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4.1 Preface

The numerical solution of dual-surface integral equations [Tobin,
Yaghjian and Bell, 1987] applied to three-dimensional (3-D), multi-
wavelength, perfectly conducting bodies can be obtained with readily
available computers in a central processing unit (CPU) time propor-
tional to approximately (s/A)* In (s/)) using the conjugate gradient
method [Sarkar and Arvas, 1985] and direct access memory files [Wood-
worth, 1988]. (s is the dimension of the body and A the wavelength.)
Specifically, for a given incident field and aspect angle, the induced
current and far field over 47 steradians of a perfectly conducting cube
5 wavelengths on a side is computed [Cote, Woodworth and Yaghjian,
1988] in about 1.5 hours of CPU time (utilizing two-fold symmetry of
the cube: see (34)) on a Vax 8650 computer with a “32-bit Linpack
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104 4. Gradient Solution

benchmark performance rating” of 1.3 megaflops [Dongarra, Martin
and Worlton, 1987]. The same computer would take about 11 hours of
CPU time for this 5A cube if the matrix of the dual-surface integral
equation were solved using, instead of the conjugate gradient method,
Gaussian elimination, which requires a computer time proportional to
approximately (s/A)%. (Gaussian elimination CPU time with direct
access files can be estimated from (30) with N = 75(s/))2.) If the
two-fold symmetry of the cube were not used to reduce the number
of unknowns by a factor of four, these CPU times using the conjugate
gradient and Gaussian elimination methods would increase by factors
of approximately 22 and 64, respectively, i.e., from 1.5 and 11 hours
to about 33 and 700 hours (30 days) of CPU time for a 5) scatterer.
This latter CPU time of 30 days confirms that scattering or radia-
tion from arbitratily shaped 5\, 3-D bodies cannot be determined in
a reasonable amount of computer time, using conventional Gaussian
elimination, by a computer with a Linpack performance rating on the
order of one megaflop. It becomes necessary to use faster matrix solu-
tion schemes, such as the conjugate gradient iterative method, when
the integral equations are applied to progressively larger bodies, re-
gardless of the speed of the computer.

Herein, we derive the dual-surface electric and magnetic-field in-
tegral equations for 3-D perfectly electrically conducting bodies, prove
that they produce a unique solution at all real frequencies, and demon-
strate their applicability to multi-wavelength bodies by solving the
dual-surface magnetic-field integral equation for a rectangular scat-
terer using the method of conjugate gradients.

4.2 Introduction

Magnetic-field surface integral equations for perfect conductors ap-
peared in the literature as early as 1931 [Murray], and both electric
and magnetic-field surface integral equations were derived in Maue’s
definitive 1949 Zeitschrift Fur Physik paper [Maue, 1949]. However,
only in the last ten years or so have digital computers become fast
enough to solve these surface integral equations for arbitrarily shaped,
3-D, multi-wavelength bodies.

Unfortunately, as Murray and Maue noted, the original electric and
magnetic-field integral equations (EFIE and MFIE) fail to produce a
unique exterior solution at frequencies equal to the resonant frequencies
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of the corresponding interior cavity. Since the density of cavity resonant
frequencies increases rapidly beyond the first resonant frequency, which
occurs when the dimension of a full-bodied 3-D scatterer equals about
one wavelength, the numerical solution of 3-D, multi-wavelength bodies
is severely hampered by these spurious resonances.

[Yaghjian, 1981] proves that the original integral equations allow
spurious solutions at the cavity resonant frequencies because at (and
only at) these frequencies the MFIE does not restrict the tangential
electric field to zero on the surface of the scatterer and the EFIE does
not restrict the tangential magnetic field to K X 1 on the surface of
the scatterer. (K is the surface current and n the outward unit nor-
mal to the scatterer. Interestingly, the MFIE result was also proven in
the early paper by [Murray, 1931}].) Among the alternatives that have
been proposed for eliminating the spurious solutions from the original
integral equations, the combined-field [Oshiro et al., 1970; Poggio and
Miller, 1973; Mautz and Harrington, 1978] or combined-source integral
equation [Panic, 1965; Brakhage and Werner, 1965; Mautz and Har-
rington, 1979], and the augmented electric or magnetic-field integral
equation [Yaghjian, 1981] appear the more generally applicable and
effective in numerical practice. However, for arbitrarily shaped, 3-D,
multi-wavelength bodies, the combined and augmented integral equa-
tions also have their drawbacks. The combined-field and combined-
source equations involve the operators of both the magnetic-field equa-
tion and the electric-field equation, which takes considerably more pro-
gramming ingenuity and computer time than the original MFIE to
achieve the same accuracy of solution. The augmented MFIE involves
only the magnetic-field operator, but the augmented integral equations
require a special procedure to eliminate all the spurious solutions from
bodies of revolution.

