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160 8. Applications of the conjugate gradient method

6.1 Introduction

The Conjugate Gradient method (CG) is a nonlinear semi-direct
iterative scheme for the solution of a system of equations. From its
introduction by Hesteness and Steifel [1,2,3], nearly forty years ago,
it has been of considerable interest to mathematicians and engineers
primarily because in the absence of round-off errors, it ensures conver-
gence in a finite number of steps. In short, convergence is accomplished
via a systematic orthogonalization of the solution vector with respect
to the residual vector defined as the difference between the left and
right hand sides of the system at the end of each iteration. That is, for
an N-dimensional system, the solution vector is constructed from a set
of N linearly independent (mutually conjugate) vectors orthogonal to
the residual vectors. Since these also form a linearly independent set,
the exact solution is obtained at the N-th iteration, but in general the
solution can be constructed, rather accurately, with only a few of the
orthogonal vectors that span the solution space. As a result, conver-
gence is achieved after a subset of N iterations have been completed.

The guaranteed convergence achieved with the conjugate gradient
solution method is, of course, a prerequisite for applications to general
configurations of interest. However, a primary reason for considering
such a solution method is the memory savings which can be realized
when the conjugate gradient method is combined with the fast Fourier
transform (FFT) [4]. In electromagnetics, a solution of an integro-
differential equation is often required for the unknown current density
distributions. Typically, these involve convolution integrals whose dis-
crete representation results in a matrix operator demanding a memory
storage of O(IN'2), where N is the number of unknown coefficients in the
assumed current density expansion. For large scale simulations, such a
memory demand results in prohibitive storage requirements and, thus,
traditional matrix inversion and iterative approaches are not attrac-
tive.

However, for a given/assumed current distribution, as is the case
with iterative solution methods, the convolution integral can be eval-
uated without a need to generate the square impedance matrix [5-
14]. Instead, the evaluation involves simple algebraic operations on
the transforms of the convolved quantities which usually are the cur-
rent density and the pertinent Green’s function. More importantly,
the entire evaluation process has an O(/N) memory requirement and
is, therefore, suited for large scale simulations. An additional feature
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of the combined CG and FFT formulation is, of course, the simplicity
of the solution process. This is not, generally, shared with other ap-
proaches requiring an explicit computation of all elements comprising
the matrix operator. Further, while the large condition number of sin-
gular operators may result in the failure of a matrix inversion approach
to yield an accurate solution, when employing the conjugate gradient
method this situation often translates to more iterations before reach-
ing convergence.

A drawback of the iterative solution methods versus direct ma-
trix inversion techniques is their inherent characteristic that the solu-
tion process be repeated for all excitations. In scattering computation,
where the computation of backscatter patterns is of interest, this makes
the iterative solution methods computationally intensive. However, for
a single excitation the CG method is generally much faster than ma-
trix inversion techniques, requiring only 4N (1 +log, N) operations per
iteration vs. O(IN3) required with a solution via Gaussian elimination
or LU decomposition.

In this chapter, the combined CG and FFT (to be referred hereon
as CGFFT) method is employed for the solution of various integral
equations arising in radiation and scattering problems. Applications
to one, two and three dimensional examples are discussed, including

(1) Radiation from thin wire dipoles

(2) Scattering by dielectric and resistive strips
(3) Scattering by two dimensional composite structures
(4) Radiation of a dipole in the presence of a flat plate
(5) Scattering by perfectly conducting and composite plates
(6) Scattering by coated perfectly conducting plates
and

(7) Scattering by a two dimensional filled groove in a ground
plane.

For each application, the pertinent integral equations are derived
and placed in a form suitable for a solution via the CGFFT method.
A major portion of the presentation deals with issues relating to the
discretization of the resulting continuous system. Of particular concern
is the introduction of techniques leading to more accurate and efficient
formulations. In most cases numerical data are included which vali-
date the methodology and can also serve for future reference. Some of

the included results are normally out of the reach of matrix inversion
techniques.
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6.2 The CGFFT Formulation

The integrodifferential equations considered in this chapter will be
of the general form

