Note that the variational method depends upon discovering the
associated quadratic functional, which may or may not exist, whereas
the Galerkin approach depends only upon the existence of a unique
solution to the system of partial differential equations which depends
partially upon the type of boundary conditions being applied. Once
these uniqueness constraints are satisfied, Galerkin’s method can be
applied.

a. Modelling and Shape Functions

Central to the art of numerical modelling is the replacement of the
exact solution at all points in the domain of interest with the nodal
approximates using a piecewise polynomial representation. It is most
essential that the choice of polynomial be representative of the true
solution as far as possible given numerical convenience and error con-
siderations. In seeking to obtain the solution of the CAP equations, it
must be remembered that the true solution is azimuthally smooth due
to the axisymmetry. Hence, the separation of the azimuthal coordinate
by the spectral series eqns (2) should be a good approximation for the
continuous azimuthal component of the solution. This is not so in all
spherical directions, e.g. radial and elevational as inhomogeneities in
these directions will cause discontinuities in the cross-sectional fields.
For these directions, it is more accurate to use low order piecewise
monomial functions (1,z,2%,...).

In the present study, linear cross-sectional interpolation was em-
ployed. This was done in order to utilize the resulting discontinuous
numerical solution across media interfaces. This models the exact solu-
tion at these boundaries, while also introducing small numerical errors
at element interfaces everywhere else. It also allows the use of the Ric-
cati transformation [2] to solve the resulting block-tridiagonal system
of linear equations.

For the linear case, a triangular element e is considered. As per
equation (9b), let

V.(R,Z) = [$1(R, Z),93(R, Z)|F (14)

where T means transpose, represent the approximation to the exact
CAP vector by using linear basis functions within the element. As
Previously mentioned, the * notation indicates numerical approxima-
tion and does not mean complex conjugation.
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The linear interpolation model is chosen such that it forms a com-

plete polynomial representation of order one within the triangular el-
ement.

(R, Z)=a1R+a;Z + a3 (15a)

V3(R,Z) =biR+ b2 + b3 (15b)

It follows that,

&f

Yi(R,Z) = P(R,Z)- (16a)

¥i(R,Z) = P(R,Z)-b (16b)

where the row vector is given by P(R,Z) = [R, Z, 1]

and
HISH
a={ a b=( by
az bs

By interpolation, ¥, (R, Z) can be derived in terms of the nodal
values of the potentials. These nodal values are represented by the
arrays

— Yi(R1, Z1)
Yy = {ﬂ(ﬂz, Zz)] (17)
¥r(Rs3, Z3) :

where the ordered nodal coordinates of the triangle are (R,,Z,) for
n=1,2,3, with k = 1,2 indicating the two CAP’s.

Using the interpolation model at each node of the triangle leads
to the fundamental finite element equations

Yi(R,Z) = Ne(R, Z) - ¥, (18)

with Ne(R,Z) = P(R,Z)- Ge. The transformation matrix is given in
terms of the triangle node coordinates
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— R z, 117} ;
G.=|R, 2, 1 (19)
Rs Z3 1
1 (Zz — Z3) (Z3 — Zl) (Zl - Z2)
=371 (Rs — Ry) (R — Rs) (R2 — Ry)
¢ |(R2Z3 — R3Z;) (R3Zy— R1Z3) (BaZ; - RyZy)

where A, is the area of the triangle.

The shape function vector, N.(R,Z), is composed of three linear
function components, N, (R, Z), each of which equates to unity at the
n-th local node and zero at all other nodes in the element. The shape
function equations in (18) effectively split the approximate solution
into a geometric part and a nodal part. The geometric part is the
shape function and depends only on (R, Z). On the other hand, the
nodal variable approximates do not depend on the spatial variables di-
rectly but rather depend for accuracy on the numerical procedure used
to model the underlying partial differential equations. The combined
effect is a cross-sectional piecewise planar approximation to the exact
wave solution.

