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4.1 Introduction and Rationale

The intimate relationship between Maxwell’s theory for the elec-
tromagnetic field and Einstein’s special relativity theory [1] is generally
recognized nowadays. Throughout the present century many educators
found it necessary to include a chapter on special relativity in textbooks
devoted to electromagnetic field theory, e.g., in the book by Becker,
edited by Sauter [2] (a book that has its roots in the last century and
appeared practically in sixteen editions!), see also Stratton [3], Fano
Chu and Adler [4], Sommerfeld [5], Jordan and Balmain [6], Panofsky
and Phillips [7], Shadowitz [8], Jackson [9], Portis [10], Lorrain and
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120 4. Application-Oriented Relativistic Electrodynamics

Corson [11], Wangness [12], Griffiths [13), Frankl [14], Chen [15], Kong
[16], Plonus [17]. This list is representative, rather than exhaustive.
By examining these and other textbooks, it becomes apparent that a
direct approach suitable for educating applied physicists and electro-
magnetic radiation engineers is lacking. Some authors introduce special
relativity theory in the traditional “Gedanken experiment” approach,
and by the time the reader finishes with the moving trains, flashing
torchlights, and rods and clocks, the relevance to practical electro-
magnetic problems is obscured. Others move along more formalistic
lines and derive the field tensors, mostly by using general coordinate
systems and the heavy machinery of differential geometry, e.g., co-
variant and contravariant coordinate systems, but the mathematical
elegance hardly inspires the engineering student who usually cannot
find in it any motivation to move on in this field. On the other hand,
we are nowadays aware of real life problems, e.g., design of satellite net-
work supported global navigation systems, which involve special (and
sometimes even general) relativistic considerations related to precision
of time and frequency bases and errors incurred during propagation
through complicated inhomogeneous and time varying media and in
the presence of relative motion between objects. It is therefore manda-
tory to devise the methodological tools and suitable representations for
teaching relativistic electrodynamics to applied physics and electrical
engineering students. In the course of such a pedagogical experiment
with Electrical Engineering graduates, it became clear that the rudi-
ments of special relativity should be presented axiomatically, with as
little phenomenological “explanation” as feasible, working on the as-
sumption that this aspect has been covered, at least to some extent,
in “Baby physics” courses. It also became clear that four-dimensional
Fourier transforms should be introduced from the beginning, a novel
approach, not indicated in the literature, as far as this author is aware.
This facilitates the work in an algebraic, rather than differential equa-
tions environment, thus simplifying mathematical manipulations. It
also became clear that four-vectors, which are easily handled, almost
as easily as the classical three-vectors, should be extensively used. Most
of the students met had a good grasp of linear algebra, and the intro-
duction of tensor algebra was effected by moving from the familiar
idea of matrices to their representation as dyadics and finally via the
Einstein summation convention to tensors. However, only Euclidian
systems are considered, and even in this context, the elegance of the
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field tensors and the associated representation of Maxwell’s equations
has been avoided. Within these limits, it is then the personal prefer-
ence of the teacher that will guide him to emphasize certain classes of
problems. From this point of view, the specific material described here
serves merely as an example. Surprisingly, in the course of compiling
and teaching this course, new ideas and representations emerged, which
do not appear in the literature, as far as this author is aware. These
innovative concepts do not alter special relativity theory, still it is a
pleasant surprise that at the turn of the century anything new at all
can be said about the now veteran special relativity theory. From this
point of view, there are some novel ideas given here and the present
study is not merely tutorial. For example, the section on the Fermat
principle shows that the generalized principle, for inhomogeneous and
time dependent media, acquires a new meaning that can only be stated
in the context of special relativity: verbally stated, it says that the ray
propagates along a path that minimizes (or in general extremizes) the
proper time. It is also shown that the Fermat principle is equivalent

to a simple mathematical condition on the smoothness of the phase
function.

A pioneering attempt to compile many, more or less practical
problems of relativistic electrodynamics to serve the needs of the en-
gineering community has been made by Van Bladel [18]. Although
written as a textbook with problems at the end of each chapter, it is
too specialized (as some readers might also deem this article to be),
although certain parts could certainly be incorporated in any syllabus
for a course in application-oriented relativistic electrodynamics. It also
follows too much of the traditional presentation of the fundamentals
of the theory, instead of using an axiomatic approach and moving di-
rectly into the materia. It is hoped that experiments like Van Bladel’s
book and the present article contribute to clarify the question of how
to present such a course.

The present article is organized as follows: after introducing no-
tation and stating relativistic electrodynamics axiomatically, and ex-
ploring properties of relevant four-vectors, the technique of algebraiza-
tion by using four-fold Fourier transforms is introduced. This already
touches on the important question of relativistic transformations in
this representation space. Further exploration of four-vectors follows.
Next, four-potentials are introduced. This is followed by a discussion
of the cross multiplication operation and the related rotor operation. It
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is mentioned, without going into too much detail, that we are dealing
with tensor operations, and the general advice is to work with the var-
ious components (without mentioning the antisymmetric tensors and
their properties, which would encumber the presentation without con-
tributing to application-oriented problems). A section on the proper
time and related concepts follows. What might appear as a melange of
unrelated subjects is actually an attempt to lead the student gradu-
ally from the less complicated to the more sophisticated subjects. We
now have enough tools for discussing specific problems. As an exam-
ple, the Minkowski constitutive equations for moving media are derived
for dispersive anisotropic media. Dispersion equations and their rela-
tivistic invariance are discussed. This provides the basis for discussing
Hamiltonian ray propagation for inhomogeneous and time varying dis-
persive media. For pedagogical reasons, this section is separated from
the discussion of the generalized Fermat principle, given in the fol-
lowing section. As a final application, which is of course biassed by
the author’s personal preferences, the question of propagation in lossy
media is discussed, in the context of the ray equations, their gener-
alization to lossy media and the questions of Lorentz transformations
and mathematical complex analyticity involved.

4.2 Special Relativity

In this section relativistic electrodynamics is introduced. The for-
malism needed by the applied physicist and engineer is stipulated in
an axiomatic manner. The introduction of the field tensors and the
ensuing elegant representation of the field equations by means of op-
erations on these tensors, a cornerstone of relativistic formalism, is
obviated. Four-vectors and Minkowski space are introduced at the end
as a notational and operational tool, rather than a conceptual general-
ization of the space-time manifold idea, as given in books specializing
in relativity theory. In the following sense, it is the same methodology
educators use now for years when teaching for example waves in metal-
lic waveguides and resonators: the fact is that our students never get
a comprehensive course in the theory of the special functions needed
for comprehending this subject, but we realize that we do not have the
time to plough this field, lest no time will remain to teach the perti-
nent engineering aspects, and therefore a short resume of the theory
of Bessel functions, Legendre polynomials, etc. appears at the end of
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many textbooks for later reference, and we force our students to plunge
into the main subject matter, hoping they will swim and not sink.
Maxwell’s equations for the electromagnetic field are given by

VXE=-8B—jm

VxH=6D+j.

V.-D =p,

V:.B =pn (1)

where J; denotes the partial time derivative, the fields are functions
of the space and time coordinates, e.g. E = E(x,t), and indices e,m
denote the electric and magnetic densities, respectively, of current and
charge. To date, the existence of the magnetic current and charge den-
sities in (1) has not been empirically established. Therefore, at this
time they should be considered as fictitious, in the sense that they are
not intrinsic physical entities, however, they are amply used in bound-
ary value problems to represent the associated fields, e.g., see Strat-
ton [3], or Kong [16], as well as many other textbooks cited above.
Even though the present approach claims to be practical, we should
always be aware of the fact that physicists have not given up the quest
for magnetic charges and currents, e.g., see Jackson [9].

The statement of Maxwell’s equations (1) is incomplete in the
sense that it is unrelated to other physical models. For example, we
need a way of linking electrodynamics to familiar concepts like force
and energy introduced in mechanics. One way of achieving this goal is
by stating a force formula. Thus the presence of a conventional charge
g can be detected through the forces exerted on it according to the
Lorentz force formula

f. = ¢.(E+ v x B) (2)

Henceforth we shall suppress the index on f unless necessary.