E(F) =5(r)- 7(7) + / / / (7= 7)) - 7)o’ (6.1a)
14

or

E'(F) = A[7] (6.1b)

where _E__' denotes the excitation field, J is the unknown current density
vector, I is the associated dyadic Green’s function, ¥ and # specify the
observation and integration points and 7 is some given tensor specific
to the geometry and electrical properties of the scatterer or radiator.
The integral to the right represents the convolution of the current
density with the Green’s function and can, therefore, be evaluated in
the spectral domain by invoking the convolution theorem. Defining
the forward and inverse Fourier transform pairs for a one dimensional
distribution as

5(k,) = / s(2)e~**=dz (6.3)
F3(ka)} = s(z) = 51; / 3(ka)e? dk, (6.4)
or
3(kzy ky) = / / s(z,y)e i kazthet) 4o gy, (6.5)
FH{3(ke, ky)} = s(2,y) = (2;)2 / / 3k by eI Hee) g _dk,

(6.6)
in the case of two dimensional current distributions, (6.1) can be al-
ternatively written as

E=7.7+7YT.7} (6.7)
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Clearly, (6.7) avoids the generation of the square matrix corresponding
to the operator A implying a storage requirement of O(N ) as compared
to O(IN?) required for a moment method implementation. The solution
of (6.7) via the CG method is referred to as the CGFFT solution
method and the specific algorithm to be employed is given in [5] or
[11].

The Fourier transforms implied in (6.7) are, of course, continuous
whereas in practice they will be replaced with discrete Fourier trans-
forms (DFTs). It is, therefore, necessary that an accurate relationship
of the transforms in the discrete and continuous domains be estab-
lished. Otherwise, a solution in one domain may not be representative
of that in the other. Alternatively, excessive sampling may be required
to represent the continuous system.

The one dimensional forward and inverse DFTs are defined as [4]

N-1

§(ph) = ) s(nA)W™ (6.8)
n=0
1 N-1
o(nA) =sn = = > [*(ph)WrI* (6.9)

where A is the integration subinterval in the spatial domain and & is
the corresponding interval in the frequency domain. Also

W = e 32%/N (6.10)
and N = 1/Ah denotes the number of samples employed in the dis-

cretization of s(z). An assumption in the derivation of the DFT pair
(6.8)—(6.9) is the integral approximation

nA+%
/ s(z)e 93P dp ~ As, WP (6.11)
nA—‘;—
implying that
s(z)e %P 5 5, + j8io = const. (6.12)



164 6. Applications of the conjugate gradient method

N s(2)]
S
7
Tmin Tmaz z
Figure 6.1 Typical spatial function s(z).
™ 15N
>
frm'n fma: f

Figure 6.2 Typical spectral function 3(f).

over the subinterval. A consequence of (6.12) is that s(z) is not constant
over the integration subinterval [15]. In fact, it is a function of the
spectral (frequency) variable and from a solution of (6.12)

s-(z) =Re {s(z)} = s,, cos(2wphz) — s;, sin(27phz)

si(z) =Im {s(z)} = s,,sin(27phz) + s;, cos(27phz) (6.13)

Typical forms of s(z) and 3(k.) are shown in Figs. 6.1 and 6.2, respec-
tively. Also Fig. 6.3 illustrates the implied s,(z) at four frequencies
[ = kz/2% for the case of s(z) = 1.0 + 1.0 with A = 1/20 and
fmax = 1/2A = 10.

It has been established [9,13] that the above inaccuracy in the
implied discrete representation of a given continuous function can play
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Figure 6.3 Real part of the assumed s(z) at discrete frequencies.

a major role in the convergence rate of the CG solution method. It
is, therefore, essential that some corrective procedure be found and an
obvious approach is to employ a higher order integration formula to
replace (6.11). This was discussed in [15] but as can be expected, it
results in a slower DFT/FFT algorithm. An alternative [9,12,13] is to
expand s(z) in a sequence of subsectional basis functions {f,} as

N-1 N-1
8(2) = snfa(2) =) snf(z — 2z4) (6.14)
n=0 n=0

Customary forms of the basis function f(z) include the piecewise con-
stant (PWC) and the overlapping piecewise sinusoidal (PW$) expan-
sion functions given by

{1, |z < Az/2
P(z)_{ 0 e (6.15)
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sinfk, (Az~|x
Q(z) = {O_{Hém‘zljm’ 2] < Az (6.16)

, else

respectively where ko = 2x /)¢ denotes the wavenumber. Rewriting
(6.14), s(z) can now be written as a convolution in the form

N-1
s(z) = f(z) * Z s, 0(z — z,) (6.17)

n=0

in which §(z) is the usual Dirac delta function.
The Fourier transform of s(z) is thus given by

