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2.1 Introduction

In the present chapter the iterative solution of the integral equa-
tions that are used to formulate electromagnetic, acoustic and elasto-
dynamic scattering problems, is discussed. To have a measure for the
accuracy attained, we select the global (i.e., integrated over the do-
main of the scatterer) root-mean-square error in the equality sign of
the integral equation that has to be satisfied by the exact solution. For
a given sequence of expansion functions used to represent the unknown
field values in the domain of the scatterer, the minimization of the rel-
evant error leads to a particular method of moments (HARRINGTON,
1968). For configurations of realistic size and degree of complexity, this
leads to the numerical solution of a large system of linear algebraic
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28 2. Iterative Schemes

equations. In this chapter we develop some iterative techniques, where
the intermediate step of the solution of a large system of equations is
superfluous. Symmetrization and preconditioning of the integral equa-
tion are also discussed. As a preconditioning operator we derive an
approximate inverse operator based on our knowledge of the scatter-
ing problem at hand. In all these iterative techniques, the integrated
square error with respect to the original operator equation is taken
as a measure of deviation of the approximate solution from the exact
one. Variational techniques are employed to arrive at a minimum error.
Our objective of the numerical examples to be presented in this chap-
ter, is to compare the different methods using simple examples with
simple numerical discretization techniques rather than employing com-
plex problems with sophisticated numerical discretization techniques.
We present numerical results as the tutorial examples of the plane-wave
scattering by an (in)homogeneous slab and the plane-wave scattering
by a strip. These examples clearly demonstrate the various features of
the iterative methods discussed in this chapter.

2.2 The Operator Equation

In this section, we consider the integral equations that arise from
the application of the scattering of electromagnetic, acoustic and elas-
todynamic waves, both in the frequency domain and the time domain.
All of these are of the general form

/ L(z,2z')u(2')dz’' = f(z), whenz € D (2.1)
z'€D

In this equation, u is the unknown field quantity in the relevant con-
trasting spatial or space-time domain, f is a known field related to
the excitation (incident field in scattering problems), and L is the
kernel of the integral equation, which is related to the field at z ra-
diated by a source at z’.In general, z and z' stand for the relevant
coordinate variables (for example, the Cartesian coordinates {z,y, z}
in three-dimensional space in the frequency-domain formulation, and
{z,9,2,t} in the corresponding time-domain formulation); u and f
are vector valued, L yields the proper matrix or tensor relationship,
and D is the (space or space-time) domain for which (2.1) holds. We
further assume that the integral equation has a unique solution, i.e.,
u(z) =0 for all z € D, if and only if f(z) =0 forall z€ D.
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In almost all situations encountered in practice, the integral equa-
tion (2.1) can only be solved approximately with the aid of numerical
techniques. How good an approximate solution is, can be quantified
only after one has chosen a particular quantitative error. To discuss
this aspect, we introduce an operator formalism together with an in-
ner product of two functions defined on D (with the associated norm).
To write (2.1) in an operator form, the (bounded) linear operator L
acting on a function u € D is introduced by

Lu= / ., M) u(e) do (2.2)

Note that the right-hand side of (2.2) is defined for all z. Then, (2.1)
is equivalent to

Lu=f, whenz € D (2.3)

Further, the inner product of two integrable functions » and v
defined on D is taken as the, real or complex, number

(u,v) = L _u(e)T(e) de (2.4)

where the overbar denotes complex conjugate. The norm of a function
u is, in accordance with (2.4), defined as

llull = (u,u)3 (2.5)

The (Hermitean) adjoint operator L* of L is defined as that one for
which
(Lu,v) = (u, L*v) (2.6)

for all functions u and v defined on D.If L* = L, the operator is
selfadjoint. It is noted that in most scattering problems the operator
is, however, not selfadjoint. Combining (2.2) with (2.6) it follows that

L*v = /.-c'eD L*(z',z)v(z') dz’ (2.7)

where the * at the matrix kernel L(z’,z) denotes the complex conju-
gate of the transpose. Note that in the kernel of (2.7) the coordinates
z and z' have the reverse order of the ones in (2.2).
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For any function u?P? differing from the exact solution u of (2.3)
we define the residual as

r= f — Lu®? (2.8)

and the global root-mean-square error in the satisfaction of the equality
sign in (2.3) as
1
ERR = (r,7)z = ||r]| (2.9)

being the norm of r. Note that ERR > 0 and that ERR =0 if and
only if u®"? = u. In scattering problems f is related to the exciting
field in the domain D; we therefore often normalize the root-mean-
square error according to
== _ Izl
ERR = +— 2.10
171 (210)
with the properties ERR = 0 if u% = u and ERR = 1 if u%? =
0. The error defined in (2.8) and (2.9) is used as a measure for the
accuracy attained in all the various iterative schemes to be dealt with.

2.3 Direct Minimization of the Error

In this section we first discuss a direct (i.e., non-iterative) approx-
imation to the solution of the operator equation (2.3). To construct an
approximate solution, the unknown function u is expanded in terms of
a given, appropriately chosen, sequence of linearly independent expan-
sion functions {¢,; n =1,-.-,N} that are defined on D and belong
to the same vector space to which u belongs. Let, for some N >1,

N

uy =Y _alM¢, (2.11)
n=1
and
rv = f — Luy (2.12)
Then the problem is to determine, for given N, the sequence of ex-

pansion coefficients {agN); n=1,.++,N} such that (ry,rn) is min-

imized. The relevant values of {aS,N)} are denoted as the optimum
values {a*}. Assuming that the optimum exists, let

o) = o + &, forn=1,---,N (2.13)
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where da, is arbitrary. Further, let

N
roft = f - Z aP Lo, (2.14)

n=1

then
N —_——
(rvy ) =(r T rF) — 2Re( ) Tom (v, Lpm))
m=1

N N
+ (D 6anLon, > &t Lm) (2.15)
n=1 m=1
Now, the last term on the right-hand side of this equation is always
positive if {éo,---,éan} # {0,---,0}. Hence, if
(r Lom) =0 form=1,---, N (2.16)

we have constructed the situation that for {&ay,---, dan} = {0,---,0}
the quantity (r7F%, ) is the absolute minimum of (rn,rn) . Substi-
tution of (2.14) in (2.16) yields the system of linear algebraic equations

