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1.1 Introduction

In recent times there seems to be an attempt to interpret every nu-
merical method as a generalization of the moment methods [1]. Even
though such an attempt is extremely useful, the fact of the matter
is that there are some fundamental philosophical differences among
various techniques which are difficult to reconcile. In this chapter an
attempt has been made to describe each of the methods historically, by
tracing them back to their roots. By doing this, several philosophical
concepts become quite clear, and the rationale for utilizing a particular
technique becomes apparent. We first start with the reaction concept,
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2 1. Have we made any progress

and follow how this technique has been utilized effectively in solving
scattering problems. In the third section we present the method of mo-
ments. Section 1.4 describes the conjugate gradient method, and the
various philosophical differences are outlined. The rate of convergence
of each technique is also outlined. The unity in diversity amongst the
various techniques is presented in Section 1.6 from a purely numerical
standpoint.

1.2 Application of the Reaction Concept to Scattering
Problems

Historically, Rumsey [2] utilized the “reaction concept”, developed
by Schelkunoff and Friis [3], to solve electromagnetic scattering prob-
lems, utilizing surface currents. This work was later extended by Co-
hen [4] for the analysis of electromagnetic scattering utilizing volume
currents.

The application of the reaction concept to electromagnetics is nat-
ural, as the “reaction” is a basic physical observable [2]. Also, accord-
ing to Cohen, “Any microwave measurement consists of measuring, not
the electric field at a point, but, rather, the signal at the terminations
of the antenna. Thus two antennas, for transmission and reception,
are inherent in a measurement.” [4] The reaction, between two sources
a and b consisting of electric currents J(a) and J(b) and magnetic
currents M(a) and M(b), is defined by

< a;b >s=// [E(a) o J(b)— H(a) ¢ M(b)]dV (1)
Vi

where the electric and the magnetic fields radiated by the sources a
and b are E(a), H(a) and E(b), H(b), respectively. The integration
volume, V,, contains J(b) and M(b). The use of < ¢ ; & > for
the reaction is rather unfortunate, as the same symbol is used for
the definition of the inner product. We will use the subscript ‘S’ to
represent a symmetric product, namely reaction. The subscript ‘H’
will be used to represent the actual inner product, namely, the Hilbert
inner product. Therefore,

<ViI>g= / V(2)I(2)dz 2)
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<ViI>g= /V(Z)I(z)dz (3)

where the overbar represents the complex conjugate. From a purely
circuits point of view, the symmetric product arises from reciprocity,
whereas the Hilbert inner product describes power [6,6]. Therefore, in
this chapter, reciprocity will be treated as a totally different entity than
power, as-they are physically different properties. The significance of
the use of the different inner products will be made clear when one
talks about convergence.

Equation (2) is the definition for power, and conservation of power
always holds, irrespective of what type of circuit one is dealing with.
Whereas reciprocity holds only under certain circumstances and, hence,
is not very general, in a philosophical development. Reciprocity is usu-
ally defined utilizing the definition described by [3].

It is important to reemphasize that the symmetric product in (1)
does not contain the conjugate. Hence, it is reaction, and not power.
We will often dwell on this difference.

Under suitable conditions, the reciprocity theorem holds [4], and
we have

<a;b>s=< bja>g (4)
Analysis of electromagnetic scattering from perfectly conducting struc-
tures is now developed utilizing this reaction technique, described by
(4) [7). For the problem of scattering from a perfectly conducting
body, the impressed electric and magnetic currents (J:;M;) generate
the electric and magnetic field intensities (E*,H?), in the absence of
the conductor. We assume that the exterior medium is free space.
From the surface equivalence theorem of Schelkunoff [3], the interior
field will vanish (without disturbing the exterior field) if we introduce
surface electric currents

J, = n x H (5)
on the closed surface §. of the scatterer. The unit vector, n, is di-
rected outward and Ht is the total magnetic field just outside .,
the conductor surface. In this situation, the scatterer is replaced by
free space without disturbing the field anywhere, since the internal

fields are zero. We now place an electric test source J; in this internal
region, and find from the reciprocity theorem that

//J,oE,d.s+§‘//J,~oE,ds=I[/JtoEds (6)

Se



4 1. Have we made any progress

where E, is the free space field of the test source, and E is the total
field produced by J, and J; inside S., where the test source is placed.
T is the integration region of the test source. Since in the interior, the
test source has zero reaction with the other sources, it follows from
using reciprocity on J; and J,, and from (6), that

i'//E,ng ds =J/J,0Et ds = —s'//J,-oE, ds:—!/E;th ds (7)