The teaching of electromagnetic theory in a phenomenological-
historical way, as evolving from crucial experiments and the subsequent
“laws” that are added into the model, tends to obscure the fact that
(2) is extrinsic and does not follow from Maxwell’s equations. This
important fact should be stressed at this point. Actually, (2) is an
extension of the simple Coulomb force formula f = ¢.E, which should
be considered not as a “law” but as a link between mechanics and
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electrodynamics. Inasmuch as f is already known from mechanics, g,
in f = ¢.E can be considered as a proportionality coefficient. Once
ge is defined we have at our disposal the “rationalized” Giorgi MKSQ
system of units. On introducing special relativity axiomatically, (2) can
be derived from f = ¢.E. The analog of (2) is given by

fn = gm(H-v x D) (3)

again an extension derived by means of relativistic transformation for-
mulas from a magnetic formula f = ¢,,H. Although this example is
far fetched, it demonstrates the symmetry introduced into Maxwell’s
equations by stipulating magnetic sources, and the stimulus it provides
for looking at things in a new way. These derivations are left for an
exercise stated below.

Special relativity deals with observations performed in inertial
frames, i.e., frames of reference in relative uniformm motion. The “un-
primed” frame (1) is characterized by the space-time coordinates x,¢.
The “primed” frame of reference moving at a velocity v as observed
from the “unprimed” frame is characterized by x’,t’. One of the as-
sumptions of special relativity is that corresponding to (1), in the
primed frame Maxwell’s equations assume the same functional struc-
ture (sometimes referred to as the “covariance of Maxwell’s equations”,
or “invariance of Maxwell’s equations”), i.e., we have

V' XE' =- Bt:B’ _j:n
V' x H =3¢' D’ + j’e
V'.D' =p.
V'.-B' =p! (4)
where now E’ = E'(x/,t') etc. The relation between the space-time

coordinates in the two frames is given by the celebrated Lorentz trans-
formation

x' =0 (x - vt)
EN— %)
where
7=(1- )2, T =1+ (y—1)i¥,
v=v/vy, v=|v|, B=v/c (6)



4.2 Special Relativity 125

and where I is the idemfactor dyadic (same as unit matrix), c is the
speed of light in free space (vacuum), which is a universal constant
for all observers attached to inertial frames of reference; and e.g. vV,
i.e., in general two juxtaposed vectors (or a linear combination of such
pairs) without a dot or cross multiplication sign between them denotes
adyadic, same as a multiplication of a column vector times a row vector
in matrix theory (or a linear combination of such pairs). For example,
U is a dyadic too. It is easily verified that the inverse transformation
is obtained from (5) by exchanging primed and unprimed symbols and
inverting the sign of v. This is also valid for other transformations
given below. Use of the chain rule of calculus yields the transformation
formulas for the differential operators

V' =U-(V + vd/c?
( +v t/c ) (76.)
0y =v(8e+ v+ V)
Subsequently, it will be convenient to symbolically denote the del op-
erator V as a differentiation with respect to the space variable, thus
(7a) becomes

8, =U- (0x + vB,/cz)
By =1(Be+v - 8)

The field variables are related by the following transformation formu-
las:

(7b)

E' =V.(E+vxB)
B'=V.(B-vxE/c?)
D'=V.(D+v x H/c?)
H =V.(H-vxD)
jle =U (Je_Pev)

Pt =7(pe — je - v/c?)
Jm =U-(m — pmV)
P:n :7(Pm —Jm - V/cz)

V =9I+ (1-9)w (8)

where E = E(x,t), E' = E'(x/,t') etc. and the space-time coordinates
are related according to (5). It can be shown that subject to (5), (8),
the set of Maxwell’s equations (1) implies (4) and vice-versa. This in a
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nutshell is the basis of special relativistic electrodynamics [19], in fact,
the set of relations given above is more than necessary to axiomatically
define the theory with the absolute minimum assumptions, e.g., the set
of the primed Maxwell equations (4) can be considered as a result which
can be derived by exploiting the other relations given above.

Note that U-V = 'yi. Also interesting are the roles of the dyadics
U,V, sorting out the component of the three dimensional vectors,
parallel, perpendicular to the velocity v, respectively and multiplying
them by 5. Of course, we know that the reason for a three dimen-
sional vector to be associated with U or V depends whether it is a
true vector like x or j, or a component of an antisymmetrical tensor,
like E, B, D, H. Exactly, this is the part of the story that we should
present axiomatically and avoid discussing with students novices to the
subject of relativistic electrodynamics. The details can wait for a later
encounter with this material.

Minkowski [20] introduced the four-vector concept which will en-
able us to compact our notation and simplify the algebraic and dif-
ferential manipulations. To the three components z;, j = 1,2,3, we
add z4 = ict, thus for real ¢ we have an imaginary z4. Henceforth
four-vectors will be denoted by capital letters, e.g.,

X =(x,ict)
Ox = (a,, —éat) ®)

where the second equation (9) is the four-dimensional Cartesian gradi-
ent operator. It is not necessary at this stage to introduce the geomet-
rical concepts pertaining to the Minkowski space, i.e., to describe the
Lorentz transformation as a rotation in this space. What is important
for the student to know is the fact that the length of a four-vector
is invariant with respect to the Lorentz transformation (5). It can be
verified as an exercise that subject to (5)

X-X=2z2-c%?=X'.X'=2"2 - ®'? = constant (10)

In the specific case (10), the value of the constant is chosen as zero. The
reason is simple: consider a rotation of coordinates such that £ is in the
direction of x. Then (10) amounts to £ — ct = a, where a is a constant.
Clearly setting the constant to any value is tantamount to choosing
the time or space origin in a special way. The choice of a = 0 means
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that at ¢ = 0 we have £ = 0. Consequently, X is called the null vector.
By inspection of (7b) compared to the Lorentz transformation (5), it
becomes clear that dx (9), is also a four-vector. Inasmuch as current
and charge sources in (8) follow the same transformation formulas as
the transformations for space-time coordinates, (5), we also identify as
four vectors

Je =(j¢,’iCP¢)

Im =(m»icpm) (11)

It then follows from Maxwell’s equations (1) that

(V x H - 8D, icV - D) "
(-V x E — 8B, icV - B) (12)

are also four-vectors, therefore their spatial parts (first expression in
parentheses) transform like x, and their temporal coordinates (second
expression in parentheses) transform like ict, according to (5); these
conclusions, although evidently true, have not been found explicitly in
the literature, and provide an example to some new insight one gets
when teaching these subjects. At the least, such results are useful for
a class or home exercise.

Four-vectors in two reference frames can be related directly. Thus,
(5) can be represented as a four-dimensional dyadic or a 4 X 4 matrix,
eg, X' = W - X. We can also use a mixed dyadic-matrix notation,

[i:;'] - [_gcz nf,l] ' [i:t] (13)

or represent W in matrix forms with entries Wiyi,j = 1,...,4. For
example, take v in the x-direction, this yields for W the simple form

- 0 0 B
0 10 0
0 01 0 (14)
-8 0 0 v

This matrix is Hermitian and it is easily verified that det [W;;] = 1.
It is interesting and useful for the sequel to show that det [W;;] is the
Jacobian matrix. Working in Cartesian components in four-space, and
using the Einstein summation convention, i.e., that an index appearing
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twice in one term of an equation is a dummy index on which summation
is to be performed, we have
5.4 : _ o X,

3Xj BXjWka W, an ke = W; (15a)

or in terms of a tensor product:

IxX'=0xW .- X'=W.X=W.I=W (15b)

4.3 Fourier Transforms and the Doppler Effect

Consider the four-fold Fourier transformation (for brevity the
writing of four integration signs and their limits from —oo to +o0
are suppressed)

f(z,y, z,ict) =/f(kz,ky,k,,iw/c)ei(k"’+k"”+k"+(i”/°)i°t)
dkdkydk,diw/c

(16a)

Note that we use the same notation f for the function and its trans-
form. To avoid ambiguity, the arguments are shown too. For brevity,
(16a) will now be denoted as