The weighted residual Galerkin method can be applied using equa-
tions (13), where the weighting functions, W;, become the components
of the shape function vector in each element, resulting in

=

/ ﬁ,‘ '{Z-‘PB(R,Z)} dAe = —0- for i = 1,1?,[ (20&)
e€{e(i)} 77 Ae

where

. 0
Nk, 2) } (20b)

—N-i(R, Z)=
[ 0 Ni(R,Z)
This sum is over the elements connected to the i-th internal mesh node,
as is represented by the set {e(¢)}. The dyadic operator, L(R,Z), is
defined in (9).
Inserting the shape function equations from (18) yields at each
node, n = 4, ,k within the element e(3),
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// L-Nn- [i‘] dA. = [3] (21) |

The divergence theorem is used to reduce the admissibility constraints
on the basis functions. This transfers a degree of this constraint to the
weighting functions and produces the weak form often used in finite
element applications [11]

) /A Tn(R,Z)- [ }dA,—[g} (22)

e€{e(i)}

e€{e(i)}

where fN(R, 7) is given by

[ fmVN;-(R&;VN,) = N;Npe,/R ~ mVN;-(fmd X VN,.)}
~mVN; - (fm® X VN,)  fmVN; - (RurVN,) = N; No pr/R

As stated, the variational method results in an equivalent system of
equations to that generated by the coupled differential equations.

b. Conformal Mesh

The techniques used to define the placement of the finite elements
throughout the domain of the inhomogeneous problem within the sep-
arable surfaces relate to both the linear equation solution method and
the type of spatial problem being analyzed. As well, the degree of
inhomogeneity and the presence of discontinuities of either media or
geometry all affect the mesh generation process.

For near spherical geometries, the use of a double semi-circular
boundary allows a constant radial width. Thus, a domain may be
modelled by distorting what is essentially a regular polar coordinate
mesh to conform to the dielectric-air interface (and additionally the
conductor-dielectric interface for composite bodies).

The placement of nodes along each radial is performed in the man-
ner discussed by Morgan [24] such that a regular polar mesh is mini-
mally perturbed. The dielectric (and conductor) surface of revolution
can be defined by an radius array R; = R(#;), for ¢ = 1,1,,,,,. The
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NODES EQUISPACED

Figure 4 Conformal mesh generation for 3-node triangles.

object is to choose the node in the original undisturbed mesh that is
closest to the surface R; at each 6; as shown in Fig. 4.

The same procedure can be generalized for multi-layered problems
such as the tip effects of a multi-layered radome [22] and the analysis
of hot-spots within the human cranium [8].

The convenience of the mesh is increased by keeping the number
of nodes along each radial spoke constant. The topology is equivalent
at each step starting from 8 = 0° to 8 = 180°. Figure 5 illustrates the
mesh for an off-set loaded conducting sphere where the global node
numbering is shown for the first three radial steps. The grid can be
adapted for regions of greater change, for example, the bicone shape
near the half-angle.
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Figure 65 Mesh for offset loaded conducting sphere.

¢. Riccati Transform

As was previously described, the system matrix is gradually loaded
as the forward sweep continues until the last radial is reached. The
resulting matrix is shown diagrammatically in Fig. 6. It can be seen
that the structure is tridiagonal in sub-matrices formed by the partition

into the nodal unknowns associated with each radial unknowns vector,
¥,.
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Figure 6 Single mode global system matrix.

The off-diagonal sub-matrices reflect the RH or LH nature of the
local mesh distortions and are banded of half-width 3, whilst the main
diagonal has a half-width of 4. Each submatrix can be stored in a
banded profile fashion whereby only the band coefficients and the col-
umn number of the left-most entry of the band in each row is required.

The Riccati block-by-block elimination technique [2] can be used
to solve the system of linear equations. The system matrix may be
written in terms of a recursive sequence of submatrices.

i Vi +B;-T;+C; Wi =D;  fori=1,2,...Ln (23)

P

where, by inspection, the initial and final submatrices

A =Ci=14;

magx

= ﬁImas = ﬁ

In all subsequent computations, the dimensions of the submatrices
were kept constant because the nodal grid was so chosen. However, ap-
plications where this is not the case can be solved in the same fashion.
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If the lengths of TII’.--l,:\f;, and ¥;4; are n;_1,n;, and n;41, respec- -
tively, then A;, B; and C; have the dimensions n; X n;—1,n; X n; and
N
n; X ni41; the total dimension of the system matrix will be Y n;.
i=1
The Riccati matrix, R;, and vector S; are defined by the transfor-
mation

V1=Ri -U:+5; (24)

Substituting (24) into (23) and comparing with the form in (24)
gives the following recursive relationships

ﬁ,‘.}.l = —(ﬁ,‘ + i; -ﬁg)'l . ﬁ,‘ (25a)

Sit1 = -—(ﬁg + i,' . ﬁ,) . (‘D., - i; _.ST,) (255)

The boundary conditions yield the start and end matrix and vector
at both ends

R,=B, -C, (26a)

S;=B, -D (26b)

R(fpestn =0 (26c)
S(Imes+1) = D(lnas) (264)

It can be seen from Fig. 6 that ¥; has only two non-zero elements
at @; (apart from the conditions on the z-axis at 6y and 0y,,,,). This
allows a reduction in core storage requirements although a simple al-

ternative technique is to use backing disk to store and retrieve R; and
S; as required.