The above equation is obtained from direct application of reciprocity,
as the right hand side of (6) is zero. This is because there cannot be
any fields internal to the conductor. One can now see that the first
and the fourth integrals in (7) constitute an integral equation for the
scattering problem. The objective is to use this equation to determine
the unknown J, in a finite series of known expansion functions F,,
with unknown expansion coefficients a, , to be determined. Therefore,

N
J, =3V = Za,,F,, (8)
n=1

It is often “assumed” that the test sources, J,,, are of the same size,
shape and functional form as the expansion functions, F,,, for compu-
tational simplicity. Then from (7) and (8) we get the following matrix
equation (7,8]

N

Z ,.Cmn = Bpny,m =1,2,...,N (9)

n=1

where

Coan = // EneJ,, ds (10)
T

B = // EneJ,, ds (11)

T

and E, is the field due to F,.

Even though the reaction concept leads one to arrive at a station-
ary form more naturally and pictorially than the conventional varia-
tional methods, the two techniques yield identical analysis equations.
However, “the variational methods start with a functional and the
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motivation of the manipulation to arrive at a stationary form is often
obscure.” In addition, there are several important questions that need
to be addressed:

A) What are the best location, size and shape for the test sources?

B) How many test sources should one choose to get an accuracy
of (say) 1% in the solution?

C) Does this procedure guarantee monotonic convergence of the
sequence JV as the number of expansion functions and test sources is
increased?

From a theoretical point of view, all these questions remain unan-
swered for this method. What the reaction theorem guarantees is only
a distributional convergence or weak convergence. Distributional con-
verge implies that a sequence of solutions {JN} converges distribu-
tionally to the distribution {J} as N — oo, and we write [p. 107, ref.
18]

Nli_{rgo<J“;¢ >u=<J;¢ >u (12)

where ¢ is called a test function. A test function is infinitely dif-
ferentiable and vanishes outside some bounded region. [The infinitely
differentiable condition can be relaxed depending on the nature of the
solution J (namely differentiability conditions)]. It is therefore ob-
served that the distributional convergence no longer is a convergence
of functions, but rather a convergence of numbers which may or may
not be related to the norm of the square of the residuals, or to the
norm of the solution error. This will be explained in the next section.

However, from a practical point of view, distributional convergence
is a direct outcome of reciprocity, as we are not interested in the cur-
rents at any point, but the signal field at a point. So the problem is,
what signal is produced by the currents at the required point? This
information is extremely useful from a practical standpoint, but it does
not provide a clue as to how many expansion functions are needed in
(8) to reduce the error in the solution of (7).

For example, in an electrostatic problem, one is interested in com-
puting the charge distribution on a structure for a given applied poten-
tial to evaluate its capacitance. As the number of expansion functions
is increased, the convergence of the charge distribution on the struc-
ture is of great interest, as it has a direct relevance to the solution of
the integral equation. The convergence of the value of the capacitance
as a function of the number of expansion functions thus yields a dis-
tributional convergence for the problem of interest, as we are talking
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about the integral of the charge. From the convergence of the value
of capacitance it is difficult to extrapolate as to the exact nature of
the charge distribution. However, from the behaviour of the charge
distribution it is possible to accurately predict the nature of conver-
gence of the capacitance. Therefore, the convergence of the charge
distribution is defined as “strong convergence”, and the convergence of
the capacitance is defined as “weak convergence”, or a distributional
convergence.

1.3 The Method of Moments

The method of moments generalized the reaction concept, and
introduced more flexible terminologies and test sources [9].

In the method of moments one starts with the operator equation,
which describes the fundamental equation. We consider the same ex-
ample that we utilized in the last section, i.e., scattering from a per-
fectly conducting body. The starting equation states that the total
tangential electric field is zero on the surface of the conductor, i.e.,

Etan — Egan + Eﬁan =0 13
i

In other words,
E;" =L[J,] = -E}*" (14)

where L is a linear operator. Operating on J,, it produces the elec-
tric field. Equivalently, in terms of an operator equation, (14) can be
rewritten as

A=Y (15)

We expand J, in terms of known expansion functions F,, with un-
known coefficients a, , so that

3,238 =) a,F, (16)

We now substitute JY in the original operator equation and form the
residual, R, as

R=) a.L[F,)+Ef = AN - Y (17)
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Since the objective is to make )  a,L[F,] approximate —E{*® in
some sense, it then becomes obvious that the set L[F,] should be
linearly independent and must be complete, so that Ef*" can be ap-
proximated to any arbitrary degree of accuracy. It really is immate-
rial whether the expansion functions form an orthonormal set or not
[10,11]! The residual, R in (17), is now weighted to zero with respect
to some weighting functions, Wj, such that

<R;W; >s=/ RW;ds= 0 forj = 1,2,...,N  (18)

The subscript S under the inner product defines a symmetric product,
and not the conventional Hilbert inner product. In the conventional
Hilbert inner product, the multiplication is defined with respect to the
complex conjugate, i.e.