Thus, we begin the integral equation solution to arbitrarily shaped,
3-D, multi-wavelength perfect conductors with the derivation of dual-
surface electric and magnetic-field integral equations that differ only
slightly and eliminate all spurious solutions from the original electric
and magnetic-field integral equations. The dual-surface magnetic-field
integral equation was given in [Tobin, Yaghjian and Bell, 1987], but the
derivation and proof of uniqueness of the dual-surface magnetic and
electric-field integral equations have not appeared previously. Recently,
[Toyoda, Matsuhara and Kumagai, 1988] presented an “extended in-
tegral equation formulation” for 2-D scatterers that used additional
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surfaces near the surface of the scatterer. Their formulation for perfect
conductors applies an extended integral equation to an interior sur-
face and requires the interior surface to move with frequency in order
to maintain uniqueness of solution. The derivation of the dual-surface
magnetic and electric-field integral equations, (5a) and (5b), in the fol-
lowing section requires the introduction of a second surface interior
and parallel to the surface of the scatterer, but the resulting integral
equations have a unique solution at all real frequencies and are applied
to the single surface of the scatterer.

4.3 Derivation of Dual-Surface Integral Equations

A time harmonic (exp(~—iwt) w real and > 0) electromagnetic field
Einc,Hin.) incident in free space upon the surface § of a perfectly
electrically conducting scatterer excites a surface current K. (Let § be
coincident with the surface current K.) Since the total field inside the
scatterer is zero, the scattered fields equal the negative of the incident
fields inside S, and one can write the “interior” or “extended” integral
equations,

~Hine(r) = /K(r') X V'%(r,r')dS’  (rinside §) (la)
s

Eine(r) = wieo / [k’m (V" K)v'w] ds’ (18)
S

where k(= w/c = 2x/]}) is the free-space propagation constant, ¢¢ is
the permittivity of free space, and v(r,r’) is the free-space Green’s
function exp(ik|r — r'|)/4x|r — r/|.
Let the observation point r in (1a) and (1b) approach the surface
S of the conductor from inside S, and convert the surface integrations
in (1) to circular principal-value integrations using the following for-
mula (derived by a straightforward integration near the singularity of
¥[Yaghjian, 1981]):
V'pdS’ = }[ V'pds' - 2 (2)
S(r—S) s
where § denotes the principal-value surface integration evaluated by
s

excluding the singular point, r' = r, of the integrand by a limiting
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circular “principal area” centered on r, and n is the outward unit
normal from the surface § at r. Equations (1) then yield the augmented
magnetic and electric-field surface integral equations [Yaghjian, 1981]
for the exterior scattering problem

—H;,..(r) =%ﬁ x K+ fK x V'yds' (ron§) (3a)
S
s+ K)n ' ' '
Eine(r) =(V2iw£o)n + iw1€o f[sztb - (V- KV 1/)] ds" (3b)

Taking n cross these overdetermined equations (3) reduces them
to the original even determined MFIE and EFIE,

ﬁxH,-,.,_.:%K—ﬁfoxv'ws' (ron§)  (4a)
S

fi X Bipe =—— X ?{ [F*Ky — (V) - K)V'y] dS' (4b)
Wweg
S

As mentioned in the Introduction, the original integral equations
(4) are plagued by spurious solutions for K at the resonant frequencies
of the cavity formed by the surface S. Although either of the augmented
equations (3) eliminate the spurious solutions for most shapes, they
must both be used, in general, to eliminate all the spurious resonances
when the surface S is a body of revolution. The combined-field integral
equation eliminates the spurious resonances by adding (4a) to —aoh
crossed into (4b), and uniqueness of solution of the combined-source
equation follows from its operator being the adjoint of the combined-
field operator [Mautz and Harrington, 1978, 1979]. (The real constant
g is often chosen equal to the free-space wave admittance.)

To derive the dual-surface integral equations, return to the ex-
tended integral equations (1). The current K(r) in (la) or (1b) is
uniquely determined at every frequency if (1a) or (1b) is satisfied for
all r inside § [Waterman, 1965]. Conceivably, one could determine the
current K by solving numerically the vastly overdetermined set of ex-
tended integral equations that results from (1la) or (15) applied to
points r separated by a small fraction of a wavelength throughout the
volume enclosed by S. Or one could supplement the surface integral
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Figure 4.1 Geometry of a perfect conductor with current surface S and
parallel surface S;.

equations (4) with the extended integral equations (1) applied at se-
lected points r within § [Schenk, 1968; Klein and Mittra, 1975; Morita,
1979]. The former approach introduces a prohibitive number of equa-
tions for multi-wavelength bodies, and in applying the latter approach
one has no convenient, reliable criterion for selecting the number and
position of the interior points at which the extended integral equations
(1a) and (1b) must be satisfied to assure (4a) and (4b) produce the cor-
rect unique current K at all frequencies. (The modified Green’s func-
tion method [Roach, 1970; Ursell, 1973; Jones, 1974] for eliminating
the spurious solutions from the original surface integral equations (4)
suffers from a similar uncertainty in choosing the proper number and
origin of eigenfunctions in the representation of the modified Green’s
function [Brandt, Eftimiu and Huddleston, 1985].)

