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4.1 Introduction

In recent years, there has been an increasing interest [1-6] in
the solution of electromagnetic scattering problems via a direct so-
h?ticm of Maxwell’s equations using finite mathematics, e.g., the finite
difference (FD) and finite element (FEM) techniques, because such
a direct formulation of the scattering problem appears to be espe-
cially well-suited for scatterers of complex shape and with inhomoge-
Reous coatings. Typically, an integral equation formulation, using the
two-dimensional surface current distribution as the unknown and the
method of moments (MOM) as the solution procedure, is more efficient
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134 4. Absorbing Boundary Conditions in EM Scattering

than the partial differential equation schemes for perfectly conducting -
scatterers because the PDE formulation must work with the electric
and magnetic field components at a large number of mesh points in
the region surrounding the scatterer. However, this relative advantage
of the integral equation schemes narrows for more complex, inhomo-
geneous scatterers where a three-dimensional, volume type of integral
equation must be used. Furthermore, finite methods have an attrac-
tive feature-they generate highly sparse and banded matrices which
can be efficiently handled using special algorithms. In contrast, the
method of moment procedure yields a dense matrix equation that is
typically solved using conventional schemes, e.g., the Gaussian elimina-
tion method, which is quite time-consuming for large matrices. Thus,
PDE formulations have a potential advantage over the integral equa-
tion schemes for solving complex, large-body scattering problems.

When solving an open region scattering problem by using finite
mathematics approaches, an artificial outer boundary is typically in-
troduced in order to bound the region surrounding the scatterer that is
subdivided into meshes for the purpose of discretization. This trunca-
tion of the open region enables one to limit the number of unknowns to
a manageable size that can be fitted into the computer memory. How-
ever, such a truncation also introduces an error and, in order to model
the physical problem as correctly as possible, an absorbing boundary
condition (ABC) must be imposed on the outer boundary such that
it appears as nearly transparent as possible to the waves impinging
upon it from the interior. The functions of this absorbing boundary, of
course, are to minimize the nonphysical reflections from this boundary
and to simulate the condition in which the waves are entirely outgoing
as closely as possible. Clearly, in the asymptotic limit where the outer
boundary tends to infinity, the absorbing boundary condition should
become identical to the Sommerfeld radiation condition. However, in.
practice, it is desirable to bring in the outer boundary as close to the
scatterer as possible in order to reduce the number of mesh points and,
hence, the size of the associated matrix. The important question is:
How can this be done by enforcing a boundary condition on the outer
boundary that suppresses the reflections from it and thus introduces
little error in the solution due to truncation of the region external to
the scatterer?

Several ABC’s , typically in the form of boundary operators, have
recently been reported in the literature. These can be broadly classified’
into two categories, viz., local and nonlocal. In principle, the nonlocal
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boundary conditions allow one to bring in the outer boundary as close
to the scatterer as desired. However, they have the drawback that they
destroy the highly sparse nature that is so characteristic, and distinctly
advantageous feature for numerical solution, of the matrices generated
via finite methods. These boundary conditions have been discussed
by McDonald and Wexler [1] and by MacCamy and Marin [3] and the
reader is referred to the above works for additional details.

In contrast, the local boundary conditions yield matrix operators
that preserve, at least for the lower-order operators, the highly sparse
and banded character of the resulting matrix equations and, hence,
do not compromise the computational efficiency of the finite methods.
However, not unexpectedly, the local operators are not exact in their
modeling of the physical problem, since they are not totally absorbing
in nature. As a result, using a local boundary condition introduces
some error into the field solution, due primarily to reflections of the
outgoing wave from the artificial outer boundary [2,4,5]. The local
boundary condition is also inaccurate when traveling waves are excited
on the scatterer and substantial global type of coupling exists between
widely separated parts of the scatterer.

A number of authors have investigated local ABC’s, notably
Bayliss, Gunzburger, and Turkel [5], who have employed an asymptotic
analysis to derive a series of local operators, referred to henceforth in
this paper as the BGT operators. Using the pseudo-differential oper-
ator theory, Engquist and Majda [2] have generated a set of different
operators which, although not as accurate as the BGT operators, are
nonetheless designed to serve the same purpose, viz., a minimization
of the reflections from the outer boundary by applying a local form of
boundary condition on the fields at this boundary.

In the first part of this work, we begin by briefly reviewing the
derivation of the Bayliss, Gunzburger, and Turkel (BGT) boundary
operators. Next, we present an alternative approach to deriving the
local form of boundary operators and compare the expression obtained
from this approach to those based upon the BGT operator. Following
this, we carry out a systematic study of the errors resulting from the
application of the second and fourth order local operators on an arbi-
trary scattered field, which can in general be represented in terms of
cylindrical harmonics. We do this by comparing the results obtained
by using the approximate and the exact boundary conditions, the lat-
ter being readily derivable for these harmonics. We show that such an
error analysis not only provides a great deal of physical insight into
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the mechanism by which the errors are introduced into the process of .
applying the local operators, but also suggests ways by which a system-

atic improvement of the ABC-based solution can be achieved. Next,

we present the formulation of the ABC in the context of the finite

element method (FEM) and provide illustrative numerical results for

RCS computation from a number of different geometries.

The question of improvement of the ABC solution is an impor-
tant one and, to the best of our knowledge, has not been addressed in
the past. In this work we provide a systematic procedure based on a
hybrid technique that combines the ABC approach with the Unimo-
ment method (7] in a manner that realizes a considerable improvement
over that achievable with either of these two individual approaches. A
simple but illustrative example of such a procedure is included in the
paper as are the results demonstrating the improvement.