<R;W; >g= / RW,ds = 0 forj=1,2,..,.N (19)

By defining a symmetric product, the method of moments provides a
generalization of the reciprocity principles.

If the weighting functions, Wj, are real, then the symmetric inner
product and the Hilbert inner product become the same. However,
problems arise when the weighting functions are complex. This may
occur when one wants to utilize, for example, the method of least
squares, where the weighting functions are chosen as

W; = L[F}] (20)

for the solution of the operator equation (15). So, a true least squares
problem cannot fit under the basic framework of the method of mo-
ments. This is because for the true least squares case we have to use
the Hilbert inner product - the power concept - and not reciprocity.
One might argue, however, that the weighting functions in (19) could
be redefined as the conjugate of the weighting functions in (18). This
is fine, but one should realize that one is now talking about power and
not reciprocity, and this is the distinction we want to emphasize.
This philosophical dilemma also surfaces for another class of prob-
lems: analysis of electromagnetic scattering from bodies of revolution.
There, it is often assumed that the circumferential variation of the
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current is of the form ezp(jme), where m is an integer, 0,1,...,M, de-
scribing the order of the variation. The transverse variation of the
current is approximated by pulses or triangles. For example, on an
ogive, the current basis functions may be chosen as

I ($t) =D D Amn exp(jmg) Tu(t) (21)

It has been observed that for this type of expansion function, Galerkin’s
method, as defined in the method of moments context, is not applica-
ble. In the methods of moments context, Galerkin’s method requires
taking the expansion functions to be identical to the weighting func-
tions. However, it has been observed [12] that the choice e~3m?¢ ag
weighting functions leads to stable results. Therefore the weighting
functions are the conjugate of the basis functions [9,p-86].

The point here is that if one is going to choose the weighting func-
tions as the conjugate of the expansion functions in the method of
moment context, then it is natural to talk about power and not reci-
procity. Hence, all the confusions of using a symmetric inner product
would be cleared up. The symmetric inner product can only be utilized
for real weighting functions, whereas the Hilbert inner product must
be used when the weighting functions are complex. Therefore, why not
start the solution procedure with only the Hilbert inner product, and
not introduce the symmetric product at all?

In the solution of operator equations, “power conservation” is more
important than satisfaction of reciprocity. In other words, the Hilbert
inner product must be chosen, instead of the symmetric product. This
is because the Hilbert inner product defines a norm, which can be used
as a criterion for the measurement of error (for example, the error
can be characterized by < R;R >g= ||R||?, whereas the symmetric
product does not define a norm and, hence, no “a priori” measure of
accuracy is possible.

Next, the nature of convergence of the method of moments is ad-
dressed. Like the “reaction concept”, the “method of moments” guar-
antees only distributional convergence, or weak convergence, of the
residuals. Neither the strong convergence of the residuals nor the con-
vergence of the solution is guaranteed.

In the distributional convergence of the residuals, < R; W; >5=0
holds. Use of this error criterion can sometimes be disturbing. Take,
for example, the situation when R is an oscillatory function and W;
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is a constant weight function. By enforcing (18), the integral will be
zero even though R at each point may be extremely large. This is
why in all optimization schemes one attempts to minimize a quantity
which is always positive. Hence, it would make sense to minimize the
integral of |R?|, which is done in the method of least squares.

However, note that when the W; exist over a finite support, then
the integral of the residual over that small region is equated to zero
to solve for the unknown coefficients of the current. This may yield
reasonable results, as long as the residual is of the same sign in that
interval over which Wj is not zero. Even though this makes sense
from a practical point of view, (16) may not provide a better solution
of (15) as N increases!