If, however, the extended integral equations (1a) and (1b) are in-
corporated at points r on a surface S5 parallel to, and a small distance
& > 0 inside the current surface § of the perfect conductor (see Fig.
4.1), by adding an cross equations (la) and (16) at these points to
the original MFIE (4e) and EFIE (4b), respectively, one obtains the
“dual-surface” magnetic and electric-field integral equations:
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i x Ho(r) =%K(r) —Ax f K(r') X V'ebo(r,r') dS’ (5a)
S

(ron §)
#i x Eo(r) =E:To x ?f [k’K% —(V". K)V’%] ds’ (5b)
s

where Eg, Hy and ¢ are defined as

Eo(r) =Ein. (r) + aEip. (r — §0) (6a)
Ho(r) =Hin.(r) + aH;,. (r — §0) (60)
Yo (r,r') =9 (r,x') + ay(r - 64, r') (6¢)

These dual-surface magnetic and electric-field integral equations, (5a)
and (5b), although identical in form and comparable in complexity to
the original MFIE (4a) and EFIE (4b), provide a unique solution for
K at all real frequencies as long as the constant a is imaginary and
the positive real constant § is less than about A/2."(In the numerical
solutions of (5a) described in Section 4.5 below we choose a equal to
i and § equal to the smaller of about A/4 or 1/4 the breadth of the
scatterer along the normal at the point r. Using a’s of +.57,+4, and
11.5¢, and varying § from A/8 to 3)\/8, did not significantly change
the computed solution, although the number of iterations required by
the conjugate gradient method to attain the same value of normalized
residual error varied somewhat with a and §é.

4.4 Uniqueness of Solution of the Dual-Surface Inte-
gral Equations

Uniqueness of solution for the dual-surface magnetic and electric-
field integral equations can be proven by considering the fields radiated
by the solution currents. Concentrating on the dual-surface MFIE first,
let H,(r) be the magnetic field radiated by the solution K to (5a);
specifically

H,(r) = /K(r') X V¢ (r,r') dS' (r not in §) (7
5
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If K were the correct unique current for this scattering problem, H,(r)
in (7) would be the correct scattered field for all r not in the surface
current. However, since we do not know at this point that the solution
K to (5a) is the correct unique solution, (7) simply defines an unknown
magnetic field H,(r).

Taking the curl of (7) twice, reveals that this unknown magnetic
field satisfies the homogeneous vector wave equation for all r not in
the surface current K, i.e.

VxVxH,-kH,=0 (rnotin ) (8)

Letting r approach § in (7) from the inside of § , and using the principal
value formula (2), we obtain

H, (r-) = 38 x K (r) + f K (') x V¢ (r,r') d§' (ron §) (9)
S

where r— in H,(r—) indicates the field evaluated just inside the surface
current. Since (7) holds for all r inside 5, we can express H, on the
parallel surface §; as

H, (r - 62) = ]{ K () x V¢ (v - 64, ) d5' (ronS) (10)
S

Add (9) to (10) multiplied by a and take & cross the result, to get
n X [H,(r—)+aH, (r- 6ﬁ)] = —%K (r) (ron §)

+ix }{ X (r') X V' (r,r') dS" (1)
s
Comparing (11) with (5a), which K must also satisfy, reveals

n X [(H,(r—) + Hine(r)) + a(H,(r — 6i) + Hip(r - Jﬁ))] =0
(ron ) (12)
The incident magnetic field also satisfies the vector wave equation

V XV X Hine — k2H;po = (13)
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Thus, we can add (8) to (13), and rewrite (12) to arrive at the interior
boundary value problem

VXxVxH-kH=0 (rinsideS) (14a)
i x [H(r)+ aH(r - 0)] =0 (r — S from inside)  (14d)

where the total magnetic field H(r) is given by the sum of H;,,.(r) and
H,(r).

The final steps of the uniqueness proof consist in showing that the
boundary value problem defined by (14) has only the trivial solution,
H(r) = 0, for the total field throughout the volume enclosed by the
surface §, provided the constant a is imaginary and the positive real
constant § is smaller than about /2.