The subject of three-dimensional ABC is discussed only briefly in
this work, as it is intended to be covered more fully in a forthcoming
paper [16]. However, the Appendix does include yet another approach
for deriving the two-dimensional ABC based on the use of recursion
relations for the expansion coefficients of the asymptotic representa-
tion for the field and generalizes it to the three-dimensional scalar and
vector cases. Finally, the last section of the paper presents a direct
approach for truncating the grid at the outer boundary and indicates
how this approach can be conveniently applied to the 3-D vector case.
This last approach is based on extrapolating the field using an asymp-
totic representation, introduced by Wilcox [11], in which the vector
EM fields are expressed in terms of a series of inverse powers in 7, the
radial distance from the origin.

4.2 Derivation of the BGT Operators

In this section we briefly review the derivation of the BGT type
of absorbing boundary condition by considering the example of a two--
dimensional, perfectly-conducting scatterer. The conclusions, however,
apply to general scatterers that may be combinations of p.e.c’s (perfect
electric conductors) and/or inhomogeneous dielectrics.

Consider a perfectly conducting cylindrical scatterer, shown in
Fig. 1, whose cross-section is defined by the contour I';. Let the ex-
terior region of the scatterer be designated by the domain 2. For a
TM-polarized incident wave, the problem at hand is to solve the wave
equation
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Figure 1 Geometry for the finite-mathematics approach to the scatter-
ing problem.

Viu+k*u=0

(1)
where the wave function u is proportional to the z-component of the
scattered electric field. The wave function satisfies the boundary con-
dition

w4+u=0onTy (2)
where u* is the incident wave function
Following Wilcox, an asymptotic expression for u can be written
at large distances from the origin as follows
e~ke a a
o T [+ 20 2]
N P
Defining u, as the p derivative of u, we have, from (3),

©3)

2p3,2[ (¢)+3“‘(¢) “29(2‘”)4,...] (4)

From (4), we obtain
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(4, + Jku) = O [#] 6)

From (5), we note that if we neglect terms on the order of O(p~3/2)
and smaller, we obtain u, + jku = 0, which is precisely equivalent to
the Sommerfeld radiation condition for u in two dimensions. Next, we
show that we can obtain a higher-order boundary operator B;, shown
below, that yields terms on the order of O(p~3/?) when applied to the
wave function u. The operator B; is given by

a 1
Bl='3_p'+.7k+$ (6)

and we readily find that, for a given p, B; introduces a higher-order
(in p~1) error than does the Sommerfeld radiation condition, since

1 1
Byu = u, + gku + $u=0[p_57?] YN

Continuing along similar lines, the next higher-order operator B; can
be derived by first defining v = Byu, and then showing that

9 5 - -9/2

Thus, if we define

a 5 0 1
5= (g5t k4 35) (5 35)

we see that
d 5 0 1 1
Bru= o=kt o) [ v+ g e=0 (55| ©

Bayliss et al. have shown that a generalized gperator By, can be
constructed by repeating the above procedure, where

_1rlo , 20-3/2 ]
Bm_H[ap+——p + 7k (9)

and
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1
Bpu = 0 [m] (10)

Returning now to the PDE (1), we note that to solve it using the
finite mathematics methods, the differential equation or its variational
form must be Hiscretized in a bounded region surrounding the scat-
terer. Let T'; be the outer boundary where the ABC will be imposed
using an m-th order boundary operator. Then for the case where u
satisfies the boundary condition on the scatterer that the total u =
a complete statement of the approximated scattering problem in the
bounded region reads

Viu+ku=0 inQ
w+u=0 onTy

B,u=0 onT, (11)

Equation (11) can now be solved for u using the FD or FEM schemes
and the field in region © as well as the scattered far field can be com-
puted. If the solution obtained using a certain boundary operator B, is
not suﬁicxently accurate, then one has the option of either receding I'
farther away from the scatterer, or employing higher-order boundary
operators. However, the boundary operators with n > 2 are typically
not recommended for numerical imp}ementation because they spoil the
sparsity of the matrix. It should also be noted that the boundary op-
erators are asymptotic in nature and, consequently, using higher-order
operators may not necessarily ensure a continued improvement of the
solution when the outer boundary I'; is close to the surface of the scat-
terer. Finally, even though according to (10) the estimate of the error
in B,u is O(1/p(*"+1/2)), the actual error in u may be substantially
different from the estimated error in B,u given by (10). For instance,
for the numenca.l example given in section 4 where B; is used to de-
rive the solution to the problem of catering by a conductmg cylinder
of radius ka = 50, it is found that the maximum error in u on the
boundary is approximately 20% of the incident field, i.e., about eight
orders of magnitude greater than (kp)~°/2 for kp = 51. Furthermore,
it should be realized that the use of the n-th order ABC with a finite
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n introduces reflections from the outer boundary and, hence, the solu-
tion generated using this boundary condition does not strictly satisfy
the Wilcox-type representation (3) containing outgoing waves only.

4.3 Alternate Boundary Condition for 2-D Scattering

In this section, we present an alternate derivation of the boundary
operators by postulating the higher-order radiation condition for u in
the form of an asymptotic series in inverse powers of p with unknown
coefficients, substituting this form into the differential equation,and
systematically solving for the coefficients of the series representation for
the extended radiation condition, or ABC. We begin with the following
representation for u, for large p, which contains higher order angular
derivatives in ¢, and not in p as in (8) or (10), and is found to be
better-suited for numerical implementation

u, = a(p)u + B(p) uge (12)
and write both a and § in the form of asymptotic series

a a2 a3

ap)=a+—+ =5+ 13

() =a0+ S+ 524+ 53 (13)
Br , B2, Ps

=p+—+=5+=73 14

B =po+ 2+ 224 (14)

We now show that the unknown coefficients a(p) and B(p), or
more specifically @, and 8,, can be systematically found via recursion
relations. To this end, we substitute u,, given in (12), into the wave
equation (1). This yields

1
[g+a,,+a2+k2]u+[-ﬂ—+2aﬂ+ﬂp+—]u¢¢,=0 (15)

P P p?
where the fourth-order angular derivative ugg4s has been neglected
for the purpose of deriving the second-order ABC operator. Since
(15) is valid for an arbitrary p, the coefficients of u and u4¢ must be

individually zero. Thus, we must have
%+a,,+a2+k2=0 (16)

and
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B 1
p B+ b p?