1.4 The Conjugate Gradient Method for Solution of
Operator Equations

A significant difference between the application of the conjugate
gradient method to the solution of operator equations, and the “reac-
tion concept” and the method of moments, is that the conjugate gra-
dient method guarantees strong convergence of the residuals, like the
classical least squares approach. Strong convergence of the residuals
implies mean square convergence, as opposed to weak convergence or
distributional convergence. In this technique, the solution is upgraded
by minimizing a functional, F, defined by

F(Ja) =< QR;R >=< Q{L[J,] + Ei}; {L[J,] + Ei} >

Here, Q is a positive definite operator, which is assumed to be known.
The approximate solution, J, is sought in the form

Jo=) a (ARA)AfY (23)

where AH is the adjoint operator, and the unknown coefficients, a,,
are selected in such a way that the positive functional F(J,) is mini-
mized. The advantage of choosing the expansion functions in the form
defined by (23) is that the unknown coefficients, a, , can be computed
recursively, instead of solving a matrix equation [13].
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Observe that when @ = I, an identity operator, one is using the
classical least squares techniques, and hence strong convergence of the
residuals in the mean square sense is guaranteed, as we have

Fal) =< RiR>n=| R|'= [R@EG) &= (29)

It is interesting to note that when @ is chosen as (A¥A)~1, then the
functional that is minimized is the following (13, case B, p. 1062 ]:

Fs(Js) =< (Jexact - Ja); (Jexact - Ja) >H

=[| Texact = Ja |I? (25)

This means that the unknown coefficients, a,, in (23) are chosen such
that the error between the exact solution and the approximate solution
is minimized at each iteration. From a philosophical point of view, this
is very attractive, as this technique is theoretically guaranteed to give
the exact solution as N — oo.

What the term Jexact means from a numerical standpoint will be
explained in Section 1.5. The basic difference between the terms “the-
oretical” and “numerical” is that for the former we are utilizing infinite
precision arithmetic, whereas for the latter we are using finite preci-
sion arithmetic, in the computations. Ill-posed problems often arise
because of using finite precision arithmetic. Some of the consequences
are outlined in [14].

1.4a. The difference between application of the conjugate gradi-
ent method (CG) to solve a matriz equation as opposed to direct
application of CG to solution of an operator equation.

Recently, many communications have been devoted to this inter-
esting topic. From the previous sections, it is clear that there are
fundamental philosophical differences between applying the conjugate
gradient method to solve the moment matrix equation of (18), as op-
posed to applying CG to minimize (24) recursively. The difference is
that the latter guarantees strong convergence of the residuals and the
solution (depending on case A or case B; [13]), whereas the former
guarantees weak convergence. The question now arises, does that dif-
ference still exist when we look at the problem from a computational

point of view? The answer is YES, and it is demonstrated by a simple
example.
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To illustrate this point, we start with an operator equation, AJ =
Y, and convert it to a matrix equation utilizing the method of mo-
ments principles.

where Am, JMm, and Yy are the matrix version of the continuous
operator equation. If we now solve the matrix version in (26) by the
conjugate gradient method, then we are essentially solving the follow-
ing equations, known as the normal equations:

AR Ay I = AL Y (27)

where A} is the adjoint matrix of Ay (which is simply the conjugate
transpose). Now, if we apply the conjugate gradient method directly
to the solution of the operator equation we solve

AR AT =AY (28)

Here AM is the adjoint operator. For numerical computation, (28)
has to be discretized, and we obtain

AR AL Ip=AR Yy (29)

Since Ap = Am,Jp = Jm and Yp = Yy . Therefore, during numer-
ical implementation, the basic difference between (27) and (29) will be
as to how the continuous adjoint operator Ay has been discretized
to AR and whether the “matricised” adjoint operator ARy is the
conjugate transpose of the discretized original operator, Ap. If the
two matrices (namely, the discretized adjoint operator AF and the
conjugate transpose of the“matricised” operator A}) are not identi-
cal, then there will be a difference between the application of the CG
method to the solution of a matrix equation, as opposed to the solution
of the operator equation. For many problems, (27) and (29) are not
identical.
As an example, consider the convolution equation [15]

/x(t —u) v(u) du=y(t),for 0 < t<oo (30)

where x(t) and y(t) are assumed to be known. We redefine (30)
as AV =Y. This operator equation can now be written in the ma-
trix form, utilizing the method of moments concept of pulse basis
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functions for the unknown v, and with impulse weighting, to give
AMVM = YM , OT as

o1 n Y1
T2 1 O ‘0.2 _ y.2
° ° -

31
.o . . (31)
N ZN-1 ¢ EN_M1yem - M- Mx YN 4 Nxa

If we now apply the conjugate gradient method to solve this matrix
equation we will be solving AFAyVy = AR Yy . The adjoint ma-
trix Af{ in this case is

Ty Z2 o o TN
z; o [ TN-1

=10 . (32)

[ J
1 ZN-M
We get a solution for v (in this case) by solving (27) by CG. Now
let us apply the conjugate gradient method directly to the operator

equation of (30). We consider the adjoint operator for the integral
equation of (30). The adjoint operator, A®, of A, is defined by