£0) = [ 110)e < Xatxe (16b)

where X is given in (9) and K = (k,iw/c) is written like a four vector,
although at this stage we still need prove that it actually is a four-
vector. The definition of d*K follows from the comparison of (16a) and
(16b). Now apply the four-dimensional gradient operation to (16a) and
(16b), preferably one component at a time to avoid confusion. We then
obtain

dx f(X) = / iKf(K)e® XK (17)

We start in (16b) with a scalar function f, leading to a four-vector
on the left in (17). It therefore follows that K = (k,iw/c) is indeed a
four-vector. By inspection of (5), the transformation formulas for k,w
are seen to be .

k'=U. (k- vw/c?)

w' =y(w~-v-k) (18)
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but this is the relativistic Doppler effect first announced by Einstein! [1]
From the fact that K is a four-vector it also follows that the phase K-X
is an invariant. How many rivers of ink have flown in order to “explain”
the relativistic Doppler effect and the concept of “Phase invariance”!
All this becomes superfluous when the present systematic approach is
adopted. From the associated inverse Fourier transformation

£(K) = s [ F)e XX (19)

(2m)*

one is led to construct the analog of (17), thus obtaining another four-
vector differential operator

Ox =(0Ok, —icd,)
B =U - (B + vO.)

) (20)
Our =7 (aw + C—zv : 8k)

which we could of course derive from K directly, by using the chain rule
of calculus. Exploiting the duality of expressions in X and K spaces is
a device that will be furthermore used subsequently.

Maxwell’s equations (1), (4) subjected to the Fourier transfor-
mation (16b) yields algebraic equations which are often easier to ma-
nipulate. Thus in (1) dy,0; are replaced by ik, —iw, respectively, and
E = E(k,w) etc. is understood. Similarly in (4) the primed differen-
tial operators are replaced by ik/,—iw’ and E' = E'(k’,w’) etc. are
understood. The Fourier transformation of the field transformation
formulas (8) is not a trivial concept: consider for example E'(X') =
V. [E(X) 4+ v x B(X)] which is Fourier transformed according to

/ E'(K)eX X ¢'K' = / V- [E(K)+ v x B(K)|le'FXd'K (21)

If we identify K’, K as the four-vectors related according to K’ = W.K
then the exponentials in (21) are identical since the exponents involve
a scalar product of two four-vectors, which is invariant. Furthermore,
on the right side of (21) a change of variables is effected by properly
using the Jacobian determinant according to

= |0xK'|d*K = |[W|d*K = d*K (22)
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and the determinant of the transformation matrix equals one, as dis-
cussed above. It is now clear that

E'(K') = V. [E(K) + v x B(K)] (23)
etc. Similarly to (22) we also have
d*X = d*x’ (24)

The results (22), (24) are usually phrased in the special relativity jar-
gon as saying that “the four-dimensional volume element is a relativis-
tic invariant”. This is of course true for K space too, according to (22),
in fact, for any four-vector, e.g., J.,Jm, a representation space can be
assigned and a volume element be defined, which will also be a rela-
tivistic invariant in this sense. All this is of course well known, e.g., see
Pauli [21], the difficulty is in explaining it to our application-oriented
students in a simple and coherent manner. Once Maxwell’s equations
and the field transformation formulas are available in algebraic form, it
becomes much easier to manipulate the expression, e.g., to show that
by substitution of the field transformation formulas into the unprimed
set of Maxwell’s equation, the primed set is derived.

4.4 Invariants Galore

In a sense, all physical laws and models are declarations about
the invariance of certain quantities. Conservation laws are obviously in
this category, but many other properties, e.g., symmetry in whatever
sense, is also a declaration that something is unaffected, or conserved,
or invariant, subject to some operation. Even writing a mathematical
(algebraic, differential, integral etc.) equation for a physical law, such
that everything appears on the left and is equal to zero on the right,is a
declaration that “something” (the expression on the left) is immutable,
i.e., equal to zero.

The scalar product of two four-vectors is one way of deriving
Lorentz invariants, some of them have been recognized as fundamental
laws, others are less important, but stand by for whenever they might
be used. Thus X - X = 0 is a cornerstone of relativity theory. Not less
important is the fact that the D’Alembert operator

1 92

ax-3x=vz—z-2-5t—2 (25)
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is a Lorentz invariant. Another invariant that has been elevated to the
status of “law” is the equation of continuity

8 -Je =V jo+ Ope =0 (26)

and the corresponding expression for the magnetic current density four-
vector J,,. Although the following invariant (note that it is not zero
as in (26))

Ok + Jo(K) = 8y - je(k,w) + ¢*8,pe(k,w) = constant  (27)

is not recognized as a “law”, I would like my students to be able to see
that (27) follows from (16b) by identifying f with J. and multiplying
both sides by X.. Or, to see that the Fourier transformation of (26)
prescribes for J. and for the dual J,, too,

K-J,(K)=K-J,(K)=0 (28)
We have already introduced many four-vectors, e.g.,
xaax,Je’aJ.,Jm,aJmaKsaK (29)

including (12) and many more that are introduced below or elsewhere.
Needless to say that linear combinations of invariants, invariant oper-
ations like (25) acting on invariants, and so on, also yield invariants,
hence we are dealing with an infinite group. Another way of deriv-
ing invariants is through the field transformation formulas in (8). Of
course, this is related to the properties of the field tensors, but can
easily be verified directly. Thus, we have [3] the following expressions:

c¢?B? — E? =constant,
H? — ¢*D? =constant,
B - E =constant,
H - D =constant,
B-H - E-D =constant,
¢’B.D + E - H =constant (30)
(of course in (30) “constant” is generic, it is not the same constant for

all expressions). Still another way for deriving invariants through the
Jacobian determinant is shown above (22), (24).
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4.5 Potentials

As a variation of the theme, the potentials will be discussed in the
context of the Fourier transformed algebraic Maxwell equations. The
original equations are split into two sets of fields; one driven by j., pe,
the other by jm, pm. This yields

ik x E, = iwB, , tkXE, =iwBy, —jm
ik x H, = —iwD.+j. , tkxH,, =-iwD,, (31)
ik -D, = p, , ik-D,, =0
ik-B. =0 , ik-B,, = pm

where E, = E.(k,w) etc. Corresponding to (31), there exists in the
primed frame of reference a set of Maxwell’s equations with primed
symbols. The transformation formulas relating K and the fields in both
frames are given above. The students are more acquainted with the e-
indexed set in (31). The relation between the two sets follows from
the formal similarity and leads to the following “dictionary”: by sub-
stitution according to this dictionary we obtain the e-indexed set of
Maxwell’s equations from the m-indexed one, and vice-versa:

Je o —jm

Pe © = Pm
E. -« H,,
H.~ E,
B, & — D,y (32)
D.~-B,
A,o—A,
be & — Om
P, -9,
In (32), the potentials have been included, defined according to
B.=tk x A, R D, =itk x A,
E. = —tk¢. + iwA, , H,, =iko, — wA,, (33)

¢, = (Aes %¢c) y ®m= (Arm %¢M)
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In (33), the potentials have been formally grouped into two four-
vectors, essentially having the same structure as K = (k,iw/c). Note
that dimensionally A = ¢/c hence there exists no other alternative for
grouping these terms. It therefore follows from (18) that the associated
transformation formulas should be

A'e =U. (Ac - v¢e/cz) ’ A:n =U. (Am - V¢m/cz)
¢,e =‘y(¢¢w—v-Ae) ’ ¢:n =7(¢mw—v'Am)

The definitions of the relativistic transformation formulas (34) guaran-
tee that &,, ®,, are indeed four-vectors. Therefore &, - &., ®» - &, and
$,, - $. and other combinations of ®.,®,, with four-vectors are new
Lorentz invariants. As before, some are more interesting, others do not
seem to have an immediate application. Noteworthy is the invariant

(34)

K-Q,:k-A,—:’—qu, (35)

and the m-indexed analog. In free space, 1/c? = pgeo and (35) becomes
the well-known Lorentz condition. However, in material media (35)
ceases to be the Lorentz condition. This is a point that might cause
some confusion, especially in view of the fact that the Lorentz condition
is a gauge transformation invariant. This subject is well covered in
many textbooks and need not be elaborated here.