Substituting a(p) into (16), we obtain

1 1
(a2 + )+ (a0 + 2010011); + (a2 + 20002);5

1 1
+ (2(100!3 + 2a 09 — (12);3- +0 [?] =0

Equatiﬁg the coefficients of p™" to 0, we have

aA+k =0

ag + 20pa1 =0

from which we can recursively derive

ag = —)k
o = 1
1=73
- _J
= T3k
oo L
37 8k

a=|—gk— o — 2 +——1——]
T T 2 T 8kt T BkE0
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(17

(18)

(19)

(20)

(21)

(22)

Substituting B(p) into (17) and following the same procedure as

outlined above, we obtain

|- 1
5= |3+ 2k2p3]

(23)
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Using the above expressions for & and 3 in (12), we obtain the second- -
order boundary operator B,

Byu = up, — a(p)u — B(p)Uss (24)

We can also rewrite the B; operator, given in (8) as

cuy— | — | e 3 3 =)
P [1“735] {[]k 2p+8kp2]u+[2 pz]u‘”} 2)

where we have used (1) to trade the second order radial derivative with
the second order angular derivative, the latter being better suited for
numerical implementation. By expanding the coefficients of » and ugg
in (25) and retaining terms up to order p~3, we obtain

_ 1 7 1 —J 1
Byu = U, [ 7k % - 8kp2 + 8k2p3] u + [2kp2 + 2k2p3] Ugpp
(26)

We observe by comparison of (24) and (26), that the second order BGT
operator is identical to By, up to the order p~3 retained in a(p) and
B(p)-

We can follow the procedure outlined above for the derivation of
B; to obtain higher order boundary operators that involve higher order
angular derivatives. Following an analogous development, we represent
higher order operators in the form

up = a(p)u+ B(p)ugss + 1(P)uggs + 6(p)ugpss +...  (27)

where the radially dependent coefficients, a, 8,7 and §, can be found
by following the same procedure used to derive the coefficients of the
B, operator. One finds that 7, the coefficient of ug44, must be zero
in order for the above form in (27) to satisfy the Helmholtz equation
in (1). Thus, the next higher order operator after B, will have the
fourth angular derivative in « instead of the third. Consequently, we
designate this operator as By which is given by
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Biu = u, — a(p)u — B(p)ugs — 6(p)ugsss (28)

where a(p) and ﬁ(p) are the same (within p=3) as in (22) and (23)
respectively, and é(p) is given by

é(p) = sTi;? (29)

In the next section we present comparative results for the two
operators B; and By. Of course, it is evident that they both reduce to
the Sommerfeld radiation condition when the outer boundary is placed
sufficiently far away from the scatterer.

Before closing this section, we mention that an even more direct
derivation of the By and B4 operators is possible by using the recur-
sion relationship satisfied by coefficients a,,(¢) of p~™ appearing in the
Wilcox-type expansion (3). This is shown in the Appendix, where the
ABC’s for three-dimensional scalar and vector wave functions, derived
by using appropriate recursion relationships valid for the coefficients
for the 3-D type of Wilcox’s expansion, are also given for reference.

4.4 Performance of Boundary Operators

Typically, to assess the accuracy of the local boundary operators
discussed above, one would apply these operators to the outer bound-
ary, construct the field solution using one of the finite mathematics
methods, and compare the results for the surface current, the far field,
the radar cross section, etc., with those obtained using an alternate
approach, e.g., the moment method or experimental measurements.
However, in this paper we present a numerical comparison of the re-
sults of the application of the B; and B4 operators on an arbitrary
scattered field represented in terms of cylindrical harmonics, taking
advantage of the fact that an exact boundary condition can be found
for these harmonics. We show that such a comparison reveals a great
deal of insight into the behavior of the local boundary operators, ex-
pPlains why they fail when they do, and provides a clue as to how
the approximate numerical results obtained via the application of the
second-order boundary operators can systematically be improved. It
is well known that external to a cylindrical region circumscribing an
arbitrary scatterer, the wave function u representing the scattered field
can always be expressed as
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N
u= Z an H)(kp)e™® (30)
n=—N

Obviously, the representation above not only satisfies the radi-
ation condition at infinity but is also outgoing for all values of p.
To determine the sort of error that is introduced when we apply the
second-order boundary operator (which we know satisfies the outgoing
condition only approximately) to this representation, we substitute the
representation for u in (30) into the boundary operator to obtain

N 2
u:xact - Z a, agna p(kp) eind (31a)
n=—N

From (27) we have

N
WP = afp) Y anH(kp)e?
n=-~N

N
~B(p) Y, anHP (kp)n?e? (31b)
n=—N

N ;
+8(p) Y anHPD(kp)nte?
n=-N

Using the separability in ¢, we obtain the error, E,, in the n-th har-
monic content of u, as

oHD(k
E, = "“—a,o(—p‘2 ~ [a(p) = n*B(p) + n*6()IHP (kp)  (32)
where
1 J 1
a(p) = —jk - §"p' - 8kp? + 8k2p3

; 1 (33)
Blp) = ~2kp? T3

and



4.4 Performance of Boundary Operators 145

spy={ &% (34)

A convenient way to estimate the error is to compare the two
quantities v, = H!/H, = exact v,, with +P%P = a(p) - n?B(p) =
approximate 75.2), obtained from the second-order boundary operator,
and 1" = a(p) - n2B(p) + n*6(p). The quantity 7, can be phys-
ically interpreted to be playing the role of the complex propagation
constant for cylindrical fields, since it equals u,/u. We also note that
¥» equals — 3k in the far field where u satisfies the Sommerfeld radiation
condition.