N
> oL, Lbm) = (fyLpm) form=1,.--,N (2.17)
n=1

to be solved for {a7?*}. From (2.16) and (2.11) it also follows that
(r98*, Luy) = 0 (2.18)

The resulting value of the error is
ERRy = (r{P%,r%h5 = (+ %, £)3 (2.19)

If this value does not meet the accuracy requirements set for the so-
lution of the operator equation, it can be reduced ejther by selecting
a more appropriate sequence of expansion functions (which is difficult
to realize in practice) or by increasing V. Note that (2.19) would also
result from the application of the method of moments (HARRING-
TON, 1968), provided that the sequence of testing functions is chosen
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as {L¢m; m =1,---,N} when the sequence of expansion functions is
{¢n; n=1,---,N}. This choice gives the best result in the integrated-
square-error sense. For problems of realistic size and complexity the
value N soon becomes so large that the storage requirements exceed
the capacity of even present-day large computer systems. The problem
of excessive computation time and computer storage requirements for a
direct numerical solution (e.g., by Gauss elimination) of the system of
equations can be circumvented by using suitable iterative techniques.
Another argument in favor of solving the pertinent system of equations
iteratively is the evident fact that we should not solve the system of
equations to a higher degree of accuracy than is needed.

2.4 Recursive Minimization of the Error

In this section we develop a recursive method for calculating the
approximate solution to the operator equation (2.3). In a direct proce-
dure for solving such an equation approximately a (finite) sequence of
expansion functions is somehow selected beforehand, and the sequence
of expansion coefficients is solved from a system of linear algebraic
equations that follows from — in our case — minimizing the norm of
the error in the residual. In an iterative procedure the elements of the
sequence of expansion functions are recursively generated from the op-
erator equation to be solved, one in each iteration step. To achieve this,
the successive residuals in the iteration process are at one’s disposal.
The sequence of expansion coefficients grows with the number of iter-
ations. Since at the N -th step, N presumably linearly independent
expansion functions have been generated, N expansion coefficients
are available to represent the NV -th approximation to the solution of
the operator equation. Here, too, the minimization of the norm of the
residual at the NN -th step will be employed to generate the system of
linear algebraic equations that the sequence of expansion coefficients
must satisfy.

Let uy denote the N-th approximation to the solution of the
operator equation

Lu=f, forz €D (2.20)

and let {@¢,; n = 1,---,N} be the recursively generated sequence of
expansion functions. Then, we take

Uo =0
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uN =uny-3 +uy for N =1,... (2.21)

where u%?" is the correction to uy_; to arrive at uy . The correction
is now expressed as

N
uf" = > oM, for N =1,... (2.22)

n=1

where {aS,N); n=1,..-,N} is the sequence of expansion coefficients
of u®" . The residuals are found as

ro =f
ry =f—Luy for N =1,--. (2.23)

From (2.23) it follows that
rN =ry_1 — Lu§ (2.24)

Substitution of (2.21) - (2.22) in (2.24) and taking into account that
at the N -th step ry_; is known, minimization of the norm of ry
leads to a system of linear algebraic equations in the N expansion

coefficients {as,N); n=1,---,N}. On account of (2.16) this system of
equations follows from

(rNyLppm) =0 form=1,.--,N (2.25)
Substitution of (2.24) and (2.22) in these equations leads to
N
Y oML, Lm) = (rN-1,Lém) form=1,---,N  (2.26)

n=1

Now, on account of (2.25) only the right-hand side of (2.26) for m =
may differ from zero. For non-zero values of the coefficients {al¥; n
1,..+,N}, this should be the case and hence

N

(rn_1,Lén) # 0 (2:27)

which is denoted as the improvement condition. If (2.27) is satisfied,
the coefficients {aN; n =1,---, N} can be solved from (2.26).
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First of all it is observed that the vanishing of the right-hand
sides in (2.26) for m = 1,.--, N — 1 entails the property that all a(N)
for n = 1,.--,N ~ 1 are proportional to agv ). In view of this, we
introduce the sequence of functions {¢y; N =1,.-.} as

cor

YN = "(1}(,) for N =1, (2.28)
or (cf. (2.22))
%1 =¢1,
(N)
¥y =¢N + Z ~wyPn for N =2, (2.29)
n=1 N

Evidently, (2.29) expresses ¢y as a linear combination of {¢n;
n = 1,..-,N}. Since the reverse is also true, ¢ can be expressed
as a linear combination of {yn; n=1,---,N}. In view of this, (2.29)
can be rewritten as

1 =¢1,

N-1
v =¢n + > B, for N =2,... (2.30)

n=1

Owing to the orthogonality properties of {Liyn} to be discussed be-
low, the coefficients {ﬂ,(,N); n=1,---,N — 1} can readily be deter-

mined. Since any v is a linear combination of the expansion functions
{¢n; n=1,..-,N}, (2.25) leads to
(rnyLpm) =0 form=1,-..,N (2.31)
Using (2.24) in (2.31), we arrive at the orthogonality relation
(LYN, L) =0 form =1,.--,N -1 (2.32)

Since (2.32) holds for any N = 2,..., the sequence of {t,} satisfies
the orthogonality relationship

<L¢m L'»bm) =0, m 96 n (2'33)
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Combining (2.33) with (2.30) we obtain

(L¢N» L)
LpaE  rn=lb

Through substitution of (2.34) in (2.30), the sequence of {¥n;
N =1,---} has been constructed.
The value of u$f" finally follows from the consideration that

B = N -1 (2.34)

ufy = a%v)z,blv for N =1,--.. (2.35)
which leads to
(Lus, Lyw) = oy (L, Lin) (2.36)

However (cf. (2.24)),

(Luy", LYN) = (rN-1 — N, LYn) (2.37)

Observing that Lty is alinear combination of {L¢p; m =1,.--,N},
the application of (2.25) leads to the result

(Luy", LYn) = (rn-1, LYN) = (rN-1, LéN) (2.38)
Combining (2.38) with (2.36) we arrive at

) _ {rv-1, Lén)
N | L ||?