4.6 The Cross Multiplication and Curl Operators

Teachers of a first course in electromagnetic field theory at sopho-
more or junior level are aware of the fact that vector analysis, in partic-
ular the Curl operation, are a major stumbling block for most students.
Witness the long introductory chapters or detailed appendices in most
textbooks. Suddenly, after some assimilation of the new concepts took
place, they are told in the context of relativistic electrodynamics that
the Curl operation is “not really a vector operation”, actually an an-
tisymmetric tensor with certain properties. In a short and condensed
course, it was found expedient to keep tensor analysis and the for-
mal details to the absolutely necessary minimum. Thus, we already
know that AB is a tensor operation creating a dyadic, or a matrix
with components A;B;. It is easy to see that a construct 4;B; — A;B;
is an antisymmetric matrix. This in general defines the Curl opera-
tion where we now have A; = 8/8z;. For i,j = 1,2,3 there are only
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three independent entries in the matrix, therefore the Curl operation
in three dimensional space could be disguised as a vector operation,
on the other hand in four dimensional space i,j = 1,2, 3,4, there are
six independent entries; therefore, there is no way that such an entity
could be represented as a four-vector. This discussion is considered
sufficient for a first course in applied relativistic electrodynamics.

There are many cases where the six equations 94;/0z;— 04;/08z;
=0,1%j = 1,2,3,4 must be satisfied. There is no harm in symbolically
writing A X B = 0, or O X A = 0 as long as we know what we are
doing. This facilitates an association to already known concepts, such
as V X Va = 0, where a is a scalar field. Similarly O x Oa = 0 will be
understood as

00 9
Oz;0z; Oz;0x;

and it is seen that for smooth a, such that the order of differentiation
may be interchanged, (36) is identically satisfied. The analogy cannot
be taken too far, for example the analog of V-V x A = 0 does not
exist. Simple examples are X x X = 0, dx X X = 0 are easily verified.
We can also show that dx x ®. and 9x x ®,, yield Maxwell’s equations.

=0, i,j=1,234 (36)

4.7 Proper Time and Related Concepts

In a subsequent section, ray equations are considered. The concept
of a ray is intimately associated with wave packets and their motion in
space. For that and other subjects, we have to include a short section
on the concept of proper time and related concepts of velocity and
acceleration. Actually, it is also warranted on ground of intrinsically
being an ingenious idea: the creation of new four-vectors by associating
four-vectors with invariants, e.g., differentiating X with respect to the
proper time to derive the four-velocity, as done below.

In analogy with a three-dimensional space, we define the four-
dimensional arc length element as

dS = VdX - dX = /(dx)? — c2(dt)? (37)

and this is an invariant. Using (37), we further define

dr =dS/ic= dt”l (z(::t))zz = dt\ll - 1,_2- = dt/y (38)
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where we now introduce the proper time 7. In (38), 7 is the time in an
arbitrary inertial frame of reference moving with velocity v and speed
v relative to the proper frame in which v = 0, for which the time 7
is now labelled as the proper time. From (38) we have dt > dr, the

celebrated relativistic time dilation phenomenon. The four-velocity is
defined as

= X y(vyic) (39)

and it follows that the relativistic transformation formula for v is

' _ ﬁ'(V-Vo)
T (1= v-vo/c?)’

where a distinction is made between the velocity to be transformed
and vo, the relative velocity between the frames of reference. Note
that V.V = —¢?, i.e., the length of the four-velocity four-vector is an
imaginary constant. This is even easier to see from (39) when vo = 0
i.e. v = 1, and vp = 0. The process of creating such new four-vectors
can be continued. We define the four-acceleration as

dav
= (41)

v

B = vo/c (40)

and it is an interesting result that

v.W:_.v.i‘r_‘_’:l_d_ _1d,

2 _ -
ar ~ 2@V T Tgac =" (42)

i.e., the two four-vectors are always perpendicular, in a formal sense.

Now is a good time to pick up the subject of the Coulomb and
Lorentz force formulas started in equation (2). It is not our intention
to discuss in detail relativistic mechanics because this will again divert
us from the main theme. It is, however, straightforward to associate
with the four-velocity the momentum-energy four-vector

P=mV (43)

where the proportionality factor m is the rest mass of a particle, mea-
sured by an observer at rest with respect to the object. Newton’s law
in four-vector form follows as

F=mW (44)
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Obviously (42) and (44) prescribe
V.-F=0 (45)

We shall state the Lorentz force formula in four-vector form and check
our stipulation:

F = (7f,i7¢.v - E/c) (46)

where f is given in (2). For a point charge at rest in the primed frame of
reference substitute v = 0,4 = 1 and apply primes, thus (46) becomes
F' = (¢.E’,0). Therefore, if (46) defines a four-vector, we must have

F-F=F.F=f.f=¢E.E (47)

Note that the right hand side of (47) expresses the Coulomb force for-
mula (squared), hence dimensionally we already deal with an expres-
sion describing force. Using the definition of F in (46), the definition
of the constant for the scalar product (47) and the transformation for-
mula for E’ given in (8) it can be shown (a good exercise!) that (46)
indeed defines a four-vector. Finally, it is easy to verify that (46) sat-
isfies (45), hence it is a properly defined four-force. The relation of (2)
and (3) to the respective force formulas for v = 0 is now clear.

4.8 The Minkowski Constitutive Relations

Sommerfeld [5] discusses the Minkowski constitutive relations for
moving media. The question is an old one, and can be asked in various
ways. If you ask “how does a moving medium behave, for example,
does it appear to be a different medium with different constitutive pa-
rameters?”, then the answer to the question is given in terms of the
transformation formulas for the constitutive parameters. This has been
amply discussed in the literature, e.g., see Post [22], see also Heben-
streit [23], [24], and Hebenstreit and Suchy [25], but this author’s opin-
ion is that this manner of asking the question does not contribute to
any problem of application-oriented relativistic electrodynamics. The
question should be asked in the way Minkowski asked it: what are the
relations between the fields in a moving medium? A general discussion
of bianisotropic media is given by Kong [16], who also cites previous
studies. Even this definition is not as practical as the direct derivation
of the dispersion equations, discussed below. Sommerfeld 5] considers
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the simple case of a medium which is linear, isotropic nondispersive
and homogeneous in its rest frame, i.e., the comoving frame of refer-
ence. The treatment is not much more complicated when anisotropic
dispersive media are assumed. A bonus of this approach is that we can
now mention, through the subject of dispersive systems, the problem
of generally non-local and non-instantaneous processes, and its relation
to the light cone and causality.

In the comoving frame of reference, in the Fourier transformation
representation space the constitutive relations

DI(K) = ¥(K') - B(K) )
B'(K') = i/(K') - H(K')

are assumed to hold, where the constitutive parameters here are dya-
dics (or call them matrices, or second rank tensors). The frequency de-
pendent dispersive medium is very common and familiar, e.g., D'(w) =
¢(w) - E'(w), pertinent to the dielectric medium at rest within a ca-
pacitor, say. See for example Jackson [9]. It follows that in the time
domain the constitutive relation becomes the convolution integral

¢
D(t') = / () B¢ - 1')dr’ (49)
-0

where the upper limit is taken as ¢’ in order to have effects at time
t' only from retarded (previous) causes occurring before t'. In view of
(48), the w dependent case of dispersion is termed temporal dispersion.
It provides an example for processes observed at time t', caused by ef-
fects initiated previously, i.e., not simultaneously. This is a simple but
important case, it has nothing intrinsic to do with relativistic consid-
erations. However, the introduction of a general dependence on K, i.e.,
k and w as in (48), ties the problem of causality to special relativity.
Thus in X space (48) becomes a four-dimensional integral

—
=

D'(X') = L T HE) . E(X - 2 (50)

The choice of the integration limits in (50) is subject to (10), the so
called cone of light which is explained in practically every book on
special relativity. Inasmuch as ¢ is the maximum speed for signals we
must have |x|? < ¢2t2, i.e., |X'~Z’'| > 0 must be chosen. This prescribes
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the choice of the limits in (50). In the special relativity jargon, if X' is
chosen at the apex of the light cone, i.e., the present, then E' must be
within the light cone in the region corresponding to the past.