< AV;Z >g=< V;A¥Z >4 (33)

or equivalently,

/z(t) dt/x(t —u) v(u) du = /v(u) du/z(t)x(t —u) dt
(34)
So the adjoint operator in this case is the advance convolution operator.
By comparing (32) and (34) it is apparent that A is a restricted
version of the actual adjoint operator in (34). This is because the
adjoint operator is

Axz= /z(t) x(t — u) dt (35)
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This continuous operator can only take the form of (32) under the
assumption that z(n) is identically zero beyond n, and this may not
be true, in general. Therefore, AY and AJ, are not identical for
this problem unless some additional assumptions are made! In the
signal processing literature, a clear distinction has been made between
(27) and (29). In (27), A} e Ay is called the covariance matrix
of the data, whereas AH e Ap in (29) is called the autocorrelation
matrix of the data. It is well known that (27) and (29) yield quite
different results. In the electromagnetics literature, several techniques
have been developed to solve (29). These techniques depend on the
assumptions that need to be made regarding the behaviour of x and
z for t > n. One possible assumption may be that the waveforms have
become almost zero for t > n. This has been implemented by Tijhuis
[16]. An alternate numerical implementation has been considered by
Tseng and Sarkar [15], where instead of assuming the nature of decay
for x and z for t > n, a weighted inner product has been defined
to minimize the error introduced in discretizing the continuous adjoint
operator.

The adjoint operator provides physical insight into the system.
The operator A tells us how the system will behave for a given external
source. The adjoint operator, on the other hand, tells us how the
system responds to sources in general. In short, for causal systems
(i.e. z(n) =0 for n < 0), the application of the conjugate gradient
method to the direct solution of operator equations is quite different
from the application of the conjugate gradient method to the solution
of matrix equations. However, when the operator A exists (x(n), in
this case) from —oo to 400, and is even and symmetric about the
origin, then the two techniques may yield similar results.

" However, for nonequally sampled data, no generalization can be
made.

1.5 Development of a Numerical Method

So far the techniques have been presented from a heuristic point
of view. Next we look at a systematic development of the boundary
value problem.

Suppose one is interested in the solution of the scattering of elec-
tromagnetic fields from a conducting body, when it is illuminated by
the incident field. This is the same problem that was addressed in [4].
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It is now desirable to delve more deeply into the philosophy of setting
up the problem. In the solution procedure, one replaces the conducting
structure by an equivalent electric current in free space. The current is
located at the same position as that of the conductor. In the next step,
the scattered fields are computed from this equivalent electric current
in free space by the operator L(J), where L is the operator acting on
the electric current which produces the scattered electric field, E*<.
One then applies the continuity of the total tangential electric field
on the conductor surface, namely E*® 4 Ei*® = 0. The rationale for
matching the tangential fields on the conductor surface is given by the
Uniqueness Theorem: “A field in a lossy region is uniquely specified
by the source within the region plus the tangential components of E
over the boundary ... Note that our uniqueness breaks down for dis-
sipationless media. To obtain uniqueness in this case, we consider the
field in a dissipationless medium to be the limit of the corresponding
field in a lossy medium as the dissipation goes to zero...” [11, p.102].
Therefore, the electric field everywhere in space can be obtained from
[the current] J, once we match the tangential components of the fields
and solve the boundary value problem L(J) = —Ei*® on the surface
of the conductor. Therefore, if one’s objective is to find a solution to
this problem, then one must find a method to match L(J) equal to
—E"c at all possible locations. Therefore the ideal situation is to seek
a solution J, such that the error

Eo = max|L(J,) + E™| (36)

is minimized. The error E,, in the solution is defined as follows: One
computes L(J) at all positions z on the surface of the conductor, and
compares it with ~E™, If the computed field L(J,) does not match
—~Ein¢ at all positions z then an error is generated. We now choose
the maximum absolute value of this error, which occurs perhaps at the
point z, or may even occur at several points. So one seeks a solution
Jo so the Eo is 0.001 (say, for example). Even though this is the
ideal solution, practically, there is no solution technique that solves
this nonlinear minimization problem in an efficient way. So for this
reason, an alternate error criterion is sought. The next best choice for
the error is

E, = / |L(J1) + E™|dz (37)

