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3.1 Introduction

The problem of electromagnetic scattering by various objects has
always been a subject of interest for researchers in various disciplines.
Many analytical and numerical methods have been proposed in order
to handle the numerous electromagnetic scattering situations. For ex-
ample, numerical techniques are available [1-3] to solve the integral
equation which arises in the formulation of the induced or polarized
current on or inside objects of various shapes. These techniques, how-
ever, lead to very tedious computations when a complicated structure
is involved as well as to numerical evaluations that are most impracti-
cal when dealing with multi-media problems. The unimoment method
calls for a finite element representation of the field inside the object
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114 3. Coupled Finite Element and Boundary Element Methods

while the scattered field is represented with an eigenfunction series
expansion [4]. The boundary conditions, either physical or mathemat-
ical, are well-defined for a given boundary but only the circle appears
to be a convenient computational choice in 2-D problems. Further-
more, in the original version of the unimoment method an inaccurate
finite difference evaluation of the normal derivative of the numerical
solution is used in the enforcement of continuity at the boundary with
the normal derivative of the external cylindrical harmonic scattered
field expansion.

More recently, the Boundary Element Method (BEM) [5] has been
applied to electromagnetic scattering problems [6,7]. The main advan-
tage of the BEM is the need to discretize only the boundary; in con-
trast, the Finite Element Method (FEM) considers the entire domain.
Furthermore, it can easily take into account the radiation condition
for unbounded situations such as scattering problems. A disadvantage
of the BEM is that it leads to a fully populated system of equations,
which is non-symmetric, in contrast with the sparsely populated and
symmetric stiffness matrix obtained from the FEM. The BEM is usu-
ally restricted to homogeneous and isotropic problems because of the
difficulty in seeking the needed fundamental solution for inhomoge-
neous and anisotropic problems. This weakness of the BEM does not
encourage a search for the systematic solution to general problems
with multi-media and anisotropic domains. The FEM is superior to
the BEM in such cases, but it is difficult to introduce the radiation con- .
dition without increasing the requirements either in computer speed or
storage capacity [9,10]. These facts suggest that a form of coupling be-
tween these two methods would be of great interest in many practical.
problems. 1

The main objective of this chapter is to present a combined FEM-"
BEM method that can be used to solve the scattering fields by an.
inhomogeneous arbitrary isotropic scatterer. This method can also be:
extended to handle the case of anisotropic materials with only slight:
modifications. In the proposed method, called coupled finite boundary.
element method (CFBM), an analytic relation between the field and
its derivative on the boundary is used; no artificial boundary is needed.
The importance of this feature is obvious when the scattering object is
long and slender. Furthermore, the proposed method does not suffer
from having non-unique solutions in the resonance case. We analyze
several examples, and compare the results with those obtained by the
BEM to validate our combined FEM-BEM method.
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3.2 General Formulation

a. The Problem

To minimize the details, only the two-dimensional case is dis-
cussed. The domain of the problem is divided into two regions. One
is the interior region R which includes the scatterer and is enclosed
completely by the boundary, B, as shown in Fig. 1. B may be the
physical boundary of the scatterer, but is not necessarily so. Another
is the exterior region enclosed by B and the infinite boundary.

np//ﬁi

n

Z - X
Figure 1 Two-dimensional dielectric scattering problem.
So the two-dimensional scattering problem can be treated mathemat-
ically as two separate problems. One can be considered as a closed
boundary value problem which is described by the following differen-
tial equation (see Fig. 1)

(V24+k)u' =0 in R ¢))
v =u on B (2)

¢=gonB 3)
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where ¢’ is the outward normal derivative of u',k = V€o€rpio and u,q
are known values.

The other can be regarded as an tnbounded case and is expressed
in integral equation form over the domain bounded by C, defined as
the boundary B and the infinity as

v = [ [ser1r) 2 - wr) ST ar 4 i) )
C

where u'(F) and u(7) are the incident and the scattered fields respec-
tively, u(F) satisfies the radiation condition, #’ is an outward unit vec-
tor normal to the boundary C of outside region, ¥ is an arbitrary field
point and 7, is a point on the boundary.