With this, the determination of u$y" has been completed and the it-
erative scheme based on error rmmrmzatxon has been defined.

More specifically we consider the case that the function ¢n that
is generated at the IV -th step of iteration is linearly related to the
residual ry.; at the previous step. Then,

(2.39)

én =Try_y for N =1,-.-. (2.40)

where T' is a bounded linear operator on D . Then the following com-
putational scheme is arrived at.
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Computational Scheme for an Arbitrary Operator T
The scheme starts with the initial values
uo =0, 7o = f, ERRo = ||f]| (2.41)
Next, the scheme puts

Y1 =T'ro

By =||Ly||?
a(1) - <7'0, LT'I‘Q)

1 By

uy =ug + a§1)¢1

1 =70 — agl)IﬂPl

ERR; =||m]| (2.42)
and computes successively for N = 2,... ,
ﬂ,(lN) - <LT’I‘N‘B—1sL¢n) for n = 1,"',N -1
n
N-1
yn =Trv_1+ Y B ¢n
n=1
By =||L¢nlf?
o) (rnv-1,LTrN_1)
N -BN

UN =unN-1+ agrv)ipN .
rN=f - Luy =ry_1 — Q%V)Lllw
ERRy =||rn|| (2.43)
The important orthogonality relations that hold are:

(LtYn, Lpym) =0 form # n
(LTrn, LT7ry) =0 form # n
(rNy Ltpm) =0 form =1,---,N
(rnyLTr,) =0 form =0,---,N -1 (2.44)

In this scheme, for each N =1,..., the values of ¢y, Ly and By
are stored. This means that at the N -th step of iteration, we need
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computer storage for the updated values uy and ry, as well as some
background storage for the values of %,,, L,, and B, , for m =
1,-.-,N. The computation time and computer storage required for
each step of iteration increases with an increasing number of iterations.

2.5 Selfadjoint Operator LT

In this section we now investigate the consequences to the scheme
of the previous section in case the operator LT is selfadjoint. For such
operators the property

(r.N_l,LTrN_l) = (LTrN-1,"N-1) (2.45)

holds. Then, the last orthogonality relation of (2.44) can be written as
(rny LTPp) = (LT7p,rm) =0 form#n (2.46)

Since, the quantity in (2.45) is real-valued, it follows that (cf. (2.39)

and (2.40))
@) _ {rN-1,LTrN_1)

ay ' = 2.47
N T e (247
is also a real quantity. Further, from (2.24) and (2.28) we have
Lz/:,,:-i'!—"(%:l forn=1,---,N (2.48)
Qn

Using (2.47), (2.48) and (2.40) in (2.34) the expression for [3$.N) be-
comes

A = (LTrN-1,70) = (LTTN -1y Tn-
" (rn-1,LTTn_1)

1) forn=1,---,N -1 (2.49)
Taking into account the orthogonality relations of (2.46), we arrive at
ﬂ,(‘N) _ { 0 forn=1,---,N -2

freatfwl forn=N -1 (2.50)

Hence, only ﬁng—)1 differs from zero and has to be determined.
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Computational Scheme for a Selfadjoint Operator LT

The scheme starts with the initial values

uo =0, 7o = f, ERRg = ||fl| (2.51)
Next, the scheme puts

A1 Z(To,LT‘I‘o)
1 =Tro
By =||Lih|)?
A
u; =uo + _B%d)l
A
71 =To — B_1L¢1
ERR1 =”1‘1“ (2.52)

and computes successively for N = 2,... ,

Ay =(rn-1, LTrN_4)

A
Yn =TrN-1 + Z—IX—¢N—1

N-1
By =||Lyn|?

A
uy =uny-1+ EI—Vﬂ/’N
N
A
rv=f~Luy=rN_1 — %Lllw
N
ERRy =||ru|| (2.53)

In this scheme, we need computer storage for the updated values uy,
YN, AN and ry. The computation time and computer storage re-
quired for each step of iteration remain the same for all iterations

N = 2,... This scheme is equivalent to one of the conjugate-gradient
schemes in the literature (DANIEL, 1967).

2.6 Special Choices for Operator T

In this section we now investigate the consequences of some par-
ticular choices of the operator T'.
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Residuals as Ezpansion Functions (T = I)

First, we take the residual of the previous step as a particular
choice for the expansion function ¢y in the recursive minimization
scheme of Section 2.4, i.e.,

¢éN =rN-y forn=1,.-- (2.54)

This is equivalent to setting the operator T introduced in Section 2.4
equal to the identity operator, i.e.,

T=1 (2.55)
The improvement condition of (2.27) is then replaced by

(rN-1,LrN-1) # 0 (2.56)

Whether or not this condition is satisfied, depends on the particular
form of the operator L under consideration. The relevant iteration
scheme now follows by replacing the operator T by the identity op-
erator I either in (2.41) - (2.43) for non-selfadjoint operators L or
in (2.51) - (2.53) for selfadjoint, not necessarily positive, operators L.
The latter scheme differs slightly from the standard conjugate-gradient
schemes for selfadjoint, positive operators ((Lu,u) > 0 for all u # 0
on D) that are given in the literature (HESTENES and STIEFEL,
1952), where the quantity (Lu,u) — (f,u) — (u, f) is minimized.