Figure 2 shows y3P’s calculated at kp = 51 using the B; and B,
operators and compares them with the corresponding exact v,. From
Fig. 2a, the imaginary part of v, computed by using the B4 operator
is seen to be somewhat superior than the corresponding result derived
from the B, operator. However, the real pa.rt of 43P, which is shown
in Fig. 2b, and which dominates when n is large, is seen to differ
considerably from the exact 45 for both. These figures clearly show
that the error introduced by the boundary operators is not uniform
for all harmonics. It is evident that the boundary operators work
quite well for the lower-order harmonics, in that they yield results for
aP that compare very favorably with the exact 9, = u,/u for the
outgoing harmonics. The situation changes, however, for the higher-
order harmonics, particularly for n = 40 on up, where they transition
from being essentially propagating (7, essentially imaginary), into the
evanescent region in which the exact v, acquires a significant real part.
We note that the approximate v,’s fail to predict this phenomenon
correctly.

As a rule of thumb, to compute the scattered field at p > ka for
a scatterer of characteristic dimension ka, defined as the radius of the
smallest circle that encloses the scatterer, the upper limit N for the
series in (30) has to be set at least equal to M, where M is slightly
larger than ka. Thus, suppose we have a scatterer whose characteristic
dimension is given by ka = 50, and in an attempt to drastically reduce
the number of mesh points, we impose the second-order boundary op-
erator on a circle whose radius is either equal to or only slightly greater
than 50. We should expect errors to be introduced into the satisfaction
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Figure 2 7, as calculated using the B, and B, operators, and the exact
Yn at kb =51 (a) Imag(7n); (b) Real(7y). -

of the outgoing type of boundary condition by the harmonic contents of
the scattered field falling in the range 40 < n < 60, that are essentially
evanescent or in the transition region. This result provides us with the
clue as to why the On-Surface Radiation Condition (OSRC) [12] is ex~
pected to work well only for a smooth, moderate-sized scatterer whose
scattered field has a relatively low content of higher-order harmonics.
It also predicts that when the ABC is applied on or close to the sur-
face of a scatterer that generates a substantial amount of higher-order
evanescent harmonics, e.g., a strip, it is likely to introduce significant
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I“1 (ka = 50 )

Figure 3 Geometry of p.e.c. cylinder of size ka = 50 and artificial bound-
ary at kb = 51.

errors in the solution(see for instance [12]). Furthermore, an under-
standing of the physics of the behavior of higher-order harmonics is
aiso helpful in developing methods by which the solution derived by
applying the second-order boundary operator on a surface that is close
to the scatterer can be significantly improved. In the following, we
first illustrate the principles for implementing such improvement by
considering the canonical problem of scattering by a circular cylinder.
Next, we consider the case of a general scatterer and indicate how the
same concept can be extended to this case.

Consider the problem of TM scattering (E parallel to the axis of
the cylinder) from a perfectly conducting circular cylinder of radius
ka = 50, as is illustrated in Fig. 3. We introduce an artificial outer
boundary T'; at kp = 51 and apply the second-order boundary operator
B; to the scattered field at this boundary. For this canonical problem,
the resulting field problem can be solved analytically, and the solution
for the scattered far field is shown in Fig. 4. Since we expect reflections
from the outer boundary due to the application of the inexact boundary
condition at I'y, we write the wave function u in the annular region 2 as
a sum of outgoing and incoming harmonics, whose weight coefficients
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-+ Exacl
-+ using 7B,
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Figure 4 Comparison of exact bistatic RCS with that calculated using
the ABC.

are given by a, and b, as follows

N
u= Y [anHP (kp)+ b H (kp)] ™ (35)
n=-N

Figures 5 and 6, which plot the incoming and outgoing coefficients,
show that the higher-order harmonics generated by using the bound-
ary operator are in error. Referring to Fig. 5, we see that the incoming
harmonic coefficients b,,’s, which should ideally be identically zero, are
not negligibly small for n > 45. We also note that, for this example,
they are slightly smaller for B4 than they are for B;. As for the out-
going harmonics a,’s, shown in Fig. 6, we note that the approximate
solutions derived by using the ABC operators also deviate from the
exact solution for the higher-order harmonics beyond n > 45.

The maximum error in the scattered field « computed by using the
ABC is also a quantity of interest and, on the outer boundary located
at kp = 51, this error is found to be 20.5 percent (normalized to the
incident field) for B, and 12.9 percent for By. This is in spite of the
fact that, according to (10), the error in the second order operator Bz
was estimated to be on the order of 108, and the estimate for the
fourth order operator was considerably smaller than that. The reason
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Harmonic Number n

Figure 5 Magnitude of the coefficients of the incoming harmonics, Ibn',
as generated by using the ABC.

for this discrepancy can be readily explained if one recognizes that the
error terms in the expression for B, u are dependent not only on the
radius of the outer boundary, but also on the shape of the scatterer
as well as the nature of the incident field. Specifically, the coefficient
of the p~%/2 term in the expression for Byu may be quite large (on
the order of 107 for the present problem) and, consequently, an error
prediction based solely on the radius of the outer boundary where the
ABC is applied may be substantially inaccurate.