3(kz) = f(ky)3 (6.18)

where f(k.) is the Fourier transforms of the chosen basis function and
3 is a shorthand notation for the Fourier transform of the sample train
as given in (6.9). Clearly, (6.18) establishes the relationship between

the continuous and descret Fourier transforms. For the choices in (6.15)
and (6.16),

P(k,) = A”%a (6.19)
O(k,) = 2ko[cos(kzAz) — cos(koAz)] (6.20)

sin(k,Az) (k2 — k2)

and we note that as Az — 0
3(kz) ~ Azs

which apart from the multiplying constant is the transform of s(z)
when f(z) = §(z) — delta basis.

In the case of a two dimensional current representation, an appro-
priate expansion is

N-1M-1

$(2,9) = F(29) % D D snmb(z — 2,)5(y — ¥m) (6.21)

n=0 m=0

where f(z,y) denotes the surface basis function and Snm = 3(Zn,Ym)-
The corresponding Fourier transform is

3(kay ky) = f(kayky)s (6.22)
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and consistent with the previous notation, the tilde and hat again
denote the two dimensional continuous and discrete Fourier transforms,
respectively. The two dimensional piecewise constant and sinusoidal
basis functions are given by

Se 1) < Ax
P(z,y):P(z)P(y):{ Lol < g i< f (6.23)

Q(2,y) =Q(2)Q(y)

infk, (Az— i |k.%A —lul)]
= { smsin k,cAyz : smsin k,yAyy ) IzI < Az, |y| < Ay
0,

else
(6.24)
Their corresponding spectra are

i s vBra v a_sin(k;Az/2) sin(k,Ay/2)
Plkayky) = P(ke)P(ky) =As™ 2= 72 kyzy T (625)
5 A ~ _ 2ko [cos(k.Az) — cos(kgAz)] )
ko k) = QRa)Q(R) === e T =13

2k [cos(k,Ay) — cos(koAy)] (6.26)

sin(koAy)(k3 — k2)
where As = AzAy and as As — 0, (6.22) reduces to
3(kay ky) ~ Ass

Often, it is necessary that the basis function be chosen to have
a different functionality in the z and y directions. For example, when
representing the currents on a thin plate a more suitable basis function

is of the form
f(z,y) = P(z)Q(y) (6.27a)

or

f(=z,y) = Q(=)P(y) (6.27b)
having the corresponding Fourier transforms
F(2,y) = P(k2)Q(ky) (6.28a)

and

F(z,y) = Q(ka)P(k,) (6.28b)
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respectively.
Using (6.18) or (6.22), (6.7) can now be written as

E=7T+r {%-fi}} (6.29)

Clearly, the transform f of the basis function needs to be computed
only once and thus the computations per iteration implied by (6.7) and
(6.29) are essentially the same. It should of course be noted that (6.29)
is valid only on the body of the scatterer, a condition that is imposed
on the numerical solution along with the sampling requirements and
linearity of the corresponding discrete convolution [4]. In a discrete
implementation of (6.29), the sampling intervals should be chosen so
that the Nyquist. criterion is satisfied in the spatial domain. Also the
length/pad of the FFT must be large enough to accommodate the
spectral contents of the convolved quantities. That is, the truncation
of the spectrum should cause minimal errors in the iteration process
and this is another source of error in the discretization of (6.7) for
a solution via the CGFFT method. This will be addressed in some
detail later in the chapter but, generally, the period M of the array to
be transformed is chosen according to the relation

M=2": M>Nyyqus M>2N-1 (6.30a)

where N is the number of unknown coefficients in the discretization of
the current density and 4 is an integer. In practice, 7 is chosen to be
the smallest integer satisfying the relation

72> logy,(2N - 1)+ p (6.30b)

where p is an integer (usually unity) setting the order of the FFT’s
dimension/pad. The array elements beyond the physical extent of the
scatterer are set to zero before (forward) and after (inverse) transfor-
mation.