Preconditioning (T = P)

We first observe that, if T is chosen equal to L~!, the inverse
of L,then ¢, = 9y = L~1f and the recursive scheme of Section 2.4
will terminate in the first iteration; we then have arrived at the ex-
act solution. By this reasoning we take T equal to a suitably chosen
preconditioning operator P, where the operator LP more closely re-
sembles the identity operator than L itself does. Thus, the method
depends on the availability of an approximate inverse to the operator
L. Accordingly, we take

on = Pry_, (2.57)

or
T=P (2.58)
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The relevant iteration scheme now follows by replacing the operator
T by the preconditioning operator P either in (2.41) - (2.43) for non-
selfadjoint operators LP or in (2.51) - (2.53) for selfadjoint operators
LP.

Symmetrization (T = L*)

When the operator L is not selfadjoint, the previous scheme for
T = I leads to a recursive minimization scheme, in which the computer
storage of the expansion functions required for each step of iteration

increases with an increasing number of iterations. However, when we
take

¢n = L'rN_1 (2.59)
or
T=1"L" (2.60)
the operator
LT = LL* = (LL*)* (2.61)

is selfadjoint and we can now use the simple iteration scheme of
(2.51) - (2.53) for selfadjoint operators LT with T replaced by L*.
Since

(rN-1,LéN) = (L*TN-1,6N) = (¢, 6n) = (L*rN_1, L*rN_1) # 0
(2.62)
the improvement condition (cf. (2.27)) is automatically satisfied and
the orthogonality relation of (2.46) simplifies to

(L*Pme1, L' Prcy) = (PmyPn) =0 form #n (2.63)

Hence, the expansion functions generated according to (2.59) form an
orthogonal sequence.

The scheme of (2.51) - (2.53), with T replaced by L* and the
expression for Ay replaced by

AN = ||L*ry-4|)? for N =1,.-. (2.64)

is known as the conjugate-gradient scheme for a non-selfadjoint oper-
ator L (VAN DEN BERG, 1984).
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Preconditioning and Symmetrization (T = PP*L*)

When the operator LP is not selfadjoint, the scheme for T =
P leads to a recursive minimization scheme, in which the computer
storage of the expansion functions required for each step of iteration

increases with an increasing number of iterations. However, when we
take

¢n = PP*L*rN_q (2.65)
or
T =PP*L* (2.66)
the operator
LT = LPP*L* = (LP)(LP)* (2.67)

is selfadjoint and we can now use the simple iteration scheme of
(2.51) - (2.53) for selfadjoint operators LT with T replaced by PP*L*
and the expression for Ay replaced by

Ay = ”P*L*TN_lnz for N =1,--- (2.68)

is a conjugate-gradient scheme for a preconditioned non-selfadjoint op-
erator L. Note that the error criterion applies to the original operator
equation. This differs from standard preconditioned conjugate-gradient
schemes, where the error is minimized in the range of the precondi-
tioned operator equation.

2.7 Convergence

In this section, we investigate the convergence properties of the
different iterative schemes. For this goal we first define some properties
of our operators.

The norm of the operator L is defined as

2] = sup 1240
u#0 ”u“

foralue D (2.69)

with the consequence that

IZul| < |L)| |1l for all w € D (2.70)
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Using (2.69), the norm of L~!, the (bounded) inverse operator of L,
is given by

L1
|IL7Y| = sup “———+ il foralve D (2.711)
vzo  [loll

Taking v = Lu, it follows that

157 = sup il for stiw e D (2.72)

with the consequence that

el
Lul|| > D 2.
|1 Lul| T for all u € (2.73)

Combining (2.70) and (2.73), we arrive at

0 < pal < 12ul] < 2] ul < oo (274)

for all non-zero u € D . The leftmost inequality is a consequence of the
assumption of the boundedness of the operator L~!, while the right-
most inequality is a consequence of the assumption of the boundedness
of the operator L. The norm of the operator L* is, using (2.69), found
as

*
1z = sup 2 or s v € D (2.75)
vro ||V

It can be shown that (KREYSZIG, 1978, pp. 196 - 200)
WL = IIE]) (2.76)

and
IL*L|| = [|ILL*|| = || L|}? (2.77)
In order to investigate the convergence of our recursive scheme of

Section 2.4 we consider the quantity ERR %, = (ry,rn) . Using (2.24)
and (2.35) we obtain

(TN,TN) = (*NyT"N-1 — a%v)LtﬁN) = (*Ny"N-1) (2.78)
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on account of (2.31). Again using (2.24) and (2.35) we obtain

(rwyrn) = (ryo1 — oW Lyw, rvo1) = (rvc1yri-1) — oS Léw,rv1)
(2.79)

where (2.38) has been used as well. With the expression for a%v) of
(2.39) we obtain the result

|{rnv-1, Lén)|?
|Len||?

which again shows that (ry,rn) < (rN-1,7n-1) and hence ERR y <

ERR ny_1, provided that the improvement condition of (2.37) is satis-

fied. Let us subsequently consider the expression for the norm of Ly .
Using (2.30) and the orthogonality relations of (2.33) it follows that

|LYn|* =(L¢n, Lén)

('I’N, 'I‘N) = (rN—hrN—l) - (280)

N-1
=(Lén,Lon) + > BN Lipn, LéN) (2.81)

n=1

Substitution of the expression of (2.34) for BN yields
N-1
Ly, L 2
“LT,bN”z =(Lén,Lén) — Z [{L¥n, ¢;V>|

= Il
< | Lénl|? (2.82)
Using this result in (2.80), we obtain the inequality
[{ry-1, Lén)|?

IZ¢n|I?