To show this, rewrite the boundary condition (145) explicitly for
the magnetic field tangent to the surface §

Hy(r)+ aHy(r— é0n)=0 (r — S from inside) (15)

The tangential magnetic fields, H(r) and H,(r — §i), are complex
numbers that can be expressed in the form of a magnitude and phase

Hy(r) =| Hy(r)|e*() (16a)

(r — S) from inside
Hy(r — 6i) = [|H,(r)| + AHy(r, a)] e'l9(r)+24(r)] (16b)
where AH; and A¢ are the differences between the magnitudes and

phases of Hy(r) and H;(r — én). Insert Hy(r) and H,(r — i) from (16)
into (15) to get

|H¢| + a(|Hy| + AH)(cos Ag + isin Ag) = 0 17
Because |H;|, AH;, and A¢ are real numbers, if we let the constant a
be an imaginary number (ic;), the real and imaginary parts of (17)

equate separately to give

|Hg| - a,-(IH,| + AH;)SiII A¢ =0 (180)
o; (]Ht| + AHt) cos Agp =0 (18b)
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For small §, A¢ will be small — certainly not £90°* — and thus (18)
imply |H¢| = 0 and AH; =0, or

Hg(l‘) =0 (190.)
(r — S from inside )
Hy(r — 6n) =0 (19b)

In other words, when the constant « is chosen imaginary and § is not
large, the two separated tangential fields in the boundary condition
(14b) are each zero. That is, the tangential magnetic field on both the
surface § and S5 are zero.

The boundary condition (19a) restricts the nonzero solutions of
(14a) to the resonant modes of the cavity formed by a perfectly mag-
netically conducting surface 5. These modes, which exist for a given
cavity only at discrete frequencies, form standing waves within the
cavity with magnetic and electric fields that can be chosen real and
imaginary, respectively [Borgnis and Papas, 1958]. In particular, the
tangential magnetic field near the surface S can be expressed approx-
imately as

Hy(r,yrn) = A(r,, ) sinyr, (20a)

where (r,,r,) are the coordinates tangent and normal to the surface
S, v is a positive real propagation constant with a value equal to or
less than the propagation constant k of free space, and the amplitude
A(r,,r,) varies with r, slowly compared to the variation of sinyr,.
(With respect to the r,, direction the cavity can be considered a shorted
waveguide with varying cross section.) If we let 7, = 0 on the surface
S, the boundary condition (19a) is satisfied by (20a). The boundary
condition (19b) applied to (20a) requires that

16 = mw (200)

for m equal to a positive integer. (We assume that there will be some
portion of the surface S where A will not be zero. For if the tangential

* The one exception would be if there were a zero of H; near the
surface S or S5. In that case we can expand the boundary condition (15)
along the normal direction r, in a Taylor series about the zero to show
that 3H;/8r, must also vanish at the zero of H; for imaginary a and
small é. Since (20a) shows that no cavity can support modes with both
the tangential field and its normal derivative zero on the surface, the
solution to (14) is unique in this exceptional case as well.
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magnetic field were zero throughout the volume between § and Sj, the
fields would be zero throughout the cavity. Also, if degenerate modes
exist, we assume their H, fields will be linearly independent over the
surface S5, and thus (20b) will still hold.) Because the maximum value
of v is k = 27 /A, the condition (20b) cannot be satisfied for

0<8< A/2 (21)

The approximate sign is included in the right side of the inequal-
ity in (21) because (20a) is an approximate expression for the standing
wave field near the surface. If we look specifically at the resonant cavity
formed by shorting the ends of a waveguide of arbitrary uniform cross
section, we find (20a) applies exactly with A equal to a constant. Thus,
the inequality of (21) holds exactly for a shorted waveguide cavity. For
a spherical cavity the fields vary radially as spherical Bessel functions
of the first kind. For asymptotically large spheres (20a) again holds ex-
actly, and for all spheres large enough to sustain resonant modes, (20a)
holds to a good approximation near the surface — thereby confirming
the approximate inequality (21) for spherical cavities.

In summary the only solution to (14) for a imaginary and 0 <
§ S A/2 is the trivial solution, H(r) = H;n.(r) + H,(r) = 0 through-
out the volume enclosed by §. Since E = -V x H/iweq, the electric
field E(r) = Einc(r) 4+ E,(r) within this volume is also identically zero.
And, as mentioned in Section 4.3, it is a simple matter to prove [Water-
man, 1965] that the current that produces the negative of the incident
electromagnetic fields throughout the volume enclosed by § is the cor-
rect unique current for the exterior scattering problem. (Namely, E
and H equaling zero inside S implies i X E = 0 and fi x H = K for the
fields just outside § — the conditions required for uniqueness of solu-
tion of the exterior problem [Muller, 1969].) Since this unique solution
has been derived from the solution current of (5a), the dual-surface
magnetic-field integral equation (5a) has a unique solution.

Beginning with the solution current of the dual-surface electric-
field integral equation (5b), and defining the electric field

1
iweo

E,(r) = — / [k2K¢ — (v -K)v'¢] dS' (rmotin §) (22)
S

initially, instead of the magnetic field (7), we obtain the same inequality
(21) as the sufficient condition for the uniqueness of solution of the
dual-surface electric-field integral equation (5b).
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In numerical practice, we suggest choosing a equal to i in order to
weight equally the fields on S and S5 in the boundary condition (14b)
by an imaginary constant. Likewise, we suggest choosing § equal to
about A/4, to keep the surface S5 about an equal distance between the
two critical values, § = 0 and A/2. The dual-surface integral equations
allow spurious solutions at § = 0 where they reduce to the original
integral equations (4), and at § equal to or greater than A/2 where the
dual-surface boundary condition (14b) no longer insures uniqueness of
solution. When the breadth of the scatterer along the normal is less
than A, one can choose § equal to 1/4 the breadth instead of A/4.