The K-space field transformation formulas, i.e., (8) with the ar-
gument changed according to (21) are now substituted into (48), and
both sides are premultiplied by V1. yielding

D+vxH/*=&, -(E+vxB)

B-vxE/c’>=p,-(H-vxD)
g, =V 1.&.V, p,=V1.4.V (51)

where D = D(K) etc. Now multiply the second line of (51) by vx and
substitute v X B into the first line. After some additional manipulation,
we obtain the Minkowski constitutive relations for the present case

D=[i+é& -vxp, vxI?

: E,,-(i+v——-x:><1)-E+<Ev-vxﬂv—v>zl>-H]
L [ C

B=[I+@, vxé -vxIi™

[ (. vxvxi . . vxi
-Lp,,-(l+—¢:—2—)-H+(pv-vxcv— o )E](52)

The result (52) reduces to the simple form given, by Sommerfeld [5] for
example. For special cases of bianisotropic media in motion see Kong
[16]. In conclusion, it is noted that the present discussion is based
on the existence of (48) and the validity of (8) only. This remark is
important for the case where one attempts to incorporate losses into
the definition of the constitutive parameters.

4.9 Dispersion Equations in Moving Media

The concept of a dispersion equation is central to wave propaga-
tion in general, and especially in connection with ray propagation in
dispersive media, discussed subsequently. It is therefore essential for
engineers and applied physicists to cover these subjects in the course
of discussing relativistic electrodynamics.
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Consider Maxwell’s equations in the comoving frame, given by
ik' x E' =iw'B' - j/,
tk' x H' = — iw'D’' +j.,

ik’ - D' =0
ik'- B’ =0

(53a)

i.e., with zero charge densities within the region of interest, and substi-
tute the constitutive coeflicients from (48). Furthermore, “Ohm’s law”
is assumed, i.e., the currents are not free source currents prescribed as
constraints, but depend on the fields in the form

of ~/ !
Je =0,.-E
e e (54)

sf =t '
Im =0 * H

and are also substituted into (53a). Consequently, it is possible to define
new parameters and rewrite (53a) in the form
k'xE - '@t -H =0
k'x H +w'é" - E' =0
k'-D' =0
k'-B' =0 (53b)
The last two equations merely state that D’ and B’ are perpendicular
to k'. The first two equations in (53b) and their solution provides wave
modes which are of interest. Mathematically they provide a system of
six scalar homogeneous equations, for which the condition for nontriv-
ial solutions is that the determinant of the system must vanish. This

condition prescribes a scalar relation between w’ and k', the so called
dispersion equation, which can be written in the form

F(K') =0 (55a)

Inasmuch as (55a) is a scalar condition, it is very suggestive to assume
that the mere substitution of (18) to obtain

F'(K'[K]) = 0 = F(K) (55b)
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provides the dispersion equation for the unprimed frame of reference.
What we have done in the transition from (55a) to (55b) is merely to
express F' in terms of K. This does not mean that F is the dispersion
equation in the unprimed frame of reference. The confusion is com-
pounded by the fact that indeed F(K) = 0 is Lorentz invariant and
is the dispersion equation in the unprimed frame of reference, but this
must be shown! One must start with the first two vector equations of
(53b). The first can be rewritten as

H = “%p’*—l ‘k'x E (56a)

and substituted into the second, yields
(k' x g1 K x T4+ w2 -E'=0 (57a)
Or, isolating E' first

E = L&tk x H (56b)

w

and substituting into the first, yields
(K'x &t K xI4+w?@t)-H =0 (57b)
In the primed reference frame the dispersion equations are therefore
det[k’ x @t~ k' x I+ w?E =0 (58a)

det[k' x 1. k' x I+ w2t} =0 (58b)

It is easy to show that the two conditions are identical (as they should
be, because for a given wave mode there exists only one dispersion
equation governing both the E’ and H' fields). Consider multiplying
(57a) from the left by k' x &1~!. Using the rule that in a product of
matrices, the product of determinants is equal to the determinant of
the product, this yields

det[kl X 3'1_1]det[k' X ﬁ’t_l . k’ X i+ wl2élf] ( )
. . 59
= det[k’ x &1 K x @11 + WI]det[k! x I} = 0
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and because in the second line of (59) the second determinant is non-
zero, we have det[k’ x &1~ .k’ x #''~? 4 w"2I] = 0. This is manipulated
to yield

det[k’ x -1k x Aty wl2i]
= det[k’ x &1, k' x i‘lt—l + wlzﬁlf . ﬂlf—-l]
= det[k’ x &171 . k' x T+ w2@Mdet[@t"] =0 (60)

and since it is assumed that det[i’'~!] # 0, we obtain the second
representation (58b).

We are now ready to explore the question of the corresponding
dispersion equations for an observer attached to the unprimed frame of
reference. Consider first the case where there are no magnetic currents,
jm = 0. For this case we substitute from (8) into (57a) and use the fact
that in the unprimed frame we have k x E = wB, obtaining

(kK'x g" 1 K x T+ . [V.(+vxkxI/w)]-E=0 (61a)

The determinant of the dyadic (matrix) in brackets (61a) is nonzero,
hence the dispersion equation is again given by (58a) or (58b). Note
that for w’ = constant the roots of the dispersion equation define wave
modes. Leaving the dispersion equation in terms of K’ as in (58a)
or (58b) defines certain roots. In the unprimed frame for a choice of
w = constant, the dispersion equations are expressed in terms of the
intrinsic K and the new roots and their different number from those
encountered in the primed frame can give rise to new velocity induced
wave modes. If j,, # 0 then k Xx E = wB does not apply and the
argument leading to (61a) is not valid in this form. The best we can
say for the general case is that in the unprimed frame we have

(k' x @1 k' x I+ w2 [V.(E4+vxB)=0 (61b)

and is satisfied by (58a) or (58b) for arbitrary E as long as the de-
terminant of the expression in brackets in (61b) is nonvanishing. The
discussion of the various pertinent modes is a complicated matter which
will not be covered here (and is not recommended for the syllabus of a

course based on the present article). See for example Chawla and Unz
[26].
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4.10 Application to Hamiltonian Ray Propagation

The subject of ray propagation in dispersive media is important
for applied physicists and electromagnetic radiation engineers. It serves
to compute field problems in inhomogeneous time-varying media. Usu-
ally, it is presented in the literature as a consequence of the Fermat
principle, which is mathematically stated in terms of a variational prin-
ciple. See for example Kelso [27], Van Bladel [28], Ghatak [29], Som-
merfeld [30]. The subject is presented here in a simplified, although
concise manner, which obviates the necessity of introducing the Fermat
principle as a variational principle. This was found as a pedagogically
preferable approach for the author’s students. The Fermat principle
(discussed here in the following section), is then presented when the
student is already familiar with the Hamilton ray equations and pos-
sesses a basis for comparison. Ray propagation also serves here as an
example for using four-vectors, for extending the K space beyond the
Fourier transform, and it clarifies the role of the group velocity in ray
theory.