In (4), the fundamental solution

8(71l70) =~ HE (kIF s - Fol) (5)

is introduced, where H, 2)( +) is the Hankel function of the second kind
and zero order.

b. Finite Element Method (FEM)

With the finite element approach, the primary dependent variables
are replaced by a system of discretized variables over the domain under
consideration. Therefore, the domain itself is discretized into finite
elements which are connected at the nodals. The compatibility within'
the element and between element boundaries is ensured by the choice of
the shape function. In the present analysis, the region R is discretized
into a number of second order triangular elements as shown in Fig. 2.

Within an arbitrary shaped triangle, the field value u is written
in terms of second-order complete polynomials as

u = {N}T{u}. (6)

where

{N} = [Ny, N2, N3, Ny, N5, Ne|” (7a)

and
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Figure 2 Second-order triangular element.

{ui}e = [ulau%ulhub Uus, uﬁ]z

117

(7b)

u; being the field at the ¢th nodal point of the element. Column vec-
tors are denoted by {-} while {-}T represents a row vector where a T
superscript denotes transpose. The shape functions N; through Ng are

given by

Ny =L1(2L, - 1)

Ny = Ly(2Ly - 1)

N3 = L3(2L3 - 1)

Ny=4L1L,
N5 =4L;L;
Ns = 4L1L3

(8a)
(8b)
(8¢c)
(8d)
(8¢)
(81)

where Li,L; and L3 are the area coordinates in the finite element
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approach. Substituting (6) into (1) and using a Galerkin procedure,
after integrating by parts, results in

[[ARR] [ARB]} {{“'}a } o 9)
[Asr] [ABB]j | {v'}s [B5] { %1; } s

where the matrix on the left hand side can be computed by using

[Arr] [Ars] // a{N} ONYT | o(N} H{NYT
[ABr] [ABB] % o o

—er(1 - stan 6)k§{N}{N}T] dz dy (10)

and

(5] =Y [(W)w)Tar (11)

In these equations, kg = w?eppuo and tané is the loss tangent. The
integral in (10) can be calculated analytically, and for a second order
finite element, (11) can be expressed as

Bel=S"'=<]1 8 1 (12)
= Bl o5 1 2

The components of {u'}r correspond to the nodal values in R
and {u'}p on B, 3, and Y, extend over all the different elements
and elements related to boundary B respectively. The [ is the length
of e-th boundary element. Equation (9) is the FEM matrix equation.
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c¢. Boundary Element Method (BEM)

The region under consideration for the exterior Problem is enclosed
by boundary B and a boundary at infinity. Because the radiation
condition cannot be applied for the incident wave, the scattering wave
should vanish at infinity. Equation (4) is then rewritten as

wrn) = [ o280 o) 2N e 1)
B
W(F7) = u(Fy) + () (14)

If field point 7y is placed on the boundary B, a singularity will
occur. To extract the contribution of the singularity, the integration
path AB going around the point s is considered. Denoting du/dn'
as ¢, (13) is rewritten as follows

u(Ty) = y_%/q¢df+yr% /(ﬁbdl‘}
L B' y

AB

[0 3¢
- |ty [ g+, | "W‘“‘] (15)
- B! ‘ AB

The integratidﬁs over the bonndary;AB“ can be estimated by using the
small argument asymptotic expression of the Hankel function

e—0

. d¢ . . 74 (2)
lim /'Il'g;;df—!&[(l) /uzkﬂl (ke)dI‘
B AB

= %kH fz)(kc)ee

= 2-u(ry) (16)
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lim / g¢dl' = lim / q{%Héz)(ke)} dr

AB AB
= lim |22 {1 - 2(l'n(lce) +7 - In2)} 50]
e 12 q J p 7
=0 17
This then yields

(- ayulFy) + / 201 170) 7y) ar

- [ s )2400) 19)

with

[=im |

B B’

where a Cauchy’s principal value of integration is assumed in this case.