A numerical demonstration of the elimination of the spurious res-
onances by the dual-surface magnetic-field integral equation is given in
Figs. 4.2 and 4.3. Figure 4.2 plots the total (integrated) radar cross sec-
tion versus the perimeter of a perfectly conducting cube of side length
s as computed using the conventional magnetic field integral equation
(4a). The spurious resonances begin to contaminate the MFIE solution
in Fig. 4.2 near the first resonance of the cube at 4s/\ = 2.8 and con-
tinue to distort the solution at an increasing rate commensurate with
the increasing density of resonant frequencies. Figure 4.3 shows clearly
that the dual-surface magnetic-field integral equation (5a) eliminates
the spurious resonances from the MFIE solution in Fig. 4.2.

4.5 Numerical Solution to the Dual-Surface Magnetic

Field Integral Equation by the Conjugate Gradient
Method

The similarity of the dual-surface integral equations (5) to the orig-
inal integral equations (4) allows them to be solved numerically by a
minor modification to existing MFIE and EFIE computer programs.
One merely adds the values of the incident field and free-space Green’s
function (each multiplied by ) at the points r — §f to their respective
values at r used in the computer programs of the original integral equa-
tions. In particular, we consider a straightforward numerical solution
to the dual-surface magnetic-field integral equation (5a) for scattering
from the perfect conductor S.

Divide the surface S of the scatterer into M patches, assume the
current is a constant vector over each patch, approximate the value of
the Green’s function V'yy over each patch by a constant vector equal
to the value of V') at the center of the patch, and apply the integral
equation (5a) at the center of each patch. In short, approximate the
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Figure 4.2 Total radar cross section versus perimeter of a perfectly con-
ducting cube as computed with the conventional magnetic-field integral
equation (4a).

integral in (5a) by the summation

M
. 1 .
fi; X Ho(r:) =5 K(r:) — i X Y K(r;) x V'ebo(ri,r5)AS;,

=1
(#4)

i=1,2...M (23)

where AS; is the area of each patch, and the self-patch (i = j) in the
summation is taken as the “principal area” [Yaghjian, 1981] excluded
by the principal-value integral in (5a). (In the language of the method
of moments, we have used pulse basis functions and delta testing func-
tions.)

For each patch there are two complex unknown components of
surface current K and two complex scalar equations. Thus, (23) rep-
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Figure 4.3 Total radar cross section versus perimeter of a perfectly con-
ducting cube as computed with the dual-surface magnetic-field integral
equation (5a).

resents a simultaneous set of 2M linear complex equations for 2M
complex unknowns, and can be written in tensor notation as

aj;z; =b;, i=12,...N=2M (24)

where the z; are the complex unknown components of surface current,
the a;; are the elements of the given coefficient matrix, and the b;
are the given incident-field values. Summation from 1 to N over the
repeated index j in (24) is, of course, implied.

In solving (24) for three-dimensional bodies on readily available
computers, one quickly encounters the problem of limited central or
virtual memory and excessive computer time as the size of the body is
increased beyond a wavelength. For example, we have found that the
dual-surface MFIE requires a minimum of about 25 patches per square
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wavelength* to achieve reasonable accuracy in the computed currents
and far fields. A cube of side length s thus requires about M = 150
(s/X)? patches or

N = 2M = 300(s/))? (25)

complex unknowns, and a memory of
W = 2N? (26)

real words W to store the complex NV x IV matrix with elements a;;. On
our VAX 8650 with an allotted virtual memory of one million words,
the solution of (24) is limited to cubes less than about 1.5 wavelengths
on a side. (Paging time became excessive as the amount of virtual
memory used approached a million words; and allotting more virtual
memory to the computer was not as efficient an alternative as using
direct access files for increasing computer storage capacity [Perry and
Zorpette, 1989].) Moreover, we found that solving (24) using Gaussian
elimination on this computer with a 32-bit Linpack performance rating
[Dongarro, Martin and Worlton, 1987] of 1.3 megaflops took a CPU
time Tgg given approximately (for large V) by

Tee = 2.2 x 107" N3 (27)

minutes, which becomes prohibitive for cubes greater than about 2
wavelengths on a side. Incorporating two-fold symmetry of the cube
to reduce N by a factor of four still did not allow us, in a reasonable
computer time, to solve for scattering from cubes larger than about
4 wavelengths on a side using Gaussian elimination on the available
computer. The fastest available computers (those with 32-bit Linpack
performance ratings of about 100 megaflops) would take many hours