In this, the error is defined by the integral of the absolute value of the
error over the entire surface. So the objective in this case would be to
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find a solution J; such that E; is 0.001 (say). Clearly, this is a much
more relaxed error criterion than E., . This is because in E;, the
actual error (the difference in the tangential field), may be large. So
even though alarge difference may exist over a small region the integral
in E, is small. Then the solution J; is acceptable. This also gives rise
to a nonlinear solution procedure. Several well-known techniques exist
to solve these types of minimization problems, of which the algorithm
by Nedler and Mead [12] is notable. Recently, Karmarker claims to
have developed an efficient algorithm to solve this class of problems.
An alternate error criterion, which leads to a linear minimization

problem, is the classical “least squares” method. In this case, the error
is defined as

CE, = / IL(J5) + E™|?dz (38)

So a solution J; is sought which minimizes the least square error.
Since this error criterion leads to a linear matrix problem, it has been
very popular in science and engineering. One possible way to obtain
a solution J; is to assume that the solution J, is of the form of (16)
where F; are certain expansion functions which are known, and aq;
are the unknown weights to be solved for. Now JY is substituted in
E,; and we form
Ez = /
z

We next minimize E,; to solve for a;. This is accomplished by

N 2
> aLF; + E™| dz (39)

=1

O0FE,
da; = 0 (40)
This leads to a set of equations
N -
Z a; < LF;LF; >g= - < E™LF; >y (41)

=1

from which the a;’s are computed. This raises an interesting question
as how to choose the exgansion functions F;. Since the objective is to
minimize the error (3., a;LF; + E™°), therefore it is essential that
LF; must be linearly independent. Please note that orthogonality of
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the basis functions has nothing to do with the actual solution to the
problem [10,11]. The emphasis is on the completeness of LF; , as this is
the requirement to solve the }I)vroblem. The least squares solution also
stipulates that the error (37,7, ;LF; + Ei") will be orthogonal to

i=1
f.il a;LF;. An alternative way of viewing this problem is to rewrite

(7) as

N
Z a; < LF;LF; >g 4+ < E™,LF; >g=
=1
N -
< Z a;LF; + B, LF; >g=

i=1
< —E'}\';c + Einc;LF,‘ >H=
< error;LF; >g=10 (42)

Therefore, the functions LF; are orthogonal to the error space Einc _
E¢. For orthogonality of two complex vectors, it is necessary to
use the Hilbert Inner Product, thus the nature of the inner product
becomes obvious. One can never use the symmetric product, as it
cannot define orthogonality between two functions. One has to use
the classical Hilbert product. Why? Because this is the methodology
to define a stable numerical procedure. The definition of the inner
product is secondary, the primary objective being to solve L(J) +
Eme=0.

The classical least squares approach can be quite time consum-
ing as, from a purely computational point of view, evaluation of
< LF;; LF; > is very elaborate. The question now arises, can the com-
putational efficiency be improved without sacrificing the scientific me-
thodology; i.e., as one increases the summation of JN in (8) from N
to N + 1, one is indeed guaranteed to have a better solution. In other
words, the error is orthogonal to —Ey . This is where the concept of
weighting functions W; comes in. And so the weighting functions are
defined by LF; = W;. The job of the weighting functions is:
0y

§(W;) = §(LF;)LS(error) (43)

i.e., the space of weighting functions is orthogonal to the error
space for best approximation, and

(I1) '
—E™ C §(W;) (44)
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In the limit, the excitation is an element in the space of weighting
functions.
So now one introduces a class of weighting functions satisfying the
above two rules so that
N
Z a; <LF;W; >p=-< E‘"“;W,- >H (45)
i=1
The solution given by the above equation will be identical to the least
squares solution from a computation point of view if the weighting
functions have the two required properties and the Hilbert inner prod-
uct is used. So now one could choose some simple, known, analytic
functions for W; such that S(W;) = S(LF;). Thereby, one gets
the least squares solution with less computation. From a theoreti-
cal point of view it may be quite difficult to select W; such that
S(W;) = S(LF;); for i = 1,...,00. However, from a computational
point of view, any set of N linearly independent functions would suf-
fice so that S(LF;) = S(W;) for ¢ = 1,2,...,N. Under the above
assumptions, equation (45) can be interpreted as an integral of the
error. However, to obtain a meaningful solution, certain constraints
are necessary, as outlined above. Unfortunately, one often starts with
equation (45) and interprets it utilizing reaction technique and sym-
metric products. However, neither the reaction technique nor the sym-
metric products have anything to do with the solution of the scattering
problem defined in (45). The equation (45) represents that the inte-
gral of the error with respect to the weighting function is zero. If one
interprets equation (45) as the integral of the error and one integrates
‘an error function which has large oscillations, then even though the
integral is zero, the actual errors may be quite large.
Therefore from a computational viewpoint, the recipe is quite dif-

ferent from that of a purely philosophical analysis presented in the
previous sections.