More specifically we shall now investigate the case that ¢ny =
Try-1 (cf. (2.40)). The inequality of (2.83) can then be written as

[{rn—-1,LTrN_1)|?
ILT 7112

For a certain class of bounded operators L and T, convergence of the
iteration scheme can be proved. The relevant class is characterized by
the property that there exists a constant ¢ # 0 such that

rv-1, LTr-1)| 2 lel [lrn-al)? (2.85)

lirwll? < llrwv-all? - (2.83)

lirwll? < llrv-alf? - (2.84)
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It is observed that this requirement implies that the improvement con-
dition of (2.27), (Lén,rN-1) = (LTrNn-1,7N-1) # 0, is satisfied.
Since (2.85) is a stronger condition, the reverse is not true. In view of
the Cauchy-Schwarz inequality, however,

[(rv-1, LTrn-1)[? < || LTrwv-a|lrn—all? (2.86)

Using the definition of the norm of a bounded operator (cf. (2.70)) and
applying this definition to the bounded operator LT, the first factor
on the right-hand side obeys the inequality

ILTrn ]l S [ILT| fIrov-al] (2.87)
Using (2.87) in (2.86), we end up with inequality
[(rar—1, LN 1) |* < ||LT ||l | (2.88)

Comparing (2.88) with (2.85), it follows that the admissible values of
¢ lie in the range 0 < |¢| < ||LT|| < oo. Using (2.85) and (2.87) in
(2.84), the inequality can be written as

2
c
lrwll? < (1 - ||1|;—’1|“||_2)“r”““2 for N=1,... (2.89)

results. Repeated application of (2.89) yields

2
c .
el < (1 - “III#)NHNHZ with 0 < |¢| < ||LT|| < o0 (2.90)

From (2.90) it follows that, if there exists some ¢ # 0 such that (2.85)
holds, the error ERR v = ||rn|| converges monotonically to zero as

N — 00. The rate of convergence depends on the values of 1o 5 the
closer this value is to unity, the faster the convergence.

Selfadjoint and Positive Operator LT

If LT is selfadjoint and positive ((u,LTu) > 0 for all u # 0

defined on D ), then there exists a positive selfadjoint operator (LT)%
such that (KREYSZIG, 1978, p. 476 - 479)

(u, LTu) = ((LT)?u, (LT)3u) = ||(LT)3 ul)? (2.91)
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for all w € D. Replacing L in (2.73) by (LT)? and using ((LT)3)?
= (LT)‘%, it follows that

I(ET)3u]l < W;“i’li)”-ﬂ (2.92)

for all u € D. Using ||(LT)3|| = [(ET)~Y||%, (2.91) - (2.92) lead to

B
(u, LTu) 2 i

for all v € D. Comparing (2.85) and (2.93), we observe that there
indeed exists such a constant c, viz.,

1

el = 1@ (2.94)

In view of the leftmost inequality of (2.74), with L replaced by LT,
we have ¢ # 0. Using this result in (2.90), we arrive at

1
2 ¢ (11— Ny, 12 ]
IIerl = (1 ”(LT)_1“2 ”LTllz) ”"0” (2 95)

From (2.74), with L replaced by LT, it follows that

1
@y <t (2.96)

Equations (2.95) and (2.96) demonstrate the convergence of the sche-
me. If LT is close to the identity operator, the left-hand side of (2.96)
becomes close to 1 and very rapid convergence is expected; for example,
in a preconditioning procedure the operator LT has to more closely
resemble the identity operator than L itself does.

Symmetrization

In the symmetrization procedure of taking T = L* (cf. (2.60)),
we observe that (2.95) can be rewritten as

1
llrali? < (1~ “—L:r”';ml'.;)”’||7'o||2 (2.97)
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where [[(LL*)~!|| = ||L7||? and ||LL*|| = ||L||* have been used.
Symmetrization and Preconditioning

In the symmetrization and preconditioning procedure of taking
T = PP*L* (cf. (2.66)), we observe that (2.95) can be rewritten as

1
I(LP)=H|* | P

llrwll® < (1 - )V lIroll? (2.98)

where ||(LPP*L*)~!|| = ||(LP)7!||?> and ||[LPP*L*|| = ||LP||? have
been used. Comparing (2.97) and (2.98), we observe that the precon-
ditioned scheme under present consideration converges indeed faster

than the non-preconditioned scheme as soon as LP is closer to the
identity operator than L itself is.

2.8 Numerical Results for the Scattering by a Slab

In this section we consider the numerical solution of the operator
equation
Lu=f, for0<z<l (2.99)

as it arises in the time-harmonic (time factor exp (—iwt)) scattering
problem (e.g., MUR and NICIA, 1976) of a plane wave normally in-
cident upon an inhomogeneous slab, where ! is the width of the slab
(Fig. 2.1). In this case, the unknown field quantity u represents the
total field in the slab and the known quantity f represents the incident
field given by

f = exp(ikz) (2.100)
2

where k = Z¥ is the angular wave number of the surrounding medium
and A is the wavelength. The operator L acting on u is found to be

Lu= (I - K)u (2.101)

where I is the identity operator and Kwu is given by

l .
Ku= [ exp(ibla =) (3= - K u(e') do
x'=0

ol
=z_2k_/ exp(ik|z — 2'|) x(2') u(z') dz’ (2.102)
o' =0
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Figure 2.1 Plane-wave scattering by a slab.

Here, x denotes the contrast of the slab with respect to the surround-
ing medium and is defined as

x(z) = k—‘.:;;(:—) -1 (2.103)

and k,(z) denotes the space-dependent angular wave number of the
slab. Note that (2.102) represents a source-type integral representation

based on the one-dimensional point-source Green’s function in free-
space with angular wave number k, viz.

G(z,2') = ézk—exp(iklm -2z'|) (2.104)

Before actually turning to the numerical results, we first consider
a particular preconditioning operator for the case where the slab is
homogeneous. Then, the contrast function y is a constant and (2.101)
may be rewritten as

Lu=(I-xK')u (2.105)
where K'u is given as
[ ik ® . ! ! !
K'u= > exp(ik|z — 2'|) xpu(z') de (2.106)

r'=—00
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where the characteristic function xp of the slab region D (0 < z < 1)

is defined as ) . (0,1)
_J1, whenze€(0,
XD = {0, when z ¢ [0,1] (2.107)

Let F denote the spatial Fourier transformation according to

o0
F{v} = exp(—iaz)v(z)dz, —00 < a < o0 (2.108)
rT=—00

then
2

F{K'u} = k F{xpu} (2.109)

where the product rule for the Fourier transformation of a convolution
and the result