Although, thus far we have only presented some representative
results for the TM-case in this paper, we have also carried out similar
calculations for the TE case and have found that, in general, the ABC
approach works less well for this case than it does for the TM-polarized
incident field. This will be evident from some of the results appearing in
the next section where we discuss the implementation of the absorbing
boundary condition in the context of the FEM formulation.
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Figure 8 Magnitude of the coefficients of the outgoing harmonics, |an|,
generated by using the ABC and compared with the exact Ianl.

4.5 Absorbing Boundary Condition for the FEM

In this section, we describe the implementation of the ABC into
the finite-element formulation, which is used very frequently in PDE
approaches to solving scattering problems from complex targets. De-
tailed account of the finite-element method can be readily found in the
existing literature (see for instance [13-15]) and, hence, only a brief
summary of the governing equations are included here.

We return to (1), the wave equation satisfied by the scattered field
and rewrite it below for convenience

Viu+ku=0 (36)

The first step in the FEM formulation is to multiply the above
Helmholtz equation with a test function v, and integrate the product
over the domain of the problem, viz., Q (see Fig. 1). This gives
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/ (vViu + k*vu)ds = 0 (37)
0

The second step involves transferring the differentiation from the
unknown function u to the testing function v via the Green’s identity
as follows

/vV’uds:—/Vu-Vvds-}-/ va—udl (38)
a a ri4r; On

Substituting this identity into the variational from in (36), we
arrive at the weak form of the Helmholtz equation
/(Vu-Vv-—k%u)ds:/ v?—y—dl - (39)
Q I+l on
where I'y and T’ describe the boundary of the solution region as shown
in Fig. 1. Finally, the absorbing boundary condition is incorporated

into the weak form by inserting the B, operator into the right hand
side integral over I';, which is the outer boundary contour. This gives

/(Vu -Vv - k*vu)ds = / v du di+ [ v(au+ Buge)dl  (40)
Q r, on r2

Integrating the term in the integrand involving uy4 by parts, and
introducing a change of variables, we get

/(Vu - Vo — k?vu)ds = / v ou dl + / (avu — Bp*vyw)dl  (41)
Q r, on ry

where v; and u; are the tangential derivatives along the outer contour
Ty.

The form given in (41) is well-suited for numerical implementation,
especially if first order finite elements are chosen to discretize the region
Q. Notice that if the ABC operator, e.g., By, were used in place
of the B; operator employed above, second or higher-order angular
derivatives would have appeared in the boundary integral. This would,
in turn, have necessitated the use of second or higher order elements,
and, consequently, would have resulted in decreased sparsity of the
system matrix.
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Figure 7 Bistatic radar cross section of a conducting strip, TE case;
computed by using the ABC method with B, operator applied at 1.1A.

For the TM-polarization case, we have u = E,, and since the
field values are specified on the surface of the scatterer, there is no
boundary-integral contribution from T; . For the TE-polarization,
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Figure 8 Bistatic radar cross section of a conducting strip, TM case,
computed by using the ABC method with B, operator applied at 1.2,

u = H,, and the boundary condition on the p.e.c. cylinder is given by

Ou  Ou
[% + "aT] =0 (42)
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Figure 9 Bistatic radar cross section of a conducting triangular cylinder,
TM case, computed by using the ABC method with B; operator applied
at 1.3,

This condition is substituted in the boundary integral over T’y for
the TE polarization. However, the condition on the outer boundary,
viz., I's, remains the same for both polarizations.

Numerical results for RCS computation from several representa-
tive structures will now be presented. The geometries considered are
a 1A strip, a triangular cylinder, and two circular cylinder geometries
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Figure 10 Bistatic radar cross section of a conducting circular cylinder,
TE case, computed by using the ABC method with B; operator applied
at 1.1,

of radii 1\ and 8), respectively. The bistatic radar cross sections of
these scatterers are shown in Figs. 7 through 12, where they are also
compared with the results derived from other available techniques e.g.,
the method of moments and the series solution for circular cylinders.
It is evident from these results that for small scatterers the ABC ap-
proach yields results that are in excellent agreement with the method
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Figure 11 Bistatic radar cross section of a conducting circular cylinder
of radius 8\, TM case, computed by using the ABC method with B;
operator applied at 8.2).

of moments, regardless of the polarization of the incident field. For
larger scatterers, it is found that the ABC approach continues to work
reasonably well for the TM polarization, as is evident from the exam-
ple of Fig. 11 for a cylinder of radius 8. For TE polarization the ABC
deteriorates more rapidly and the errors in the solution show up sooner
than they do for the TM case, i.e., for smaller body sizes in terms of
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Figure 12 Bistatic radar cross section of a conducting circular cylinder
of radius 8\, TE case, computed by using the ABC method with B,
operator applied at 8.2)\.

ka. We see, for instance, from Figs. 11 and 12, that the results for
the 8) cylinder are less accurate for the TE case than they are for the
comparable TM case.
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4.6 Improvement in the ABC-Based Solution

As a first step toward improving the ABC-based solution, we
might attempt to purify the approximate solution by filtering out all of
the incoming harmonic contributions and using only the outgoing har-
monics to compute the far scattered fields. This can always be done, in
general, even for an arbitrary scatterer, by starting with the computed
values of u and u, on the outer boundary p = b, Fourier analyzing
these values to determine the coefficients of the incoming and outgoing
harmonics and, deleting the incoming harmonics while retaining the
outgoing ones with their coefficients intact. While this procedure is
simple, and would in general yield a better solution for the far field,
it can be further refined by recognizing that that the coefficients of
the outgoing harmonics are still in error and should be corrected for
improved accuracy.