* This requirement of about 5 linear divisions per wavelength to get
reasonable accuracy is not surprising if one considers that the current
and the Green’s function in the surface integral equation vary along
the surface of the scatterer with a maximum spacial frequency equal
to about one cycle per wavelength. This means that the product of the
current and Green’s function in the integral of the integral equation
has a maximum spacial frequency of about 2 cycles per wavelength.
The sampling theorem would then require about 4 samples per linear
wavelength to accurately approximate the integral of the current times
the Green’s function by a summation.
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of computer time to solve (24) using Gaussian elimination for general
3-D scatterers larger than a few wavelengths across. Even with mas-
sive vector parallelism it is difficult to conceive of digital computers
extending appreciably the formidable restriction on (s/ A) presented
by (s/A)¢ dependence of the computer time (27) for solving (24) using
Gaussian elimination.

In order to extend the limits of computer storage and processing
time on the available mainframe, we made use of direct access memory
files on disk and solved (24) iteratively using the conjugate gradient
method rather than Gaussian elimination [Woodworth, 1988]. A direct
access file was used to store the rows of the N x V complex matrix. The
file could be either opened, written to, or read from by a single Fortran
command, and increased our available memory from one million to 30
million words. (Of course, with iterative solvers one can greatly reduce
computer storage requirements by generating the coefficient matrix

during each iteration. However, this greatly increases the required CPU
time.)

The drawbacks of using direct access files are the necessary addi-
tional computer programming, the somewhat greater CPU time, and
possibly a large increase in input/output time. Use of direct access files
roughly doubles the CPU time required to solve (24) using the con-
jugate gradient method. Gaussian elimination CPU times are either
roughly doubled or multiplied by a factor of about 10, when using di-
rect access files, depending on whether or not a round-off error check is
included in the Gaussian elimination algorithm. (We shall discuss this
later in conjunction with Tables 4.1 and 4.2.) The extra input/output
time associated with the direct access files may dominate computer
turn-around time on our computer system when the matrix is solved us-
ing the conjugate gradient method. Meaningful input /output times are
elusive, however, on central computers since they depend so strongly
on the particular direct access system, the way the system is tuned,
and the number of users sharing the machine.

We found the conjugate gradient iterative method an efficient al-
ternative to Gaussian elimination for solving the large system of equa-
tions (24) generated by the dual-surface magnetic-field integral equa-
tion (5a) applied to 3-D multi-wavelength bodies. It converges in a
finite number of steps for any initial guess, as long as the matrix is not
singular and round-off errors are kept negligible. The flexibility of ac-
cepting any initial guess permits the user to stop the iteration and start
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using the current estimate for the solution as the new initial guess. This
restarting eliminates the accumulated round-off errors, but requires an
extra matrix multiplication, slows convergence, and increases the run
time. Thus, restarting should be done only when necessary to reduce
the round-off errors. For solving the dual-surface equations (23-24) on
our 32-bit computer, it was sufficient to restart only once before the
final step, even when N was as large as 3468. ([Wang and Dubberley,
1989] discuss this restart problem.)

We used a version of the conjugate gradient method referred to
as “Case A” by [Sarkar and Arvas, 1985]. We applied the conjugate
gradient algorithm to the matrix with elements a;; in (24) rather than
directly to the operator of the dual-surface magnetic-field integral equa-
tion (5a). Some justification for this may be found in the recent papers
[Ray and Peterson,'1988] and [Sarkar, Yang and Arvas, 1988] where it
is concluded that iterative techniques applied directly to the operator
and implemented numerically contain an implicit discretization and,
in many cases, a corresponding moment method interpretation. It is
interesting that as early as 1943 [Hotelling] in his review of some new
methods in matrix calculation commented that, “The combination of
this device [Mallock electrical calculating machine] with the iterative
method...offers what seems at present [1943] the best hope for the sys-
tematic inversion [solution] of large matrices.”

Table 4.1 compares the number of major complex operations re-
quired to solve large matrices by means of Gaussian elimination and
the conjugate gradient method, when using direct access memory files.
Table 4.2 shows the associated CPU times required by our 32-bit, 1.3
megaflop Linpack-performance-rated VAX 8650 computer. The CPU
times for the complex operations in Table 4.2 can be inserted into Table
4.1 to estimate the total CPU times, tgg and tcg, for this computer to
solve (24) by Gaussian elimination and the conjugate gradient method.
Specifically

toe =1.93 x 107" N3 (28)
tcg =1.95 x 10~ NI (29)

minutes, where N is, as usual, the dimension of the complex matrix,
and I is the number of iterations needed for convergence using the
conjugate gradient method. Comparing the estimated CPU time (28),
for the solution to scattering from the cube by Gaussian elimination,
with the actual CPU run times (for the whole program) given approx-
imately by the formula (27), one finds that the estimated time (28) is
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Method NUMBER OF OPERATIONS

Elements Elements
Multiply Add Substract Do Loops Written Read If

Gaussian Elim. ine 0 jNs IN® IN® N inN®
(total)
Conjugate Grad. 2N2?  2N? 0 2N? 0 2N? 0

(per iteration)

Table 4.1 Number of complex operations required for N x N matrix
solution using Gaussian elimination and the conjugate gradient method.

about 90% of the actual total CPU run times. Likewise, (29) gives an
estimated CPU time for the conjugate gradient method that is about
75% of the actual total CPU times for scattering from large cubes
(see Table 4.3). The additional 10% and 25% CPU times are taken
mainly by matrix-fill, complex conjugate, and miscellaneous overhead
operations.