Thus the, linear solution method starts by stepping forward a
radial at a time beginning from 8 = 0° to § = 180° where at each step
the recursive transform equations are used to successively eliminate the
previous i-2th radial unknowns vector. The first and last radials lie on
the Z-axis and, depending upon the mode being considered and on the
CAP variables being used, these conditions are trivially loaded. Once
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the final radial at @ = 180° is reached, the forward evolution is complete
and a back substitution stage is now commenced. The solution along
each radial is obtained in turn as the backsweep proceeds. If necessary,
these solutions can be found for all nodes in each vector; only the
congruential nodes were required however for the present application.

d. Incorporation of Conductor Regions
Three methods may be used to incorporate the conducting region:

(a) Perfect conductor boundary conditions may be applied along the
cross-sectional contour of the axisymmetric conductor/dielectric inter-
face

Pim = (273)
Oy m _
S = (27b)

(b) A complex permittivity may be used inside the conductor region
where the conductivity of the medium is included; the finite element
mesh finishes at an internal separable surface where internal core modes
are applied within the unimoment method

€& = €. — Jen (28a)

where

el = o fweg (28b)

The use of a complex permittivity results from a reformulation of
the underlying time-varying wave equations where a first order par-
tial time derivative exists. This derivative can be incorporated within
the same time-harmonic formulation as in equations (1) and (5) by
redefining a complex propagation constant which can be related to the
free-space wave number. Thus k = k, kg, where the normalization fac-
tor is k, = \/€! — jo/we, [26]. In general, the time-varying fields can
be shown to be elliptic in direction at any point. The path of a free
electron in such a field will also be elliptic; the concept of an eddy
current is apparent.

Method (b) is illustrated by Fig. 5. An unreduced nodal separa-
tion or mesh step is shown in the conductor region (the mesh is stepped
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Figure 7 Conductor surface skin model.

inwards from the free-space separable surface at rg, until the homo-
geneous core region separable surface at 7y is reached). A range of
poor conductors may be modelled in this fashion.

(c) An imperfect skin region can be modelled by utilizing the same
complex permittivity concept as in (b) but terminating the mesh step-
ping at a boundary just inside the conductor surface; internal to this
thin layer, the fields are presumed to have vanished but within the skin
they are accounted for. In this case, the position of the internal bound--
ary is varied depending upon precisely where the conductor surface is:
situated for a particular angle. It is not important precisely where the
internal boundary is located, rather that the field gradients near the
surface should be accounted for correctly and that the resulting subma-
trices be kept of nearly constant dimension. The unimoment method is
simplified since no internal core modes are required. Within the skin, a
reduced nodal separation can be used for modelling actual conductors
such as aluminium. Figure 7 illustrates the concept of reducing the
step at the surface.

Having previously tried methods (a) and (b), [27], (¢) was chosen
for numerical testing. The first objects selected for examination were
spheres since the analytical Mie series solution was available for com-
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parison for both unloaded and loaded spheres and for the additional
case of an axial offset with respect to the Z-axis.

The initial problem was to determine what actual nodal step re-
ductions should be used inside the conductor and with what range of
¢r. Using two unloaded centred conducting sphere scatterers (radii
0.4A¢ and 0.8)9), a broad range of step reductions and permittivities
was tested to see what relationship would give valid results.

In both cases at each point, the problem parameters were varied
such that two or so steps of an iterative multi-dimensional hill search
were performed where at the top of the hill lay the optimized approx-
imation to the exact solution. The parameters referred to are I,,4,
the number of angular @ divisions, Np,4, the number of radial modes,
DENS the nodal mesh density in nodes per wavelength and M, ., the
number of azimuthal modes (only the m = 1 mode is required for axial
incidence).

Figures 8 and 9 show how ¢/ relates to the step ratio and the
forward scattering cross section solution for both sphere problems as-
suming axial incidence. It is seen in both that the simulation has a
stable region between two unstable bounding regions which together
demonstrate the quadratic nature of the conductor surface modelling
error. The results indicate that there is a broad range of ¢’ and step
ratios within which the numerical errors due to the surface skin model
are minimal. Further, as the spherical radius of any point increases, so
does the stable region; unfortunately so do the computational require-
ments.