To achieve improvement in the result beyond that obtainable via
the simple deletion of the incoming harmonics, we must attempt to
annihilate, or at least minimize, the coefficients of the higher-order in-
coming harmonics that are significant while simultaneously adjusting
the outgoing harmonic coefficients associated with the same harmon-
ics. The procedure followed for this test problem is explicitly outlined
below.

By enforcing the boundary condition on the perfect electric con-
ductor at ka and applying the boundary operator at kb, we obtain the
matrix equation

e S]] Lo ]

where 7,,’s are the corrections in the coefficients of the outgoing har-
monics @,, and are to be determined by imposing the condition that
b, = 0. Letting b, = 0, we get

—1 " Tn(ka)

(an+m) = Hff)(ka) (44)
~1" " (ka
M = ["‘!I'I"(’?;‘(—"k(‘;‘)“l - an} (45)

In Fig. 4, we presented the exact as well as the approximate
bistatic RCS, the latter having been calculated using the second-order
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Figure 18 Effect of annihilating the harmonics 7=40 through 60 in the
ABC solution on the scattered field.

boundary operator Bj, by filtering out the incoming harmonics and
retaining only the outgoing ones. We note, first of all, that the RCS
results are quite accurate in the forward scatter and backscatter di-
rections, and in the vicinity of these angles, but they do deviate from
the true results at other angles. Figure 13 shows the effect of anni-
hilating the higher-order incoming harmonics ranging from n = 40 to
60, while simultaneously adjusting the coefficients of the correspond-
ing outgoing harmonics. It is evident that a significant improvement
is obtained at the angles where the far field, computed by using the
the original B, solution and retaining only the outgoing waves without
further modification, was in error.

For the canonical problem of a circular cylinder, it was possible
for us to systematically improve, by analytical means, the approxi-
mate results for the scattered field obtained via the application of the
second-order ABC. Obviously, we would expect to have to resort to
numerical means when the scatterer is of arbitrary shape. In the fol-
lowing, we indicate how an approach that embodies the concepts of
the Unimoment method developed by Mei and his co-workers [7-9],
can be employed to improve the ABC-based solution for an arbitrary
scatterer in a numerically efficient manner.

The first step in the application of the Unimoment method is to
enclose the scatterer with an artificial boundary which is separable in



160 4. Absorbing Boundary Conditions in EM Scattering

nature, e.g., a circular boundary for the two-dimensional scattering
problem. This step not only allows one to conveniently express the
solution for the scattered field in the external region in terms of cylin-
drical wave functions, but it also decouples the exterior problem from
the interior one except, of course, via the continuity conditions on the
tangential fields to be imposed at the common boundary. Next, one
solves the interior problem N times, where N is the number of cylin-
drical harmonics needed to adequately represent the total field on the
outer boundary. The boundary condition imposed on the wave func-
tion in the process of deriving these interior solutions, via the FD/FEM
method, is that the total field u equals e/™%,n = 0,1,2,...N. The in-
terior solution can be represented on the outer boundary as a weighted
sum of the boundary functions e™? with the weight coefficients yet to
be determined.

To this end, we represent the scattered field in the exterior re-
gion in terms of a finite series of outgoing cylindrical wave functions.
Finally, the continuity conditions on the field and its derivative are
enforced at the artificial boundary, resulting in a matrix equation of
the order 4N X 4N whose solution leads to the determination of the
weight coefficients.

As mentioned earlier, for a scatterer of characteristic dimension
ka, on the order of N harmonics are needed for the solution to be
accurately represented, implying that N boundary functions should
be employed at the artificial boundary in the Unimoment method.
Suppose, however, that we generate an initial solution by applying the
second-order B; operator at T'y, where I'; barely encloses the scatterer.
Then, from the behavior of v4,,’s investigated above, we know that the
lower-order harmonic contents of this solution will be accurate and
only the higher-order harmonics will require correction. This suggests
that we can improve the ABC solution by following a Unimoment type
of procedure, but by applying it to only a small fraction of the total
number of harmonics needed to represent the scattered field at the
outer boundary. This not only reduces the time it takes to generate the
matrices representing the continuity equations applied at I'y, because
of the reduction in the size of this matrix to a fraction of that in
the Unimoment method, but it also reduces the matrix storage and
solution time. Both of these are important factors in determining the
feasibility of solving large-body scattering problems.

Strictly speaking, the procedure outlined above is based on the
premise that there exists little or no coupling between the higher-order
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harmonics that are being modified and the lower-order harmonics that
are being left intact once they have been generated via the application
of the ABC. We recall that for the canonical problem of the cylinder
there was absolutely no coupling between the various harmonics. How-
ever, for a general scatterer, the harmonics do couple to each other,
in the sense that a single harmonic in the incident field can produce
all the harmonics in the scattered field. Fortunately, numerical experi-
ments performed on different scatterer geometries have shown that this
coupling between the harmonics, introduced by the arbitrary shape of
the scatterer, is confined only to the adjacent harmonics, i.e., it is very
much of the near-neighbor type. Furthermore, the coupling is even
weaker between the propagating and the evanescent harmonics. As
a result, to improve the ABC solution it is usually adequate to con-
sider only a few, say about 10 harmonics for a body with a ka size
of 50, with some of the harmonics falling in the transition region and
the rest being evanescent. One suppresses the incoming portions of
the scattered field for these harmonics while simultaneously adjust-
ing their outgoing parts, by solving a 40 X 40 matrix equation (the
size of the matrix is 4 times the number of harmonics), which neglects
their coupling to the lower-order harmonics that have presumably been
calculated sufficiently accurately using the second-order boundary op-
erator. The realization of time saving in this approach, vis-a-vis the
conventional Unimoment method, results from two factors. First, the
number of times the interior problem needs to be solved is only a
fraction of that in the Unimoment method; and, second, the matrix
equation that corresponds to the continuity condition is also smaller
by the same reduction ratio. It is also important to recognize that if
one attempted to derive the solution strictly using the ABC, the outer
boundary would have to be moved outward to a radius of about 2 to
3 ka, or even higher, and consequently, the number of mesh points
would increase substantially, as would the computation time and the
storage requirement. Figure 14 shows the effect of correcting for the
harmonics n = 40 to 60 in the scattered field for the TE scattering
from the 8X cylinder. The corrected solution is seen to agree very well
with the exact solution.
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Figure 14 Effect of correcting for the harmonics 7=40 through 80 in