6.3 Radiation by a Thin Wire Antenna

The radiation by a center-fed cylindrical wire dipole has been ex-
tensively studied with traditional numerical techniques such as the
method of moments [17-19]. It is, thus, instructive to first consider an
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application of the CGFFT solution method to this problem. For a 2z
directed cylindrical dipole of length £ and radius a < 1 (also k,a < 1)
the applicable integral equation is

L

Ei(z) = ’Zo (k + 332;) / 1()G(z - #)dz  (6.31)

where I(z) is the total current through the wire, Z, = 1/Y, is the free
space intrinsic impedance, k, is the wave number and G(z,z') is the
pertinent Green’s function given by

27

1 feikR
G(z-2) = or | R d¢ (6.32)
0

in which

R = \/(z—z’)2+4azsin222$-

Comparing (6.31) with (6.1) we may identify the right hand side of
(6.31) as A[I] whose adjoint is given by

(6.33)

L

A%[I] = _jlio (ko + :22) j I(2"\G*(z — 2')dz’ (6.34)

where the x denotes complex conjugation.
A form of (6.31) compatible with (6.29) is

Ei(:) = Lor (2 - G)FRIT}  (6.39)

(-]

where

G(k.) = o-To(ay/FE — K2) Ko(a/FE — KD) (6.36)

is the Fourier transform of the Green’s function in which I, and K, are
the zeroth order modified Bessel functions of the first and second kind,
respectively. Expression (6.35) is now suitable for a solution via the
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Figure 6.4(a) Numerical convergence of the linear current distribu-
tion for a 1A, dipole with increasing sampling density evaluated by the
CGFFT. Top to bottom: No. of samples = 15,31,68,127; FFT pad order
= 2,2,2,1; Magnetic frill excitation model.

CGFFT method and Figs. 6.4 — 6.6 show results based on such a solu-
tion along with comparisons based on data obtained by the method of
moments (MoM) solution. In particular, Fig. 6.4 shows the convergence
of the solutions as a function of sampling density using a magnetic frill
model for the excitation fields and it is seen that the CGFFT and
MoM solutions exhibit the same convergence characteristics. Also Fig.
6.5 depicts the convergence of the input impedance

1 % i INTR( L '
Zip = W[Ez(z (2 dz (6.37)

as a function of sample density and it is again observed that the
CGFFT and MoM[19] solutions converge to the same result. The cur-
rent distribution on a 9, dipole based on a voltage gap excitation
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Figure 6.4(b) Numerical convergence of the linear current distribution
for a 1), dipole with increasing sampling density evaluated by the MoM.

Top to bottom: No. of samples = 15,31,63,127; Magnetic frill excitation
model.

model is given in Fig. 6.6 as predicted using a CGFFT and MoM so-
lution. Finally, Fig. 6.7 shows the improvement in CPU time that can
be achieved with the CGFFT solution method vs a MoM solution.
Clearly, the CPU time required for a CGFFT solution is a linear func-
tion of the system unknowns, whereas in the case of a MoM solution
the dependence is quadratic. Also, shown in Fig. 6.7 is the improved
convergence attributed to the use of higher order basis functions.

6.4 Scattering by a Resistive Strip

A thin conducting sheet or dielectric layer can be represented by
a resistive sheet of resistivity R ohms per unit squared. In the case of
a dielectric layer having thickness 7 and a relative dielectric constant
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Figure 6.5 Real and imaginary parts of the input impedance for the 1),
dipole (a/A, = .005) as a function of sampling frequency.

€r, we find that

)
6.
kor(e, — 1) (6-38)
which reduces to 7
== | (6.39)
oT

for a thin conducting sheet of conductivity o. Mathematically, the re-
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Figure 6.8 Current magnitude for a 9}, dipole (a = .005),) computed by

the MoM and the CGFFT using different basis functions and a voltage
gap model for the source (13 unknown/},).

sistive sheet satisfies the boundary conditions [20]
axax(E+E )= —-2RJ

o (6.40)

ax(E'-E )=0

in which E© denotes the total field above and below the sheet, 71 is the
upward unit normal to the layer and J is the supported surface current
density. Using (6.40), integral equations may be derived to compute
the current for a given excitation. In the following we consider their

derivation and solution for E- and H-polarizations via the CGFFT
method.