In order to introduce the subject and relevant concepts, we start
with the transition from general wave functions to wave packets in ho-
mogeneous media. This development is an extension of Stratton’s [3]
one-dimensional argument. Consider an arbitrary function as in (16b).
In order for this function to be a solution of a wave system (e.g., Max-
well’s equations rendered determinate by supplementing them by con-
stitutive equations), it must satisfy the pertinent dispersion equation
F(K) = 0. This can be built into (16b) by rewriting it in the form

£(X) = / §(F)f(K)e®*d'K = / F(k, wlk])e® =N Pk (62)

where § denotes the Heaviside unit impulse function which is zero for
all values of the argument except §(0), where it becomes singular, and
w = w(k) is the dispersion equation which, provided we can solve for w,
can be written as F = w—w(k) = 0. Thus, the four-dimensional integral
collapses into a three-dimensional integral, and of course we lose the
identity of f(X) as a four-dimensional Fourier transform integral. The
closest we can come to a Fourier inverse transformation is to perceive
t as a parameter and write

£k, wk])e= < ®) = (27103 / F(x, )~ *d®x (63)
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Inasmuch as t is a parameter, (63) is valid for any value of t. Usually,
we will find little use for (63), but the mathematical phenomenon is
interesting. (62) is a general wave function for the wave system in
question. The transition to a wave packet is facilitated by considering
a narrow-band spectrum in k, such that only the leading terms in the
following Taylor expansion need to be retained:

w(k) = w(ko) + Oxw(k)lyoy, - (k — ko) =wo + V5 (k —ko) (64a)

where kg is the center value of the spectrum in k, the vector derivative
symbolizes the gradient operation in the representation space k, and
v, will be identified below as the group velocity. Substituting (64a)
into (62) yields, after some manipulation

£(x,t,ko) = efkoxmient / f(k, wk])ei kKo e-va(ka)lgB  (65a)

which is interpreted as a wave packet consisting of a carrier wave times
an envelope (or modulation), the latter is a constant on the trajectory
X — vyt = constant, i.e., defines the group velocity dx/dt = v,. Ob-
viously, (63), (64a), (65a) are easier to handle in terms of the three-
velocity v,. However, just as an exercise, let us see that the same can
be handled in four-vector notation too. Thus, instead of (64a) we write

F(K) = F(Ko) + 52— aF -+ (K~ Ko)=0 (64b)

where the differentiation with respect to Ko means that this value
is substituted into the derivative after differentiation. Inasmuch as
F(Kp) = 0 too, we conclude that within the approximation where
(64b) holds the term in (64b) involving the derivative vanishes too.
Adding this zero term in the exponent in (62) yields

£(X) = / 5(F)F(K)e™*d*K

. _ (65b)
—e'KoX / 5(F)f(K)ez(K—Ko)'(X—BF/BKo)d4K

which again displays the wave packet structure of a carrier wave mul-

tiplying the envelope function, and the envelope is constant on a tra-
jectory defined by

X — 8F/8K, = constant (66)
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where the constant stands for a four-vector. From the components
of (66), by differentiation, follows the definition of the group velocity
dx/dt = v, given above. It appears that in this case the four-vector
treatment is somewhat more cumbersome, although still feasible.

The definition of wave packets in inhomogeneous, time dependent
media is impossible in general. However, for “slow variation” such that
the variation of the properties of the medium over distances and time
intervals commensurate with the wavelength and the period, respec-
tively, of the signal, an approximate procedure can be defined. This
is usually referred to as working in the high frequency limit. Clearly,
spatial and temporal changes in the constitutive parameters do not fit
into our formalism for homogeneous media. Such changes cannot be
included in the comoving frame, e.g., see (48) or in the unprimed lab-
oratory frame, (52), they are not consistent with a Fourier transform
representation as in (53b), and therefore (58a), (58b) are not valid,
nor is a representation of a wave function in terms of a superposition
of plane waves, as in (62) a legitimate solution. In order to overcome
this difficulty, we introduce the so called iconal approximation (this
is usually called in the mathematicians jargon “the WKB approxima-
tion”). For further explanation and previous literature citations see for
example Censor [31] and Molcho and Censor([32]. In time-invariant, ho-
mogeneous media the basic solution is a plane wave Ae'?, A =const.,
¢ = K . X. In slowly varying time-varying inhomogeneous media the
fundamental solution is chosen as

A(X)e?™), 04 6(X) = K(X) (67)

Therefore K is obtained as the four-gradient of the phase, as in the
simple case. This is the iconal approximation. The existence and the
representation of the new function 4 is yet an open question and will be
discussed shortly. The idea of slow variation is mathematically stated
by assuming that derivatives of the amplitude in (67) are negligibly
small compared to the derivatives of the exponential, e.g.

B,[A(X)e?™)] =[8,A(X)]e"™) — iw A(X)e*()

) " (68)
~ — iwA(X)e), |8, 4(X)/A(X)| < |iw]
Therefore the iconal approximation has the same property as the Fou-
rier transformation in (17), namely that the differential operation Ox
is equivalent to algebraization, by producing a factor {K.
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The simplest way to inttoduce the representation of 8, which is
also very appealing to students familiar with electrostatics, is the fol-
lowing: K = Ox0 is reminiscent of the way the electrostatic potential
and E = —0,¢ was derived. If we write

0

&(x)
B(x) = /¢ i 9lx0) =0 (69)

then we choose the lower limit, the so called reference potential as
zero, and the integral depends on the limits only, hence in the math-
ematician’s language d¢ is a total differential. Using the chain rule of
calculus, we write dp = 9,4 - dx = —E - dx and (69) becomes

#x) = - [ B(O)-de (70)

where £ denotes the integration (dummy) variable, but henceforth we
shall write x also under the integration symbol, except in cases where
confusion might arise. Recall that E was dubbed as a conservative field
which satisfies V x E = 0, x E(x) = 0. The last COIld.lthIl stems from
the Stokes theorem, and it amounts to F—az, = 32; b‘t. ie,itis a
statement on the smoothness of the function ¢. Applying all this to
ray theory, we now use the four-dimensional analogs and write

6(x) x x
6(X) = / d= [ ox0X)-ax= [ KX).dax (1)
6(Xo) Xo Xo

where the reference phase is chosen as zero. The last expression in
(71) is a line integral in four-space. Without proof here, we recall that
the Stokes theorem is valid for higher dimensionality too; therefore, in
analogy to electrostatics, for the integral to depend on the limits only,
i.e., for d@ to be a total differential, we must impose

0x K =0x x K(X)=0 (72a)
be ) 9 o 60 & 08
ax. " ax, X = axax, “ax;ex - °  (1%)

which can also be written in terms of three-vectors as
Ox x k(x,t) =0

ck(x,t) + Ocw(x,t) =0 (72¢)
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see Poeverlein [33]. The first line (72c) is Snell’s law in disguise and is
referred to as the Sommerfeld-Runge law of refraction. Recall that in
electrostatics V x E = 8, X E(x) = 0 implied the continuity of the tan-
gential component of E at the interface between media with different
constitutive parameters. In analogy, the first line (72c) prescribes the
continuity of the tangential component of k at the interface between
media with different constitutive parameters. But this is exactly what
Snell’s law states!

Using the iconal approximation in the X-space Maxwell equa-
tions, (1), and including slowly varying constitutive equations

D(K,X) =§(K, X) - E(K, X)

73

B(K,X) =p(K,X)- H(K,X) ( )

where (73) assumes that X-space is the comoving frame, i.e., the frame

where the medium is at rest, or instead of (73) we could use the corre-

sponding Minkowski constitutive equations (52), in which it is assumed

that X’'-space is the comoving frame, we are led to a space and time
dispersion equation

F(K,X)=0 (74a)

which can also be written as
F(0x6,X)=0 (74b)

The last form is a differential equation on 8, referred to as the iconal
differential equation. It is usually nonlinear and difficult to solve. The
idea of deriving ray equations is to replace (74a), hence also (74b) by a
set of coupled first order ordinary differential equations (this is usually
called in the mathematicians jargon “the method of characteristics”
and electrical engineers sometimes refer to “state space equations”).
In the next section, it is shown how to derive the ray equations using
the generalized Fermat principle due to Synge [34]. However, it must
be realized that electrical engineering and applied physics students,
even if they have been exposed to variational analysis, say if they had
a course in analytical mechanics, can hardly cope with the subject. It
was found advantageous to obviate this approach by using the following
methodology. To satisfy (74a), it suffices to satisfy dF = 0, which
implies F = constant, and provided this constant is set to zero at least
for one set of values of Kg,Xo we have F = 0 everywhere. The last
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condition is taken care of by the initial and boundary conditions, so
all we have to worry about is the solution of dF = 0. Choosing a real
monotonous parameter 7, we now write

dF 8F dK 6F dX

K e teax & =" (75)