To further check the procedure, the complex scattering amplitudes
for the 0.4)\¢ unloaded sphere and an off-set loaded conducting sphere
problem of radius 1.0\¢ were examined. These results afforded much
insight into both amplitude and phase solutions for the finite element
program, EMSCAT, which was based on that used by Morgan [24].
These results are shown in Figs. 10 and 11.
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2.4 Numerical and Experimental Results

Having obtained a basic confidence in the procedure, a second
phase of testing was carried out using more arbitrary shapes involving
a wide range of radial distances and sharp corners which might better
check the skin model. As a means of comparison, a moment method
program based on the SIE approach was used [12]. Other results in the
form of monostatic and bistatic radar cross sections were also available
[1,4]-

Figure 12 shows the bistatic results for a loaded ellipsoid, with
a = 0.3A0,a2 = 0.5/\0,b1 = 0.2A0,b2 = 0.3Ao, and €:. = 4.0. Figure
13 shows the back scattering cross section for an unloaded sphere-cone
of base diameter 0.592)\g and half angle 40°. Again the results were
reasonably good.

An empirical experiment was also conducted by constructmg a
range of loaded bicones and accurately measuring the far field scat-
tering. The measurements were carried out at the antenna scattering
range at the Defence Research Centre Salisbury (DRCS) in Adelaide,
South Australia. Figure 14 shows the monocone pair (a) that screwed
together with the various loadings (b)-(f). Monostatic radar cross sec-
tions were measured using two polarizations of plane wave (E and H
vertical). The measurements were performed at two related frequen-
cies, 9.33 GHz and 4.67 GHz.

Next, the biconical scatterers were numerically analyzed. Up to
this point, the cross sectional shapes involved were relatively straight
forward to program. With the necessity to model the constructed un-
loaded and loaded bicones, a more systematic approach was required.
The solution was to incorporate a multi-layered capability together
with a means of segmenting each contour into elemental shapes, such
as sphere, bicone, cylinder etc., each of which was specified within an
angular range. This facility, together with a method of varying the
permittivity within each layer as the angular evolution is performed,
enabled the structures to be modelled.

The back-scattering radar cross sections for the unloaded and
loaded bicones, (a) through (f) of Fig. 14, are shown in Figs. 15 to
20. These results were obtained at a frequency of 9.33 GHz. The nu-
merical parameters used were: for the unloaded bicone, I,,,, = 151,
Noaz =10, Mppow = 7 (m = 0,1,2...7), DENS = 31 and for the loaded
bicones, Inoz = 131, Nmaz = 14, Mmar = 7, DENS = 31. Inside the
skin region, in all cases, € = 500,000 and the step reduction ratio was
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5000. The loading dielectric constant, ¢, was measured to be 2.48. The
Cross section results for the range 0° — 180° were obtained by taking 37
Individual problems, o = 0°,5°,10°...180°, utilizing the economy of
effort of the unimoment method. The errors for bicones (a),(b),(c) and
(f) can be seen to be reasonable (£2dB) where the experimental and
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numerical levels were above their respective noise floors. Loadings in
bicones (d) and (e) protrude sufficiently to transverse the cylindrical
singularity at 0.64)g. The results for bicone (d) indicate the deterio-
ration expected in the range § = 46° — 134°, while those for bicone (e)
confirm that any effect is localized to a smaller range near broadside.
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2.5 Conclusions

The results of the experimental and numerical testing demonstrate
inclusion of conductor surfaces within the CAP/unimoment algorithm.
The method most successfully applied was the modelling of a thin
surface skin region similar to the actual situation at a real conductor
surface.

The selection of €/ requires careful consideration. Those parts of
the structure near the origin necessitate a higher skin permittivity to
ensure accurate modelling which leads to extra computing resources
such as dynamic range.

The model also requires the overheads associated with the extra
nodes of the skin region. By using perfect boundary conditions, such
overheads could be avoided at the cost of accuracy. Fortunately, these
extra nodes are minimal since the solution form inside the skin is ex-
ponentially decaying and linear interpolation can accurately model the
decay near the surface at relatively little cost. Throughout the com-
putations, the core region unimoment method was not required which
was achieved by setting the internal number of modes to zero. Thus,
three extra nodes were included in the mesh beyond the conductor-
dielectric interface. The test results of centred unloaded and loaded
spheres indicate that accurate results can be obtained in this fashion.