OPERATION CPU Time (1078 sec)
Complex Add .84
Complex Substract .96
Complex Multiply 2.03
Complex Divide 13.09
If 15.09
Do Loop .67
Read per complex element (for large N) 2.30
Write per complex element (for large V) 2.41

Table 4.2 CPU time required for complex operations on our $2-bit, 1.3
megaflop Linpack-performance-rated computer.

The time estimates (28) and (29) reveal that, for our typical com-
puter, the solution to (24) by the conjugate gradient method will take
less computer time than Gaussian elimination if the number of required
iterations I is less than N. This conclusion holds whether or not direct
access files are used, because including the write and read statements
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from Table 4.1 due to the use of direct access files roughly doubles, as
mentioned above, the computer times for both Gaussian elimination
(with round-off error check) and the conjugate gradient method.

It is important to note, however, that the logical IF operations and
one half the multiplication operations listed in Table 4.1 for Gaussian
elimination are produced by the round-off error check in our Gaussian
elimination algorithm. If this round-off error check is omitted, the re-
vised Gaussian elimination CPU time t;,; estimated from Tables 4.1
and 4.2 is given by

tgg = 107°N3 (30)

minutes, about one half the CPU times given by (27) or (28). Com-
paring (30) with (29) shows that the conjugate gradient method be-
comes faster than Gaussian elimination without the round-off error
check when the number of iterations I is less than about N/2.

If in addition to omitting the round-off error check from the Gaus-
sian elimination algorithm, all computations could be done in central
memory without using direct access files, the write and read opera-
tions would be eliminated from Table 4.1, and CPU times (28) and
(29), would be replaced by

&g =2x 107" N3 (31)
tdc =1.2x 107" N?J (32)

minutes. Comparison of (31) and (32) reveals that, if all computa-
tions can be handled in central memory, the conjugate gradient method
is faster than Gaussian elimination (without a round-off error check)
when the number of required iterations is less than about IN/6 [Wheeler
and Wilton, 1988).

Table 4.3 lists the number of iterations and actual CPU times
using the conjugate gradient method for the dual-surface magnetic-field
equations, (23-24), applied to plane-wave scattering from a perfectly
conducting cube [Cote, Woodworth and Yaghjian, 1988]. The plane
wave was incident broadside upon the cube of side length s, and the
parameters a and § in the dual-surface magnetic-field integral equation
(5a) were set equal to ¢ and 3/16), respectively. The initial value taken
for the solution vector in the conjugate gradient algorithm was zero,
and the iterations were terminated when the ratio of the magnitude of
the residual vector to the magnitude of the source vector became less
than 1076, Two-fold (zy) symmetry of the cube was used to reduce
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the number of unknowns N in Table 4.3 by a factor of four, so that
N equals 75(s/A)? rather than 300 (s/A)? (see (25)) for N in terms
of the side-to-wavelength ratio (s/A) of a cube with 25 patches per
square wavelength, the minimum number needed to achieve reasonable
accuracy in the computed surface currents and far fields.

s/A N patches/\? I I/N CPU time
(h:m:s)
.75 48 28 35 .73 0:00:04
75 108 63 39 .36 0:00:12
S5 192 112 42 .22 0:00:32
1.5 192 28 61 .32 0:00:45
1.5 432 63 62 .14  0:03:08
1.5 768 113 61 .08 0:10:47
2.4 432 25 8 .19 0:04:29
2.4 768 44 82 .11 0:13:53
2.4 1200 69 88 .07 0:35:15
3.0 768 28 90 .12 0:13:30
3.0 1200 44 92 .08 0:33:21
3.0 1728 63 93 .05 1:09:44
5.0 1728 23 118 .07 1:25:47
5.0 3468 46 119 .03 6:23:10
6.75 3468 25 141 .04 7:28:34

Table 4.3 Number of iterations (I ) and actual total CPU time using the
conjugate gradient method on our 32-bit, 1.3 megaflop Linpack-
performance-rated computer.

Table 4.3 reveals that the number of required iterations depends
mainly on the side-to-wavelength ratio of the cube, and hardly at all on
the number of patches per square wavelength or, equivalently, hardly
at all on the number of unknowns N for a fixed s/ (assuming a reason-
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able minimum number of patches per square wavelength are used). This
independence of the number of conjugate gradient iterations on the cell
density has also been observed in the solution to two-dimensional scat-
tering problems [Peterson et al., 1986, 1988]. Since the CPU time is
proportional to the total number of patches, the CPU time for the
conjugate gradient solution is minimized by choosing the least number
of patches per square wavelength sufficient for the desired solution ac-
curacy (approximately 25 patches per square wavelength in our case).