the Finite Element ABC solution for a conducting cylinder of radius 8],
TE case, with B, applied at 8.2,

4.7 ABC for 3-D Scalar and Vector Fields

As shown in the Appendix, the 3-D counterpart of the scalar and
vector absorbing boundary conditions can be derived by using recursion
relations for the coefficients of the inverse powers of r in the asymptotic
representation given by Wilcox. One could either choose to use these
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Iy

Figure 15 Geometry Pertaining to 3-D ABC.

boundary conditions to truncate the mesh at the outer boundary and
use the 3-D version of the weak form given in (41) in the context of
FEM, or employ a direct procedure outlined below that serves the same
purpose.

Consider the point P on the outer boundary I';, and the points R
and @ lying just outside and inside the boundary, respectively, on the
same radial line as shown in Fig. 15. In the Finite Difference method,
we can truncate the mesh at I'; provided we can write the field value at
the point R by first expressing it in terms of the radial derivative of the
field at P and then trading this derivative for the angular derivatives
at P by using, say, a vector form of ABC. Alternatively, we can achieve
the same goal by expressing the field value at R in terms of the values
at P and @, lying on the same radial line, via extrapolation as follows.
We first use the two-term Wilcox representation

e~ kT

B(r) ==

|20, + 10,7 (46)

and solve for the two coefficients Eo and E; appearing inside the brack-
ets of the above equation, in terms of the field values of E at Q and P.
This allows us to express the field value at R using (46) and enables us
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to truncate the mesh at I';. Note that no explicit angular derivatives
are needed in this procedure, although they do get implicitly involved
through the radial derivatives via the wave equation satisfied by the
fields.

The ‘procedure described above can be generalized to the case
where the points P,Q, R do not all lie on a radial line. However, the
angular derivatives are explicitly needed in this situation.

Numerical study of this approach for truncating the FD mesh in a
region surrounding a scatterer for a 3-D vector scattering problem has
been carried out successfully [16] in connection with the body of revo-
lution (BOR) problem. Taking advantage of the azimuthal symmetry
of this geometry, a modified form of the coupled azimuthal potentials
(CAP’) introduced by Morgan, Chang, and Mei [10] can be used to
solve the vector BOR problem. Specifically, the potentials are u,(r,6)
and vy, (r,8), where

E¢(r’ 0, ¢) = f: um(r, o)ede’ (47)
"IOH¢(T’0’ ¢) = Z ”m(r,o)ejmd’ (48)

Note that these potentials have the advantage of being continu-
ous across dielectric interfaces, whereas the Debye potentials, typically
used to solve the sphere problem, do not enjoy the same feature. It
can be shown (for details see Chapters 2 and 6) that u,, and v, satisfy
the following coupled differential equations

a’um aum azum azum
Alum+BIW+Cl'Eo— + Dy 572 + Ey 302 (49)
v 0vy
+ Fivy, +G1—5;-+ HITO“ =0
v, v, v, v,
du,, Oum
where A;,... Hy, As,..., H; are known functions of m,r,0,€.(r,8), and

pr(r,0).
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Figure 18 Geometry of the body of revolution problem showing the
finite difference grid.

Next, consider a finite difference formulation in which a mesh con-
sisting of nodes distributed along lines of constant r and constant @ is
used (see Fig. 16.)

The above two equations are enforced at each interior point of
the mesh. For those nodes on the outer boundary, the usual finite
difference approximation to 8/8r and 8?/8r% cannot be used because
of truncation. However, from the Wilcox expansion for the scattered
fields, we see that u,, and v, satisfy the following

(7, 8) = E‘Zkr [A()m(o) + Alﬁ(m + A2:;(0) +.. ] (51)
vm(r, 9) - e~ kT [Bgm(s) + Bl,:(e) + Bz:;(g) 1. ] (52)
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If the outer boundary is sufficiently far from the scatterer, the terms of
order (1/r)? and higher make a negligible contribution. Thus, under
'this approximation, we have:

in(r) = T [4on(0) + 220 53)
on(r,6) = S [Bum(0) + 222} )

We can now solve Ao, Aim,Bom, and By,, along a radial line,
i.e.,, say § = 0, in terms of the nodal values of u,, and v,, at P
and @ (see Fig. 15). Once we have done this, we can substitute back
into the two-term expansions to find the values of u,, and v,, at § =
0, for any r > r,. Thus, we can now find the needed expressions
for Quy, /07,8 up, /072,80, [Or, and 8?v,, /Or? at node P in order to
enforce the two coupled partial differential equations at this boundary
node. It is worthwhile noting that no explicit absorbing boundary
conditions in terms of the normal and angular derivatives are needed
in this procedure, as they are in the approaches discussed earlier.