® : , 2ik
- exp(—iaz) exp(ik|z|) dz = gz (2.110)

have been used. From (2.105) and (2.106) the Fourier transform of Lu

is obtained as o2

F{Luy = L= = Flxou} (2.111)

where k? = (1+x)k? and k, is now the constant angular wave number
of the slab. The equation inverse to (2.111) is

a2 _ kz
F{xpu} = R F{Lu} (2.112)
The value of xpu cannot be obtained by an inverse Fourier trans-
formation of (2.112) into the spatial domain, since Lu is only known
for z € (0,1) and not outside this interval. Nevertheless, (2.112) will
be used to construct a preconditioning operator that is under certain

circumstances an approximate inverse operator. For any v defined on
z € (0,1), let the operator P defined through

a? —
F{Pv} = F{xpv} (2.113)
Inverse Fourier transformation then yields

Pv=(I-Q (2.114)
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where

12 1.2 )
Qu= T8 [7 expike - o) xo (o) e

1 .
= [ gemlible ~ ) (i - E(e)de'  (2.115)
z'=0 s

Note that (2.115) represents a source-type integral representation
based on the one-dimensional point-source Green’s function in free-
space with constant angular wave number &k, , viz.

i ,
2%, exp(ik,|z — 2'|) (2.116)

G,(z,2') =
Now P is an approximate inverse of L in all cases where Lu is rel-
atively small outside the interval (0,!). In the remainder, P will be
employed as a preconditioner operator. Note that the operator P ap-
plies to a homogeneous slab.

In the following subsections, we present the numerical results ob-
tained with the different methods discussed earlier in this chapter. The
integrals ocurring in the operator expressions and in the inner products
of the different iterative schemes are well behaved and can be computed
numerically with the aid of a trapezoidal integration rule. The number
of integration points (in the order of some tens for low contrasts to
several hundreds for high contrasts) is chosen such that the numer-
ical discretization error is less than the error made in the resulting
approximation of our pertaining field solution. As soon as the num-
ber of iterations grows larger, the danger of loss of significant figures
turns up. For this reason, all computations have been carried out in
double precision (REAL*8 and COMPLEX*16 in FORTRAN), while
the residual in the operator equation has each time been determined
by substituting the obtained approximate solution in this equation and
not by using the recursive relation for the successive residuals that for
a number of cases is available. In those cases where a loss of significant
figures was expected, a check has been carried out against the cor-
responding computation in single precision. In the conjugate-gradient
scheme an additional check is provided by the orthogonality relations
that must be satisfied. Once a discrepancy in these occurs, the orthog-
onality relations are enforced by falling back on the scheme defined by
(2.41) - (2.43).



50 2. Iterative Schemes

100 v T T T T T T T v T ¥ ¥ T T T

107} 4
5
o X =50
= 1072} 4
v X=10

X=0.5
1073} 4
-4 . N 2 . 1 N . N t A s N N 1 N . N
1075 5 10 15 20

Number of Iterationg ——»

Figure 2. 2 Results of the recursive scheme with T' = I; homogeneous
slab thh = 0.5.

Recursive Solution with T =1

We first consider the iterative solution of the recursive scheme
of (2.41) - (2.43), in which we take T = I. We take + = 0.5 and
consider some constant values of the contrast. In Fig. 2.2 we present
the numerical results for the root-mean-square error ERR (cf. (2.10))
as a function of the number of iterations. We observe a reasonable
convergence for all values of x . The larger this value is, the lower the
rate of convergence.

Preconditioned Recursive Solution with T = P

Subsequently, we consider the recursive scheme of (2.41) - (2.43),
in which we take T = P, where P is given by (2.114) - (2.115). We
take i = 0.5 and consider some constant values of the contrast. In
Fig. 2.3 we present the numerical results for the root-mean-square er-
ror ERR as a function of the number of iterations. Comparing the
results with those of the non-preconditioned recursive scheme shown
in Fig. 2.2, we observe that for values of the contrast x up to 50, con-
vergence (ERR < 0.0001) is obtained within three iterations. Hence,
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for constant contrast, our preconditioning operator is a very efficient
one.

Conjugate-Gradient Method: Recursive Solution with T = L*

We now consider the recursive scheme of (2.41) - (2.43), in which
we take T' = L*. Since LT = LL* is a selfadjoint operator we can use
a conjugate-gradient scheme (cf. Sections 2.5 and 2.6); in particular,
we can employ the scheme of (2.51) - (2.53). We take + = 0.5 and con-
sider some constant values of the contrast. In Fig. 2.4 we present the
numerical results for the root-mean-square error ERR as a function
of the number of iterations. Comparing the results with those of the
recursive scheme of Fig. 2.2, we observe that the rate of convergence
has been decreased in taking T = L* in stead of T = I. The advan-
tage of the conjugate-gradient scheme is that the orthogonalization of
the expansion functions is automatically enforced and storage of these
expansion functions of all previous iterations is superfluous. However,
after a number of iterations in the conjugate-gradient scheme, loss of
significant figures leads to a non-satisfaction of the orthogonality con-
ditions. Then, the convergence slows down for a few iterations. If we
enforce the orthogonality by falling back on the recursive scheme of
(2.41) - (2.43) the convergence is maintained. In Fig. 2.4 we observe
this phenomenon for x > 2. The dashed lines represent the results
when the orthogonalization is enforced by using the recursive scheme
with full orthogonalization.

Preconditioned Conjugate-Gradient Method: Recursive Solution
with T = PP*L*

Subsequently, we consider the recursive scheme of (2.41) - (2.43),
in which we take T = PP*L*. Since LT = LPP*L* is a selfadjoint
operator we can use a conjugate-gradient scheme (cf. Sections 2.5 and
2.6); in particular, we employ the scheme of (2.51) - (2.53). We take
{- = 0.5 and consider some constant values of the contrast. In Fig. 2.5

we present the numerical results for the root-mean-square error ERR
as a function of the number of iterations. Comparing the results with
those of the non-preconditioned conjugate-gradient scheme of Fig. 2.4,
we observe that the convergence has been considerably increased, al-
though the results of the preconditioned non-symmetrized recursive
scheme of Fig. 2.3 exhibit a much better convergence. Note again that
an enforcement of the orthogonality by using the recursive scheme
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Figure 2.8 Results of the preconditioned recursive scheme with T' = P;
homogeneous slab with ‘X = 0.5.

of (2.41) - (2.43) eliminates the loss of numerical orthogonality. The
dashed line in the figure represents the results of the enforcement of
the orthogonality.