1.6 Numerical Considerations

In the last sections we have observed that, from a philosophical
standpoint, there is a significant difference between the reaction con-
cept, the method of moments, and the conjugate gradient method.
And yet, numerical computations in many cases (except body of rev-
olution type problems, where the weighting function is complex) have
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demonstrated that the numbers yielded by the three techniques are
often identical to several decimal places. This raises the question as to
why they yield similar results, even though each technique starts from
a totally different philosophical origin. In the solution of AJ =Y ,
the unknown J is approximated by

J.:Z a, F,

and the residual is formed as

N
R=AJ-Y=) a,AF,-Y (46)

n=1

The residual is weighted to zero by some weighting functions W;, so
that

. N
<SRW;>n =) an < AF ;W >y — < Y; W, >g=0

n=1
forj=1,...M (47)

Here we assume the inner products to be the Hilbert inner product.
However, the final conclusion will be independent of the choice of the
inner product!

Generally, we have to utilize some sort of quadrature formula to
evaluate the inner products in (47), as the inner products in many
cases cannot be evaluated analytically. In that case, we have

<QW;>u= c Qz) Wj(z) (48)
k

where the zy are the points at which the functions in the inner prod-
ucts are evaluated, and the ¢, are the quadrature weights. Now (47)
can be rewritten in a factored matrix form [17]:

Wi(z1) Wi(z2) - wi(z) c1
Wa(z1) Waz2) - Wa(zk) c2

WM.(ZI) EM.(zz) . EM-(zk) . Ck
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AFl(Zl) AF2(21)°' AFN(Zl) a
AFz(Zz) AFz(Zz)” AFN(Zz) as

AFl'(zk) AFz(.zk)-- AF]V.(Zk) a;v

El(zl) m1(22) . "lﬁ](lk) (551 Y(Z]_)
Wa(21) Wa(z2)-+  Wal2k) c2 Y(22)
. . . N . o . (49)
WM(zl) UM(zz) .. 'fU—M(zk) Ck Y(Zk)
Equivalently,
Wi(z1) Wi(z2)-- Wy (2) 1
Wa(z1) Wa(z2) -  W2(2k) C2
EM.(ZI) EM(.ZZ) .- EM.(ZI:) Ch
AF1(21) AFz(Zl) ¢ AFN(ZI) ay Y(Zl)
AFz(Zg) AFz(Zz) .. AFN(Zz) as Y(Zz)
. . . - . =0 (50)
AFi(z) AFy(z.)-- AFn(z) an Y (z)

If the square matrices [Clxkxkx and [W]kxk are not singular (for a
general quadrature rule [C] cannot be singular, and since the weight-
ing functions are different [W] cannot be singular), then one is essen-
tially solving a set of point-matched equations,irrespective of what the
starting point may have been: the “reaction concept”, the “method of
moments”, or the “conjugate gradient”. For the first two methods, the
weighting functions are redefined in (50) when the symmetric products
are utilized.

The interesting point in (50) is that the final equation is indepen-
dent of the choice of weighting functions, provided the inner product
in (47) is computed by a quadrature rule.

There are several comments that need to be made regarding (50).
A. When one utilizes point matching in the conventional method of

moments context, then K = N, and one is solving a square matrix
equation. This is really the worst case.
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B. When one utilizes Galerkin’s method in the method of moments,
then K is larger than N, and one is then solving a set of weighted
point-matched equations. Since K > N, the result will be better.
This is the scientific reason why Galerkin’s method always provides
a better result than point matching, defined by case A.

C. It is rather interesting that if one had utilized only point matching
in the method of moments with K > N, and with the match
points being placed at the identical points where the Galerkin’s
method of case B will sample the residual R, then one would obtain
a rectangular matrix equation. If this rectangular matrix is solved
in a least squares sense, one would obtain a better solution than
Galerkin’s method, and this solution would be the least squares
solution.

D. The conjugate gradient method and the method of moments will
yield similar results, up to a few decimal places, for the case K = N.
However, if in the conjugate gradient method, the inner products
are evaluated at more points, with K > N, then the solution
given by the conjugate gradient method will be identical to that
of the method of least squares.

E. Note that numerical results will be different from technique to
technique depending on how AJ, is evaluated.

F. If analytical integration is utilized instead of numerical quadrature
in the evaluation of the inner products in (47), then this discussion
is no longer valid!