The types of composite objects analyzed in Sections 2.3 and 2.4
were special cases in the sense that in each, the conductor formed
the internal core region. Consider the case of a surgically implanted
metallic plate which acts as a replacement for the bone covering the
brain. In this case, the composite structure is not so straightforward
and the conductor does not preclude the internal region if the origin is
placed at the brain centre [8]. Structures such as this may be analyzed
by inserting two skin regions on each side of the plate as the 8 evolution
proceeds. By once again ensuring that the number of nodes along each
radial is kept fairly constant, the same solution procedure can be used.

2.6 Future Developments

All bodies of revolution may be called azimuthally homogeneous.
Other more spatially arbitrary objects can be classified as:

¢ azimuthally piecewise homogeneous
e azimuthally continuously inhomogeneous with slow variations
¢ azimuthally continuously inhomogeneous with abrupt variations
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Figure 21 Global system matrix for quasi-axisymmetric case.

Thus, a range of geometries exist that lie between axisymmetric and
arbitrarily 3-dimensional objects which can be called piecewise axisym-
metric or quasi-axisymmetric.

Material objects whose constitutive properties vary around the
azimuth form important modern problems. The human body might
be approximated in a piecewise axisymmetric fashion. Nebular gases
such as plume exhaust form an example of slow axial inhomogeneity.
Likewise, there are structures that exhibit abrupt azimuthal disconti-
nuities such as a half-sphere which is aligned with its equator along
the Z-axis.

Many of the concepts behind the axisymmetric CAP /unimoment
method are capable of being generalized to allow the solution of these
more arbitrary electromagnetic problems (Editor’s Note: See Chapter
6). Quasi-axisymmetric objects may be analyzed by using a fully cou-
pled version of the CAP equations {23]. In addition to the spectral
series for the fields, a second series for azimuthal variations in the con-
stitutive parameters €(p,0,¢) and p(p,0,¢) can be used. Maxwell’s
equations no longer decouple or reduce at each mode and all 6 modal
variables are required. However the resulting system, illustrated in
Fig. 21 has a Toeplitz-like replication and importantly the unimoment
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Figure 22 Azimuthally segmented mesh for the piecewise axisymmetric
case: (a) Meridian section, (b) Azimuthal segments, (¢) Open view of
3-D mesh atructure.
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method can be applied to ensure continuity of the fields at the freespace
separable contour. Although the submatrices are sparse, the overall
matrix is dense and is now 3m times the size of the axisymmetric
matrix, where m is the number of azimuthal modes required.

Continuous spectral functions are most appropriate in the axisym-
metric and quasi-axisymmetric cases where the fields are azimuthally
smooth. Other bases can be used for problems involving azimuthal
discontinuities. Spectral functions, periodic in higher multiples of 2=
such as 47 etc., or non-periodic bases including monomial functions
may be used to account for jump discontinuities [28]. Piecewise spec-
tral functions result in a piecewise axisymmetric formulation where the
axisymmetric CAPs may be used within an azimuthal segment.

The axisymmetric conformal mesh generation procedure illustrat-
ed in Fig. 5 can be projected around the azimuth to sectionally conform
to a three dimensional contour of arbitrary shape. As with the axisym-
metric mesh, multi-layered objects or continuously inhomogeneous ob-
jects can be mapped. Figure 22 shows an azimuthally segmented mesh
while the resulting submatrix structure is shown in Fig. 23. The topol-
ogy is interesting in that a star connection forms along the Z-axis. A
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Figure 24 Sparse LU-decomposition of a block tridiagonal matrix.

simpler submatrix can be achieved where the region along the Z-axis
is axisymmetric; here the unimoment method can be used to account
for the possibly layered core regions.

Direct methods for solving large sparse systems of equations often
suffer from complete fill-in of the submatrices. The Riccati transfor-
mation, as employed in Section 2.3 c., is one such method. Sparse
factorization can avoid unnecessary computations resulting from fill-
in. Recently, direct and iterative sparse factorization methods have
been reported where the filled-in terms decay rapidly and may be ig-
nored upon reaching some predetermined residual measure [29]. Such
schemes would appear to be well suited to the present application
and to the above suggestions for analyzing non-axisymmetric prob-
lems. Figure 24 illustrates Choleski LU factorization as applied to
block-tridiagonal systems. The work factor using complete submatrix
inversion is O(n®), where n is the dimension of a particular subma-
trix; it can be shown that this is reduced to order O(r?n) where 7 is a
reduced bandwidth resulting from ignoring the residual fill-in terms.
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