The above procedure has been used to investigate the problem of
scattering by different shape BOR’s including p.e.c. spheres of various
sizes [16]. Good results have been obtained using meshes with outer
boundary as close to the scatterer as r = 1.4a, or even less, where a is
the radius of the sphere.

Next, we present some representative numerical results for the
sphere, together with comparisons with the exact series solutions. The
numerical values have been obtained using an outer radius which is
1.4 times the radius of the spheres. Figures 17 through 19 exhibit the
results for a p.e.c. sphere of radius a where ka=16.0. The incident
field is z-polarized and traveling in the negative z-direction. Figure
17 is a plot of both the calculated and the analytical values for the
magnitude of Jy, the transverse component of the current induced on
the surface of the sphere in the plane ¢ = 0°. The two results are
seen to compare quite favorably with each other. In Figs. 18 and 19
we present the plots of the magnitude and phase , respectively, of the
radial variation of the scattered Hy as a function of the normalized
distance from the surface of the sphere in the plane ¢ = 0° and in
the direction 8 = 90°. This plot illustrates the fact that the scattered
field does indeed begin to exhibit an outward traveling wave behavior
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tance in the plane, ¢ = 0°, at § = 90° (—o-), and the phase of a traveling
wave fleld with exp(—jkr) variation (—).

of the type (e~?¥7)/r, assumed in the asymptotic representation, even
at distances not far from the surface of the sphere. In Fig. 19, the top
plot is that of the phase of the function e~7*" and it is evident that
the the phase variation of the calculated value of the scattered H field
indeed exhibits a similar behavior.

Appendix:

Derivation of ABC’s Using Recursion Relations

a. 2-D Absorbing Boundary Condition

In this appendix, we present an alternative derivation of the ab-
sorbing boundary condition, based on the use of recursion relationships
satisfied by the coefficients a»(¢) in the Wilcox expansion, which is re-
peated below for convenience



Appendix 169

u(P, ¢) 1/2 z: a“((‘é) (Al)

n=0

Imposing the requirement that u(p, ) satisfy the wave equation
V2u + k*u = 0, one can readily derive the recursion relationship

~27k(n+1)apy1 = (n+3)?an+ Day, (A2)

where D = 8% /8¢°.
Next, we use (A1) to express the radial derivative uf u, i.e. u,, as

e—ike n+ e
u, = —jku— pTp Z ( 2) z
n=0 B
(A3)
1 e~ 2 na,
(e ) e S
Replacing na,, in the summation in A3 using A2, we get
1 1
we (gt )
(A4)
1 e~ kr & 1
575D Z nan 972

Once again, replacing na,, in (A4) and using the recursion relation, we
get

11 1
= (—Jk "% T 8k2/)3) ¢

1 1 1 (A5)
+ (2Jkp2 t s 2k%p3 ) Du+0 (99’2)

= a(p)u + B(p) uge

Equation (A5) is seen to be identical to (12) with a(p) and B(p) given
by (22) and (23).
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b. 3-D Scalar Absorbing Boundary Condition

We present below, for reference, the outline of the derivation of the
three-dimensional scalar boundary conditions. For details the reader
is referred to [10].

Let u(r, 0, $) satisfy the scalar wave equation

Viu+klu=0 (A6)

and be expressed asymptotically as

we e':’"' i Gn(ﬁ:‘ﬁ) (AT)
n=0

Then it can be shown that the a,, satisfy the recursion relationship

-2k na, = n(n - 1)an—1 + Dan—1 (A8)

Using (A7) to write u,, and incorporating the recursion relation-
ship repeatedly in the resulting expression, yields the following com-
pact form for u,., after a slight rearrangement

ur = —gk{a(r) u + A(r) Du} (A9)
where D = Beltrami’s operator and D f is given by
2
Df = 5;11_0% (sinﬂ%) + ;1—1%2--0;—37{ (A10a)
and
a(r)=(1+ 2% A= gy (AlOb)
Jkr 2(kr)2a(r)

up to and including terms of order r—%.

Equation (A9) is the desired representation for the 3-D ABC for
a scalar u.

c. 3-D Vector Boundary Condition

For a 3-D vector field E (or H) one can follow exactly the same
procedure as in the previous section of this appendix, to express T X
V x E in terms of E and its angular derivatives. Only a thumbnail
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sketch of the derivation is presented here and the reader is referred to
[16] for further details.
The first step is to use the Wilcox representation

= e ¥ L A,(0,9)
E=— ’; - (A11)

From (A11), we can get

rﬂ

— _ —2kr X . F
vsz{—Jk?x_gl_i—;&).}E—erz Z nAnt (A12)

n=1

where Z’“ =_'1"_“ X Ap, is the transverse component of ‘A, and, for the
vector F', D1 F is given by

= 1 T oF°
- ¢
DiF = sind |90 (sm OF%) - 00 ]
PRI LC ARSI O el
sind | 00 1 a0
Using the recursion relation
—29knAys = n(n —1)(An_1): + Dy Any (A13)

where
Dy A, = (DA% + Dy A,)8+ (DA? + Dy A4,)0

dAT 1 ., 2cosfdA¢

DgA, =22 - A% __“ -~ “"n
8 90 " sin’0 ™ sinlf 0¢ (A14)

— 2 0A" 2cosfOA8 1
D = n no_ ¢
% An sinf 9¢ t+ sind 0¢  sin’é An

and D is Beltrami’s operator, we can once again derive the represen-
tation, correct to r—4.
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VxE=&a(r)E+B(r)D,E (A15)
where
a&(r) = —gk (? X (1 + Jkir) - JZ—:) (A16)
and
B() = s (A17)

27kr? (1 4+ 1/kr)
Equation (A15) is the desired relationship for the vector ABC.
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