for which we “guess” a solution

c;—x —A(T) 3K

(76)
dK
& =05

where A\(7) is an arbitrary Lagrange multiplier function, and 7 is now
understood as the proper time, which is a relativistic invariant and
therefore serves to preserve the four-vector nature of dX/dr,dK/dr
in (76). Moreover, this defines dX/dr as a four-velocity as in (39)
and the associated dx/dt as a conventional three-dimensional velocity
which transforms from one reference frame to another according to the
special relativistic formula for the transformation of velocity (40). The
role of the various dependent and independent variables in (76) must
be amplified. A solution of (76) (if we know how to solve it) yields a tra-
jectory X(7) in four-space; the field K(X) is found as K(X[7]) on this
trajectory. Note that we have defined X(7), i.e., X as a function of 7,
but not 7 as a function of X. If sufficient rays are computed in a certain
region, we have, in principle, at our disposal the field K(X) everywhere
in this region. Inasmuch as the integration (71) is independent of the
specific path of integration, the phase 8 can be computed according to
the definition (71), whether we integrate along a specific ray path or
use the field K(X). Note that ray theory in its simplest form enables
us to compute the phase, or wave fronts, but is mute as to the ampli-
tude and polarization of the wave. The intensity (absolute value of the
amplitude) can sometimes be determined by heuristically applying en-
ergy flux considerations. Information regarding polarization is almost
always lost in a ray computation procedure. Obviously, (76) satisfies
(75), hence subject to initial condition also (74a), (74b). However, (76)
is not a unique choice. As an example for a different choice, see the
subsequent discussion on ray propagation in lossy media.

What makes the choice (76) special is the fact that it also satisfies
the uniqueness conditions (72a), (72b), (72c). Thus applying the 9x X
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operation to (76) leads to

8 dk; 0 dK; d (31{,- 6K.-)

8X; dr _ 0X; dr _ dr \0X; 0X;

) oF ) oF

- 5% |35, - %, )3,
o OF 8 OF

= /\(T‘)(—.)—X—JEZ - A(T)gj_(:‘é}: =0 (77)

and consequently d.[0x x K] = 0, i.e.,, 9x X K = constant and if
this constant is zero for any value of T, at the initial point of the
ray say, then it is always zero. In performing the operations indicated
in (77), it is assumed that we have at our disposal a ray and also
neighboring rays in its vicinity, otherwise the operations 0/0X; cannot
be performed. We conclude that the set of equations (76) uniquely
determines the phase, and therefore can be considered as equivalent
to a direct solution of the iconal equation (74b). In performing (77),
it is assumed that F(K,X) = 0 and therefore also derivatives of F
are available as algebraic expressions in terms of K, X. Consequently,
expressions for §K;/0X; are obtained. Equation (77) does not mean
that the field K(X) is known and differentation according to d.[8x xK]
is actually performed on this function.

Inasmuch as dX/dr (76) is a four-velocity, V-V = —c? applies,
hence

_/ [8F OF
M) =ic [\ 35 3% (78)

This result appears rather strange at a first glance: on one hand we
announced that A(7) is a function of 7, while on the other hand (78)
declares ) as a function of the derivatives. What (78) means is that
here F(K[r],X[7])/0K is a function of T along the ray. This is a very
delicate point that will be again mentioned below in connection with
rays in lossy media.

The ray theory developed above involves four-vectors and there-
fore applies to any frame of reference, provided the dispersion equation
is available. Dividing all the equations (76) by dt/dr, a set of equations
is obtained in which ¢ is the parameter along the ray. This has the ad-
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vantage of eliminating A(7):

_dx _ 9F/ok
Vo =4t T ToF/bw
dk _OF/0x
&t " 9F/ow (792)
dw __ OF/0t
dt ~  OF/0w

Note that the relativistic nature of the variables is thus obscured, hence
a transformation of trajectories and associated group velocities be-
comes complicated. Furthermore, in the present form (79a), the appli-
cation of (77) is invalid. It is easy to see that in (79a) we actually deal
with the group velocity as defined in (64a), (64b), this is a direct result
of the chain rule of calculus:

OF(K,X) _ OF(K,X) , OF(K,X) dw(k,X)

ok ok w o (80

w=const K=const

In all the operations in (80), X is held constant. For the special case
of a medium not varying in time the third equation in (79a) reduces to
w = constant. If we furthermore represent F as F = w — w(k,x) = 0,
then we obtain

v _dx oF
T

b
id}c__a_F (79b)
dt ~ 0x

4.11 The Fermat Principle and its Relativistic Conno-
tations

The Fermat principle is usually stated as saying that the ray will
traverse the distance between two points in extremal (usually minimal)
time. For media not varying in time, after integration with respect to
time, the phase becomes a line integral in x-space and has the form

8(x, t) = [/:k-dx] — wt (81)

0
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where the brackets emphasize that wt is not included in the integral.
Taking 6 at t = 0, say, taking the upper limit in (81) as a fixed value x;
and dividing (81) by the constant w yield a function T'(xq,Xx;) whose
dimension is time, and it depends on the fixed endpoints xo, x;:

T(xo,x1) = 3 [ K(x)-dx (82)

xo0

The statement of the Fermat principle is that §7'(x¢,x;) = 0, where
§ denotes the variation operation. Obviously, dealing with a definite
integral we cannot find the extremum by differentiating T and equat-
ing the result to zero as done for functions in calculus. The variation
operator, which for all other purposes acts as the conventional dif-
ferentiation operator, operates on the functional, i.e., operates on the
functions in the integrand, (82). Exchanging order of integration and
variation, §T'(xo,x;) becomes

0 =6T(x0,x) = / ™ (8[k(x)]- dx + k(x) - dbx}

xo0

=£/;n{6k-dx—dk-6x}+5/::d[k-6x] (83)

The last integral in (83) is directly integrable, and since at the fixed
endpoints the variation vanishes (that is what is meant by fixed end-
points), this integral vanishes. For arbitrary 6k, §x the integrand 6k -
dx — dk- §x in (83) must vanish. Another constraint that must be met
is the dispersion equation F = w — w(k,x) = 0, i.e., its variation § F
must vanish too. This yields a second equation and after slightly mod-
ifying 6k - dx — dk - §x by introducing an arbitrary parameter w and
exchanging derivatives for the differentials, we have

:—x-ﬁk—‘;ﬁ-&c:o
oF _ _oF 9
8—k6k+g-6x=0

consistent with (79b) when w is arbitrarily identified with ¢. We could
also include F in the integrand in (83), because F = 0 and thus does
not change the value of the integral. This will be included as an il-
lustration in the derivation of the generalized Fermat principle. The
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equations (79b) resulting from the variational principle are called the
Euler-Lagrange equations. The generalization of the Fermat principle
to include time-varying media is given by Synge [34]. Here the nota-
tion is simplified by the use of four-vectors. The Fermat principle is
represented in the form (again one must keep in mind that X in the
integrand is the dummy variable)

0= 60(X) =6 / * do(X) = / Y K(X)-dX  (85a)

where we have a line integral in four-space between two fixed so called
world points Xg, X;. Equation (85a) expresses the idea that the inte-
gral path has to be chosen in such a way that the sum of the increments
df along the path will be minimal (or extremal, in general). Inasmuch
as the points Xy, X; already define a fixed time interval ¢; — tq, the
question arises as to what can be minimized (or in general extremized)
in this process. The answer is fascinating, and can only be given in
the context of special relativity theory: the quantity to be minimized
isdf = K-dX = K- (dX/dr)dr where 7 is the proper time. The com-
ponents of the K vector, as well as the components of the four-velocity
dX/dr are slowly varying functions and may be considered as constant
for an incremental dé, i.e., when Xy, X, are close world points. There-
fore, the integral (85a) becomes § [ dr = 0. Another way of looking
at it is to exploit the invariance of df = K - dX = K’ dX' which in
the proper frame where v, = 0 and 7 = 1 becomes df = w'dr. If W',
which is a slowly varying function, is considered to be constant over
the distance and time of df, then the same conclusion is reached, i.e.,
that df o dr, i.e., minimizing § means that the proper time along the
ray is minimized! This interpretation has been previously proposed by
Censor [31,35]. The variation integral (85a) is now rewritten as

x1
0=s6x) =4 | {K(X[r])- axirl A(T)F(K[T],X[T])} dr
’ (85b)
and the variation operation performed. In (85b), to illustrate the tech-
nique, the constraint F = 0 is included in the integral by adding a
term —AF, where A\(7) is an arbitrary Lagrange multiplier function.
Using the same technique as in (83) we now obtain

0 = 66(X)
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x1 dX dK
_/xo {51(-;—6}(-7;

oF oF
= A(7) [B—K 6K + X 6X] }d‘r (85¢)
and for arbitrary dX, dK the expression in braces in 85¢) yields once
again the ray equations (76). Note that in the present development the
step of proving that the ray equations define K which satisfies (72a)-
(72¢) is not necessary. The two methods (i.e., “guessing” the result and
verifying its validity using (72a)-(72c), and finding the ray equations by
deriving the Euler-Lagrange equations of the Fermat-Synge variational
principle, which by the way must also be viewed as an ingenious guess
because it is stated axiomatically!) lead to the same ray equations. The
logical conclusion is that the Fermat principle, an edifice of physics,
is equivalent to (72b), a modest statement on the smoothness of the
function (X). It would be a good thing for our students to know this
and to shed some of the mystery involved in the attempts to explain
the Fermat principle.