An approximate solution to (18) can be obtained by discretizing
the boundary into the so-called boundary elements. These elements
are similar to finite elements except that their dimensions are usually
one less than the dimensions of the problem. For the present analysis,
second-order boundary elements are used for the sake of compatibility
with the second-order finite elements (Fig. 3).

Within each elements, u and ¢ are defined respectively in terms
of u; and ¢q; at the three nodal points, [ = 1,2, 3, by using

u={M}"{u}. (19a)

g={M}"{q}e (19b)

where
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one boundary element

n

Figure 3 Integration on each Boundary element.

| {u}e = {u19u27 u3]T (203.)
{g}e = la1,92,08]" (20b)
{M} = [My, My, M5]" , (20¢)

The boundary element shape function, M}, is given by

M = A+ B E+C (21)
where
Ay =1/2, A, =1/2, A3 = -1
By =-1/2, B, =1/2, B3 =0
and ’

Ci=0,Cy=0,C3=1

When the normalized coordinate, £, is defined on the e-th bound-
ary element, it can be easily checked that M;, M, M3 are equal to
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the finite elément shape functions evaluated on the boundary. This -
characteristic aids in making the coupling of the FEM and the BEM
accurate. v_

Substituting (9a);(9b) into (18), we obtain

9 ul G ‘
[1 o ] u; + Z [h1, b2, h3le 2[9199'2993 Uy (22)

ex1 u3 e=l q3

When _tile nodal point ¢ does not belong to the e-th element, h;
and g; can be calculated with Gaussiaz integration as

L 0¢(Fﬂr0)
/ ML (23)
e
a=j [ Mol e (24)
-1

where L is the Iength of the element. When the nodal point i belongs
to the e-th element, considering the limit of ¢ — 0, we can get

h=0 | (25)

and if the nodal point, 7, coincides with the nodal point l = 1, 2, or 3‘,
g1 is given by [8]

01 = (VAR (R) ~ (24 - BURE) ~ 2/ (K %))
+ (41— Bi+ C)) I1 (2)] (26a)
91 = (FIALE) - 24+ B){R(2) - 2/ 1)}

+ (A1 + Bi + C1) Ip (2)] (26b)

= LA L(1) + Clo(1)] (26¢)
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respectively. Here Iy, I, and I; are calculated as follows:

Io(n) = / A [k: 17] dn=-7 Z (2v(+ 3;,:)2 [El""] ’

e[ 3FI2% ICE

’ kL 2 kL
om0 [ S0 [
2 o TEL
I(n) = / %Héﬂ [-'2-*?}] dn (27¢)

{u] (L (5] + Zug [SEa] - 1
where v = 0.57721... is Euler’s constant. In matrix notation, (22) can

IR T

This BEM matrix equation is to be used later on.

d. Combination of the FEM with BEM

Since the fundamental solution that is chosen for the BEM equa-
tion in the exterior region satisfies the radiation condition, it is not
necessary to deal with the boundary at infinity. The FEM cannot,
however, easily take ipto account this radiation condition. On the other
hand, it is superior to the BEM in handling multi-media problems. In
the proposed method, the BEM is therefore used for the region outside
the boundary B, which may be the actual boundary of the obstacle,
or any artificial geometrical boundary set up for the convenience of
treating multi-media problems; fields inside of B are treated by the
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FEM, with the interior and exterior problems being separately solved
first and these solutions being subsequently coupled.

Figure 2 shows a second order finite element. Both boundary
element and finite element are connected on the interface B. To ensure
a correct coupling of boundary and finite elements at the interface,
conditions of compatibility and equilibrium must be satisfied. The
compatibility condition can be reached if both elements have common
nodals at the interface and if the shape functions describing the field
variation at the interface are identical for the BEM and the FEM. The
equilibrium is satisfied when the field normal derivatives at the nodal
point of the boundary element mesh are equal and opposite to that of
the finite element mesh at the interface. So, on the boundary B, the
following boundary conditions must be satisfied

{v'}s = {u}s + {v'}, (29)

( “_}a) - H( —?}‘}B +{g§;}s) (30)

E, for TM case
U= (31)
H, for TE case

(1.0 for TM case

VI = { 1 (32)
— for TE case
. €r;

(1.0 for TM case

Vi = ¢ 1 (33)
for TE case

\ €ryr

where ¢,, and ¢,,, are the relative permittivities of the interior and
the exterior, respectively. In addition, the incident wave is expressed
as follows

u* = up exp(Gk|p|) (34)

The coordinate 5 is chosen in the direction of the incident wave
and it is easy to obtain
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¢ = %:-—]fcﬁ-ﬁpu‘ (35)

which can be expressed as

{qi}s = [D]{"i}a (36)

where [D] is a diagonal coefficient matrix.