Before presenting some numerical results for an inhomogeneous
slab, we first compare the results of the recursive scheme with T' =1
and T = P for different values of %, viz. 0.5 and 1.0, respectively.
In Fig. 2.6 we present the root-mean-square-error results for a homo-
geneous slab with a very high contrast (x = 50). For larger values
of % we observe a decrease in the rate of convergence of the non-
preconditioned scheme. However, the preconditioned scheme converges
in almost the same rate for different values of & .

Subsequently, we present the numerical results for an inhomoge-
neous slab. We take a contrast x(z) = 100z increasing from zero to
hundred in the interval (0,!) (Fig. 2.7) and a contrast x = 100(l — z)
decreasing from hundred to zero in the interval (0,1) (Fig. 2.8). The
average value of x over the slab domain for both cases is the same (=
50). In the first instance, for the preconditioning operator we use the
one of (2.114) - (2.115), derived for a constant x = 50. From Figs. 2.7
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Figure 2.4 Results of the conjugate-gradient scheme with T = L*; ho-
mogeneous slab with % = 0.5.

- 2.8 we observe that this preconditioning operator P does not work
very effective in these inhomogeneous cases. However, when we replace
the Green’s function of (2.116) for the WKB approximation (TIJHUIS,
1987) of the Green’s function in an inhomogeneous medium, viz.

S(2,2') = i {exp(i J::"E" k,(:cn)"dzu)”' 2> z:
2(k,(2)k, (')} | exXP(—1 [y ka(2") dz"), 2 < 2

(2.117)

we obtain the preconditioning operator
PWKBy — (I — QWKB)y (2.118)

where
l
QWXBy = / G,(z,2') (k? - k2(2")) v(z') d=’ (2.119)
z'=0

Note that, if the slab is homogeneous, we arrive at the results of (2.114)
-(2.115) and P = PWKB This preconditioning operator PWKB geems
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Figure 2.5 Results of the preconditioned conjugate-gradient scheme with
T = PP*L*; homogeneous slab % = 0.5.

to be very effective: Figs. 2.7 - 2.8 clearly demonstrate that very rapid
convergence is arrived at in a few iterations nearly independent of § .

2.9 Numerical Results for the Scattering by a Strip

In this section we consider the numerical solution of the operator
equation
Lu=f, for —a<z<a (2.120)

as it arises in the time-harmonic (time factor exp (—iwt)) scattering
problem (VAN DEN BERG and KLEINMAN, 1988) of a plane wave
normally incident upon a strip, where 2a is the width of the strip (Fig.
2.9). After some normalization the known quantity f is given by

f=1 (2.121)
and the operator L acting on u is found to be

Lu = / %Hgl)(klw - 2'|) u(z’) d=’ (2.122)
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Figure 2.6 Results of the recursive scheme with 7" = I; homogeneous
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Figure 2.7 Results of the recursive scheme with T' = I; inhomogeneous
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Figure 2.9 Plane-wave scattering by a strip.

where H((,l) is the zero order Hankel function of the first kind, k is
the angular wave number of the surrounding medium. In order to take
advantage of the convolution structure in the operator expression, we
define the spatial Fourier transformation as

e ]
F{v} = exp(—iaz)v(z)dz, —c0 < a < o (2.123)
T=—00
and the inverse Fourier transformation as

- -]

Fluw} = 2%‘_- exp(iaz)w(a)da, —o0 <z <oo  (2.124)

aA=—00

Then, the Fourier transformation of (2.122) can be written as

F{Lu} = (k* - a®)~3 F{xpu} (2.125)

where the product rule for the Fourier transformation of a convolution
and the result

*° . 1o _(n2_ 2y-1

exp(—iaz) -Hy ’'(klz])dz = (k* - a?)"3 (2.126)
=—00 2

have been used. In (2.125) the characteristic function xp of the strip

region D (—a < z < a) is defined as

XD = {1, when z € (~a,a)

0, when z ¢ [-—-a, a] (2.127)
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We observe that the operator expression Lu can efficiently be com-
puted using Fast-Fourier-Transform (FFT) routines to evaluate the
forward and inverse Fourier transformations in

Lu = FY{(k? — a®)"3 F{xpu}} (2.128)

A similar computation can be carried out for the adjoint operator L*.
In order to cope with the branch point in the numerical inverse Fourier
transformation in Eq (2.128), we introduce slight lossess in the medium
surrounding the strip, in accordance with the condition of causality, by
taking the angular wave number to be complex, viz. k = 3%(1+0.017),
where ) is the wavelength.

Before actually turning to the numerical results, we first consider
a particular preconditioning operator. The equation inverse to (2.125)
is

F{xpu} = (k* - a?)3F{Lu} (2.129)

The value of xpu cannot be obtained by an inverse Fourier transfor-
mation of (2.129) to the spatial domain, since Lu is only known for
z € (—a,a) and not outside this interval. Nevertheless, (2.129) will
be used to construct a preconditioning operator that is under certain
circumstances an approximate inverse operator. Let for any v defined
on z € (—a,a), the operator P defined through

F{Pv} = (k* — a®)3 F{xpv} (2.130)

Inverse Fourier transformation then yields

Py = F7Y{(k? - o®)3 F{xpv}} (2.131)

Now P is an approximate inverse of L in all cases where Lu is rela-
tively small outside the interval (—a,a). In the remainder, P will be
employed as a preconditioner operator. Note that the operator expres-
sion Pv can also be computed efficiently by using FFT routines for
the forward and inverse Fourier transformations in (2.131). A similar
computation can be carried out for the adjoint operator P*.