4.12 Application to Ray Propagation in Lossy Media

Another application which invokes questions of Lorentz invariance
and relativistic transformations, coupled with analyticity of functions,
is the question of ray propagation in lossy media. At a first glance, this
appears as a very unlikely candidate for this role, but there are some
fundamental questions involved, tied in with relativistic problems. In
lossy media as discussed above, when the losses are introduced through
currents, say, as in (53a), (53b), (54), the ensuing dispersion equations
as in (74a) are complex. Consequently, the group velocity according to
(79) will be complex too, in general, in turn implying complex space
and time. A recent study by Censor and Gavan [36] cites earlier work
in this area. The main problem is that numerous models are feasible
for extending the group velocity to the present case. All the models
are mathematically self-consistent, all define group velocities which re-
duce to the conventional definition in lossless media, but the physical
consequences vary from one definition to another. There are essentially
two main schools of thought: some researchers do not experience any
difficulty in continuing the concepts of a real group velocity, and real
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space and time, into the complex domain. The trouble is that complex
group velocities are mathematically possible for real dispersion equa-
tions in lossless media. A ray which starts in a lossless region in real
space-time is propagated into a lossy region. According to the complex
ray tracing method the group velocity and the trajectory will become
complex. Upon reentering a lossless region, the group velocity will not
automatically revert to real values. Thus, in addition to the conceptual
difficulties of dealing with complex space and time, and having to come
to terms with a complex group velocity for which no physical expla-
nation can be found, advocates of this approach are also confronted
with complex group velocities in lossless media, completely losing the
physical appeal of the group velocity concept. The other group of re-
searchers advocates using real group velocities even in lossy media.
The present model belongs to this class. The difficulty with many of
these models is that they do not maintain analyticity, consequently
differential operators as appearing in (79a), if the functions do not
satisfy the Cauchy-Riemann conditions for analyticity, become mean-
ingless. Furthermore, transformation formulas such as (40) apply to
complex functions only if they are analytic, otherwise we get different
transformations for real and imaginary components. We also mention
in passing that analyticity has a lot to do with causality, e.g., via the
Kramers-Kronig relations, see for example Jackson [9], and Kong [16],
and also due to the fact that the zeroes of the dispersion equation are
the poles determining the free space Green function for the medium at
hand, see for example Felsen and Marcuvitz [37]. The following model
offers a definition for the phase and group velocity which keeps the
group velocity simultaneously real (i.e., confined to the real axes of
the relevant complex variables complex planes) and analytic, therefore
commensurate with the pertinent relativistic transformation formulas.
To achieve this goal Censor and Suchy [38] modified (79a), by intro-
ducing a new degree of freedom expressed by including a new vector
P in the ray equations, as explained below. To achieve this goal it is
assumed that in addition to (75) there also exists the constraint that
everywhere along the path the product A(T)}- V() vanishes. The new
four-vector A(7)! will be defined in such a way that the group velocity
along the ray will be real. For simplicity, we assume that A(7)! already
absorbs the Lagrange multiplier vector function. We now have instead
of (75)

dF 8F dK OJF dX

dr ~ 8K dr 08X dr -

+ A - 0 (86)
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Instead of (76), we now have

dX OF

& Mgk

& _anE_ (87a)
ar =~ M)gx — A7)

A(r) =X(1)A(r)!

and by substitution it is verified that (87a) satisfies (86). It is noted that
(87a) like (76) satisfies (77), hence the phase is uniquely determined
independently of the ray path, according to (72b). Finally, we have to
define the four-vector A(7). If we take it as a four-vector A = RA+SA,
where the symbols R, S indicate that the spatial components are real
and the temporal component is imaginary, the spatial components are
imaginary and the temporal component is real, respectively. The four-
vector A is chosen such that ®A = 0. Consequently, V = dX/dr
involves real x, t everywhere along the ray path. To find A, expand

d OF dK 0 dK dK @ OF
Swoax =" (F'a_KF*LF'ﬁa_IE) (88)

and substitute from (87a), this finally yields the value of A on the
ray in terms of known functions. Rewriting (88) in three-dimensional

quantities and using the same technique yields instead of (87a) the
analog of (79a)

, _dx _ OF/ok
" % = T oF/ow’
dk  OF/0x
& " 9Fjow TP
do __OF/BL .
it =~ " 9F/ow Ve P (87b)

_ Ov, Ov, -
ﬂ‘"Re[(E a—w"v)]

Ovy, OF/0x Ovy, OF/8t 0v, Ovy
Im(ak 9F[0w 8w 8F/0w T ox V¢t 5

The ray tracing model (87a), (87b) for lossy media guarantees that the
group velocity remains real, also that the ray paths are confined to real
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space and time and the appropriate dispersion equation is satisfied.
This is achieved by choosing both k and w as complex quantities.
Inasmuch as the group velocity is analytic, it obeys the conventional
relativistic transformation for velocities (40). It should be noticed that
if the dispersion equation F(K,X) = 0 and v, (K,X) are analytic
in all the components of K,X, then B involves only derivatives of
analytic functions, although by its definition B itself is nonanalytic (a
real or imaginary part of an analytic function is not analytic, as we
know). Given the definition (71) for the phase, we ask ourselves if the
integration performed by using K, X obtained as a solution of (87a),
(87b) yields an analytic result for §(X). If not, then the prescription for
K = 9x6(X) involves differentiations of a non-analytic function and
becomes useless, and therefore raises the question whether the model
(87a), (87b) is valid at all. To answer this question, we start with the
dispersion equation (74a) which presumably is analytic. It follows that
its derivatives appearing in (75) are analytic too. Inasmuch as dF/dr,
OF/8X and dX/dr are analytic, it follows that 0F/0K - dK/dr is
analytic too. Using the first equation (76), which applies also to the
model (87a), (87b) implies that dX /dr-dK/dr is analytic along the ray.
The increment dK is arbitrary hence K - dX/dr is analytic, and from
the definition of the phase (71) it follows that the phase is analytic.

4.13 Concluding Remarks

Relativistic electrodynamics is now a tangibly needed subject
in the education of electromagnetic radiation engineers, and persons
that will reach this subject who started their education in the physics
department, discovered that they are more application-oriented and
drifted towards modern electromagnetic theory and applications. The
experience of the present author is dictating a pedagogical approach
which is very unorthodox from the point of view of physicists, whose
way of presenting the subject also percolated into the electrical en-
gineering electromagnetic theory textbooks. It is suggested that the
rudiments be stipulated axiomatically, and the implications and con-
clusions of relativistic electrodynamics for applications be introduced
by minimizing the mathematical machinery to the absolutely necessary
minimum. It has been found that four-vectors and dyadics (i.e., matri-
ces) is practically all the mathematical equipment needed (of course,
previous courses in electromagnetic field theory are assumed). The var-
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ious applications and examples given here are of course optional. It is
expected that educators will be biassed by their own interest in relevant
subjects.
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