The number of iterations Iys required for convergence with the
conjugate gradient method as a function of the number of unknowns
N, when using the minimum patch density of about 25 per square
wavelength (IV = 75(s/A)?), appears from Table 4.3 to be approaching
a logarithmic function of NV as N gets large; specifically

Ips ~ 331n(.02N) = 661n(1.255/)) (33)

Substituting Ip5 for I in (29) (divided by .75 since (29) gives a predicted
value that’s about 75% of the actual CPU run time) gives

Tcg =~ 8.5 x 107 N21In(.02N) = .1(s/A)*In(s/)) (34)

minutes, as an estimate of the CPU time required to solve for scattering
from large cubes by the conjugate gradient method on our 32-bit, 1.3
megaflop Linpack-performance-rated computer. (Interestingly, [Cate-
dra, Gago and Nuno, 1989] also found a CPU time dependence pro-
portional to the right side of (34) when solving 3-D scattering problems
using the conjugate gradient, fast Fourier transform method applied to
a volume electric-field integral equation.) Because the logarithmic func-
tion is so slowly varying, (34) implies that the CPU time for solving
full-bodied, 3-D, multi-wavelength scatterers with well-behaved sur-
face integral equations increases roughly as the fourth power of the
electrical size of the scatterer.

In Fig. 4.4 the conjugate gradient and Gaussian elimination CPU
times vs. s/ for scattering from the cube are plotted from (34) and
(30) (with N = 75(s/A)?) by the solid and dashed lines, respectively.
Even though two-fold symmetry of the cube has been utilized to reduce
the number of unknowns N by the factor of four, Fig. 4.4 confirms that
Gaussian elimination CPU time becomes prohibitive for cubes larger
than a few wavelengths across, and that conjugate gradient iteration
allows one to determine scattering from considerably larger bodies.
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Figure 4.4 CPU time versus side length to wavelength ratio for dual-
surface magnetic-fleld integral equation solution for scattering from a
perfectly conducting cube. The number of unknowns N is given by 75
(s/A)?, since two-fold symmetry of the cube was used to reduce the
number of unknowns by a factor of four and the fixed patch density is 25
per square wavelength. The conjugate gradient and Gaussian elimination
times shown here would be reduced by a factor of about two and five,
respectively, if the coeflicient matrices could be stored in central memory

rather than in direct access files, that is, if the CPU time were computed
from (32) and (31) instead of (34) and (80).

We emphasize that the formula (34) for the conjugate gradient
CPU time as a function of the number of unknowns and electrical size
of the scatterer is an approximation obtained by solving for scatter-
ing from the perfectly conducting cube using the magnetic-field dual-
surface integral equation. The formula holds for a patch density of
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about 25 patches per square wavelength and a normalized residual of
10~6. Since the number of iterations is nearly independent of patch
density, higher patch densities will increase the CPU time proportion-
ately. The CPU time will decrease if the normalized residual is chosen
greater than 10~%; in particular, we found that the number of iterations
and thus CPU time halved when the normalized residual was increased
from 10~ to a value between 103 and 10~2. As mentioned in Section
4.3, the number of iterations and CPU time will also vary somewhat
with the chosen values of the parameters a and § in the dual-surface in-
tegral equation, but this variation was not large for values of @ between
+1.5: and § between A/8 and 3)/8.

We also applied the magnetic-field dual-surface integral equation
to rectangular boxes with side-length ratios that differed considerably
from the value of unity for the cube. For some rectangular boxes, the
required number of iterations and CPU time were appreciably larger
than the values predicted by (33) and (34) for a cube of the same
surface area, but Tog in (34) was never larger than 8.5 x 10~6N®/2,
Although the incident plane wave always propagated normally to the
zy-face of the rectangular boxes (broadside incidence), it is unlikely
that the N-dependence of Tcg in (34) would change dramatically with
the direction of the incident plane wave, because the formulation took
advantage of the zy symmetry that results from the broadside incidence
to reduce the number of unknowns N in the coefficient matrix by a
factor of four.

Finally, in hopes of reducing computer time further, we experi-
mented with three variations of the conventional conjugate gradient
method, namely the “biconjugate” gradient method, the “augmented”
conjugate gradient method, and the “modified” conjugate gradient
method [Sarkar, Yang and Arvas, 1988; Sarkar, 1987]. We found, that
for the three dimensional, multi-wavelength problem solved with sur-
face integral equations, these three variations converged more slowly
than the conventional conjugate gradient method, regardless of the ini-
tial guess, or whether they were used alone or in conjunction with the
conventional conjugate gradient method [Woodworth, 1988].
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