In the following subsections, we present the numerical results ob-
tained with the different methods discussed earlier in this chapter.
All operator expressions are computed by a 4096-points FFT routine.
All integrals ocurring in the inner products of the different iterative
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Figure 2.10 Results of the recursive scheme with T' = I in the strip
problem.

schemes are computed numerically with the aid of a simple summa-
tion of the function values at the sample points. The number of sample
points on the strip (of width 2a amounts to 17, 35, 81 and 181, when
the real part of ka =0.2, 1, 5 and 25, respectively. These numbers of
integration points are chosen such that numerical discretization errors
are less than the error made in the resulting approximation of our per-
taining field values at the strip. As soon as the number of iterations
grows larger, the danger of a loss of significant figures turns up. For
this reason, all computations have been carried out in double preci-
sion, while the residual in the operator equation has been determined
each time by substituting the obtained approximate solution into this
equation, and not by using the recursive relation for the successive
residuals that is available for a number of cases. In those cases where a
loss of significant figures was expected, a check was carried out against
the corresponding computation in single precision. In the conjugate-
gradient scheme an additional check is provided by the orthogonality
relations that have to be satisfied. Once a discrepancy in these occurs,
the orthogonality relations are enforced by falling back on the scheme
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Figure 2.11 Results of the preconditioned recursive scheme with 7'= P
in the strip problem.

defined by (2.41) - (2.43).
Recursive Solution with T =1

We first consider the iterative solution of the recursive scheme of
(2.41) - (2.43), in which we take T' = I. ln Fig. 2.10 we present the
numerical results for the root-mean-square error ERR (cf. (2.10)) as
a function of the number of iterations.

Preconditioned Recursive Solution with T = P

Subsequently, we consider the recursive scheme of (2.41) - (2.43),
in which we take T' = P, where P is given by (2.131). In Fig. 2.11 we
present the numerical results for the root-mean-square error ERR asa
function of the number of iterations. Comparing the results with those
of the non-preconditioned recursive scheme shown in Fig. 2.10, we then
notice that it is superior to the non-preconditioned scheme, even when
we take into account that the computation time of one iteration is now
nearly doubled. For all values of ka considered 1 the preconditioned
scheme converges within a very few iterations (ERR < 0.0001). Our
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Figure 2.12 Results of the conjugate-gradient scheme with T = L* in
the strip problem.

preconditioning operator seems to be a very efficient one.
Conjugate- Gradient Method: Recursive Solution with T = L*

We now consider the recursive scheme of (2.41) - (2.43), in which
we take T' = L*. Since LT = LL* is a selfadjoint operator we can use
a conjugate-gradient scheme (cf. Sections 2.5 and 2.6); in particular,
we can employ the scheme of (2.51) - (2.53). In Fig. 2.12 we present the
numerical results for the root-mean-square error ERR as a function
of the number of iterations. Comparing the results with those of the
recursive scheme of Fig. 2.10, we observe that the rate of convergence
has been decreased by taking 7' = L* instead of T = I. The advan-
tage of the conjugate-gradient scheme is that the orthogonalization of
the expansion functions is automatically enforced and storage of these
expansion functions of all previous iterations is superfluous. However,
after a number of iterations in the conjugate-gradient scheme, loss of
significant figures leads to a non-satisfaction of the orthogonality con-
ditions. Then, the convergence slows down for a few iterations. If we
enforce the orthogonality by falling back on the recursive scheme of
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Figure 2.13 Results of the preconditioned conjugate-gradient scheme
with T' = PP*L* in the strip problem.

(2.41) - (2.43) the convergence is maintained. In Fig. 2.12 we observe
this phenomenon. The dashed lines represent the results when the or-
thogonalization is enforced by using the recursive scheme with full
orthogonalization.

Preconditioned Conjugate-Gradient Method: Recursive Solution
with T = PP*L*

Subsequently, we consider the recursive scheme of (2.41) - (2.43),
in which we take T = PP*L*. Since LT = LPP*L* is a selfadjoint
operator we can use a conjugate-gradient scheme (cf. Sections 2.5 and
2.6); in particular, we employ the scheme of (2.51) - (2.53). In Fig. 2.13
we present the numerical results for the root-mean-square error ERR
as a function of the number of iterations. Comparing the results with
those of the non-preconditioned conjugate-gradient scheme of Fig. 2.12,
we observe that the convergence has been considerably increased, al-
though the results of the preconditioned non-symmetrized recursive
scheme of Fig. 2.11 exhibit a much better convergence.
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2.10 Conclusions

In this chapter we have discussed a general recursive scheme for
an iterative minimization of the integrated square error in an opera-
tor equation. In this scheme the expansion functions of all previous
iterations have to be stored, unless the operator is selfadjoint; in this
special case, the scheme becomes a conjugate-gradient scheme with a
two-term recursion only. In practice however, the operators occurring in
field problems are not selfadjoint and a symmetrization procedure has
to be performed to arrive at a conjugate-gradient scheme. This sym-
metrization negatively influences the rate of convergence. It is noted
that loss of significant figures in the computations disturb the conver-
gence in the conjugate-gradient scheme as well. In order to accellerate
the convergence of the conjugate-gradient method appropriate precon-
ditioning seems to be a significant tool. When the number of iterations
can be kept small enough to accommodate the storage of all expansion
functions of previous iterations (e.g., in the background memory of the
computer) the complete orthogonalization procedure of the recursive
scheme seems to be the most favorable one. Nevertheless, some incom-
plete orthogonalization procedures (VAN DEN BERG and GHIJSEN,
1988) may yield satisfactory results.

We have formulated the various methods in the continuous opera-
tor form which is especially useful in arriving at useful preconditioners
in relation to the physics of the problem. It is noted that the numerical
discretization of problems more complex than the examples presented
in this chapter, should be done with care. The numerical representa-
tion of the field quantities should meet the physical and mathematical
requirements pertaining to the field problem.
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