Equations (29) and (30) form the bridge between the two different
regions. This bridge connects FEM equation (9) with BEM equation
(28). By substituting (29), (30), and (36) into (9) and merging (9) and
(28) into one matrix relationship, the following is obtained for both

interior and exterior regions
[Arr] [ArB] [0] {u}n
[[ABR] [Aps] -[Bs] {EHG%B } =
°}s

[0] [Ho] [Go]

~[ArBl{v'},
((Bs][D] - [ABB]{u'}5 37
{0}

With the help of (37), the scattered field and its normal derivative
on the boundary B can be obtained provided that the incident wave
is given. These quantities correspond to surface electric and magnetic
sources. Generally we are interested in observable quantities in the far
field, the solution of the final matrix equation (37) being merely an
intermediate step. In the following, the results of the scattered fields
are given. With the scattered fields, the radar cross section is easily
obtained.

Using the asymptotic expression of the Hankel function, the far
field pattern can be found by a modification of (16) as follows

N q N ui
=A E[givg;’ga]e 45 "Z[ '1’ ;’hi'l]e u;
r—o0
e e

e=1 qg e=1 ug

E,

(38)
with
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1
hy = jk /_ 1(-;-52 - -;-E)cos (7, 7) e~ kAT d¢ (39)
1
B, = jk / 1(%52 + %5):.-03 (7,7) e=9*07 gg (40)
1 -
b} = jk / (=& + 1) cos (F,7) e~ IFAT dg (41)
-1
1
i = [ (G- gereiende (42)
1
6= [ Ga+z0eid (43)
1 .
i=- [ (-a+netea (44)

where Ar is the relative distance difference over the incoming wavefront
and A is a constant amplitude.

Equation (38) is the expression sought-after for the scattered far
field in terms of the surface electric and magnetic currents when the
BEM is used for the outer region.

3.3 Implementation and Numerical Results

To show the validity and the implementation of the combined
method, several examples are discussed, The procedure of solving a
given problem using CFBM may be divided into three basic steps.
First, it is necessary to choose a boundary B. The rule of thumb is to
enclose the scatterer completely and let the interior domain be as small
as possible in order to minimize the number of unknowns in the FEM
mesh. If the near field distribution is required, the boundary B can
be extended as far as needed, but at the expense of the computational
effort. The second step in the solution development involves dividing
the interior region into finite elements. Each element should be homo-
geneous; otherwise the inhomogeneous element technique must be used
by slightly modifying equation (10). In fact, boundary elements are
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formed sequentially after finite element generation because boundary
elements are just the finite elements on the boundary B. It should be
noted that nodal numbering must be such that the boundary nodes of
the interior region are identical to those of the exterior region. The
final step in solving the problem is to fill in the matrix equation as
described in section 2 and to solve it.

As a first example, a layered dielectric square cylinder is investi-
gated (& = 2.89, &2 = 1.0, €3 = 2.89) and the results are shown in
Fig. 4 in dotted line. A dielectric hollow square cylinder is also ana-
lyzed with the same program and the results are plotted using a solid
line on Fig. 4. It agrees well with the BEM solution of Yashiro and
Ohkawa [7] which is superposed on our solution with triangular points
for comparison purposes.

10 Ei
=

k-a=76, k'b=3.0

MAGNITUDE OF FAR FIELD PATTERN

i 1 i
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0 30 60 90 120
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i i t PR S
150 180

Figure 4 Far-fleld pattern for layered-square cylinders:

*++ CFBM result for layered square cylinder (& = €3 =2.89, €3 =1.0)

- CFBM result for’hollow square cylinder
Aa BEM result for hollow square cylinder (€7 =2.89, €3 = €3 =1.0).