G. Note that from a computational point of view, the final results
obtained by the two versions of the conjugate gradient method are
identical(namely, case A and case B [13]); however, the numerical
procedures utilized to obtain the final result are quite different.

In numerical computation there are three variables that are at our
disposal. These are K, the number of points at which the residual is
sampled; M, the number of weighting functions; and N, the number of
expansion functions. Often, for simplicity, M is chosen to be equal to
N. So, suppose we are given K and N. A question then arises as to how
the solution behaves as a function of K and N. Given a fixed K, as we
increase N, the sequence of solutions for the conjugate gradient method
monotonically converges to the best solution that can be obtained with
a fixed K. This solution is termed Jezqet in (25). In the limit as K (the
number of match points) approaches infinity, the sequence of solutions
called J iect Will converge to the solution in the infinite-dimensional
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space. So the definition of Joxact in (25) is a function of K, the number
of points at which the residuals have been sampled. However, this
convergence may not be monotonic, as the definition of the functional
is changed for each K. Monotonic convergence for a fixed K, as N
increases, is not guaranteed by either the “reaction concept”, “point
matching”, or “Galerkin’s method”. Only the method of least squares
and the conjugate gradient method guarantee monotonic convergence.

1.7 A Note on Computational Efficiency

Even though from a purely computational point of view, the theo-
retical advantages of the conjugate gradient method over conventional
numerical techniques are lost, as all numerical techniques perform
weighted point matching anyway, the conjugate gradient technique
may still be quite efficient for solving certain class of matrix equations.

The class of matrix problems, where the application of the con-
jugate gradient method may lead to significant savings of CPU time,
are the Hankel matrices of which Toplitz matrices is a subset. Most
of the CPU time in the utilization of the conjugate gradient method is
used in the computation of the operator/ matrix products AP, and
A®R, [13]. However, if the matrices A belong to the Hankel system
then FFT (Fast Fourier Transform) can be utilized in reducing the
CPU time significantly. This is because the computation of AP, and
AMR, are typically convolutions. Hence the application of a FFT
and an Inverse FFT would be more efficient in computing the matrix
products. This is because the computation of APy and AHR, via
the FFT route is ©(2NlogN) process as compared to the usual ©(N?)
matrix products.

Solution of Hankel Systems by Trench’s algorithm typically is
O(N?) process. This means as the size of the matrix increases the
CPU time increases by the square of the dimension of the matrix.
This is in contrast to ©(N3) for arbitrary matrix equations. How-
ever, when FFT and conjugate gradient is utilized, it is seen that the
CPU time increases as ©(NN) rather than as ©(IN?) of contemporary
techniques [19].

In Figure 1.1, the CPU time for solving the electromagnetic scat-
tering from broadside incident of a 2.5\ antenna is presented. It is
seen from Fig. 1.1, that for 100-900 unknowns, the CPU time increased
linearly with the number of unknowns. [The CPU time represents the
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Figure 1.1 CPU time against the number of unknowns for the Ordinary
Conjugate gradient method.

total time taken for the program to run on a Microvax 2 computer.
A Microvax 2 is about 90% efficient of a VAX 11/780.] The interest-
ing point is that the CPU time increases linearly with the number of
knowns,

This linearity is still exhibited for 2D-problems as described in
(19]. The same linearity has been observed for 3D problems, when
“page faults” are not a major problem in the computation.

Fortran programs for the various versions of the conjugate gradient
method are available in [20].

1.8 Conclusion

It has been shown that the “reaction concept” and the “method
of moments” are derived from the principle of reciprocity, whereas the
conjugate gradient method is derived from the concept of power con-
servation. Hence, the symmetric products are utilized in the method of
moments, whereas the Hilbert inner product is utilized in the formula-
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tion of the conjugate gradient techniques. For real weighting functions,
it really does not make any difference as to whether the symmetric or
the Hilbert product is chosen. However, for complex weighting func-
tions, the Hilbert inner product must be chosen as the symmetric prod-
uct does not define a norm. Hence, the conjugate gradient method
provides strong convergence for the residuals, whereas the “reaction
concept” and the method of moments provide weak convergence.

Depending on the Green’s function, the application of the conju-
gate gradient method to the solution of a matrix equation can yield
quite different results, as opposed to the application of the conjugate
gradient method to the direct solution of the operator equation. The
difference becomes quite obvious for the solution of integral equations
in the time domain and for nonequally- sampled functionals.

However, from a purely computational point of view, all tech-
niques essentially yield a solution corresponding to a weighted point-
matched technique, if the inner products are evaluated using a numer-
ical quadrature. If the inner products are evaluated analytically, then
the above conclusion does not hold.
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