The second example is the scattering by the composite structure
of a multi-dielectric cylinder (&; = €3 = 1.0, €2 = 2.89), as shown in
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Figure 8 Far-fleld pattern for composite cylinders:
(a) — CFBM for composite cylinder (€; = €3 =1.0, €2 =2.89)
(b) — CFBM for cross dielectric cylinder (¢; =1.0, €2 = €3 =2.89)
(c) — CFBM for dielectric square cylinder with ¢, =2.89
-+ + BEM solution for the dielectric square cylinder.

Fig. 5 (solid line (a)). Two special cases are also considered: one is the
cross-dielectric cylinder (¢; = 1.0,€; = €3 = 2.89) (solid line (b)), the
other is the dielectric square cylinder (€; = €2 = €3 = 2.89) (solid line
(c)). The BEM result for the square cylinder case is also given (dotted
line) for the purpose of checking the validity of our method.

Figure 6 shows the far field pattern corresponding to a perfectly
conducting circular cylinder with dielectric periodic load. In this ex-
ample, only the dielectric coated ring domain needs to be treated as the
interior region. It should be noticed that the change of ¢, may cause
large differences in the far field pattern. A comparison of the analytic
solution and the CFBM solution at the resonant frequency [7] for the
scattering of a perfectly conducting circular cylinder can be obtained
by setting the ¢, of dielectric coating equal to 1.0 . There are excellent
agreements between these two solutions, both for TM and TE cases.
This demonstrates that the proposed method does not suffer from the
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Figure 6 Far-fleld pattern for a perfectly conducting circular cylinder
with dielectric periodic load.

non-uniqueness problem in the resonance case as the BEM does. The
reason is that the BEM only involves an electric field integral equa-
tion which suffers from non-uniqueness. However, in the CFBM, the
integral equation is complemented by a differential equation which is
satisfied in the interior region.

The last numerical example is radio wave propagation in a build-
ing. To see the near field distribution around the building, the model
of the structure is enclosed with an artificial boundary B as shown in
Fig. 7. Because the thickness of the wall is much smaller than the di-
mension of the building, inhomogeneous finite elements are used where
needed.

In all the cases considered above, the incident plane wave is TM
polarized, although the mathematical treatment is generally applicable
for both TE and TM cases. The method proposed here can be extended
to cover some anisotropic cases. If the anisotropy involves coupling
between r and y directions, the above treatment needs only slight
modifications. In this chapter, only the case of an exterior source to
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Figure 7 Equal level of normalized electric fleld distribution in a typical
building. Dimensions of the building model are indicated in meters. The
walls have assumed €, =5.0-71.0 and kg =0.5 radians/meter.

the cylinder has been considered. The internal source case can be
developed using an analogous procedure.

3.4 Conclusion

It has been shown that the finite element and boundary element:
methods can be coupled together to study difficult electromagnetic
scattering problems. This new procedure, known as the Coupled
Finite-element Boundary-element Method (CFBM), is a unified nu-
merical approach that can handle inhomogeneous arbitrary scatterers
efficiently.

The method may be used in many situations where the evaluation
of scattering by a complex dielectric object or the analysis of a coated
structure is involved. But, for the case of homogeneous scatterers, the

method loses its advantage and other numerical methods such as the
moment method or BEM can be adopted.
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In problems where the size of the resultant finite element matrix is
much larger than that of the boundary element matrix, an appropriate
treatment of the sparse matrix can save a great deal of computer time.
This requires much less memory space to handle the full problem while
still yielding a valid solution. The extension of the method to three
dimensional scattering problems, including cases where the sources are
internal to the scattering object is possible. This method may also be
combined with the spectral domain technique to treat more compli-
cated problems, for example, to solve the scattering problem of certain
objects above or within a multi-layered medium by using the corre-
sponding spatial Green’s function which has been recently developed
[11].
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