a. H-Polarization

Consider the H-polarized plane wave

T =3 eike(zcosdetysing.) (6.41)
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Figure 6.7 A comparison of the CPU times required by the MoM and
the CGFFT for the solution of the resonant dipole problem (CGFFT
tolerance: 0.003).
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Figure 6.8 Geometry of a strip illuminated by a plane wave.
E =Z,(% sin ¢, — § cos ¢,) eike(z cosgotysing,) (6.42)

incident on the resistive strip of width w and coincident with the x-axis
as shown in Fig. 6.8. This excitation generates an x-directed current,
Jz, on the strip which is responsible for the scattered field. From (6.40)
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the integral equation satisfied by J, is

sin ¢o ejk,z cos ¢,

w/2
R 1 o2
- —Z(Z)J,(z) T (ké + 555) / Jo(2')HSD (kolz ~ &'|)da’
—-w/2

(6.43)

where H((,z)( ) is the zeroth order Hankel function of the second kind.
To solve for J, via the CGFFT method we must rewrite (6.43) in
a form compatible with (6.29). The Fourier transform of H @ (k,z) is

& 2 2 j
F{aI(k, = B®(k,) = = =
2 e} = B0 = e = WL
6.44

where f, = %;—, provided z is measured in wavelengths and, thus, (6.43)
may be rewritten as

Sin goeike=sinde — %ai)w) + &f {68~ KD EP (k)T 7 (Re) )

(6.45)
This may now be solved via the standard CG algorithm using pulse or
sinusoidal subsectional basis functions. The resulting current can then
be integrated to evaluate the echowidth of the strip defined as

2

H;(¢)
H;(¢)

in which (p, ¢) are the usual cylindrical variables and H 2 is the scat-

tered field. By employing the far zone approximation for the Hankel
function, we find

ou($) = Plirtlo 27p (6.46)

w/2 2
ou(p) = %sin2 ¢ / Jo(z')eHe® cosd gyt (6.47)
w/2

In scattering computations, a usual rule in the implementation of
(6.45) is to employ a sampling interval of at least 1 /10 of a wavelength
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and an FFT length at least twice (order 1) that of the strip in or-
der to accommodate the spectral spreading due to the convolution, as
discussed earlier. The FFT size should be chosen to minimize aliasing
errors caused by the truncation of the Fourier transform of H, 32)(k0|z|).
However, as seen from (6.35) and (6.45), when minimizing aliasing, the
entire quantity in the curly brackets must be considered. This involves
the product of the transforms of the current and Green’s function and
for the cases presented so far, the current densities are not expected to
be associated with spatial singularities. As a result, their transform will
be essentially bandlimited ! and, thus, an FFT length of order 1 (p = 1)
should be adequate to satisfy the spectral spreading due to convolution
without noticeable aliasing error. However, when the current density
is associated with spatial singularities as in the case of E-polarization
incidence on the strip, aliasing is expected to cause substantial error
unless corrective means are introduced. In general, to eliminate aliasing
errors when employing the discrete Fourier transform, we must form
periodic functions in the spatial and spectral domains [4] and this is
the basis of the corrective procedure discussed later for E-polarization.

Echowidth patterns based on a CG solution of (6.45) are compared
with MoM data in Fig. 6.9 for a strip of width 4\ having the given
non-uniform resistivity. In practice, tapered resistive cards are often
employed for radar cross section reduction and Fig. 6.10 demonstrates
an example of such a reduction in connection with a strip having a
resistivity that is tapered parabolically as given in Fig. 6.9. The choice
of basis functions is again a factor in the convergence of the CG solution
and similarly with the wire example, the sinusoidal basis functions were
found to provide a substantial improvement in the convergence rate
(almost 100 percent).

Before proceeding with the study of E-polarization scattering by
a strip, we note that (6.43) or (6.45) are also applicable for computing
the scattering by an impedance insert of width w. This simply requires
the replacement of R(z) by n(z)/2, where n(z) is the (un-normalized)
impedance of the insert. The resulting echowidth is then twice that
given in (6.47) to account for the ground plane.

1 In spite of the finite duration of the current density, we are led to
this conclusion on the assumption that the processed quantity by the
discrete FFT is a periodic function having period equal to twice the
strip width if an order 1 FFT length is used.
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Figure 6.10 Comparison of the H-polarization backscatter echowidths of
a 4\, perfectly conducting and parabolically tapered strips.

b. E-Polarization

Consider now the E-Polarized wave

E‘ 3eiko(zcosbotysing,)
; . (6.48)
H=- Z,(#sin ¢, — § sin @, )e7*e(Fcos oty sings)

incident on the resistive strip of resistivity R(z) and width w. From
(6.40), this excitation generates a z-directed current density satisfying
the integral equation

w/2
2) (e )+— / T.(2)H? (kole — 2']) da' (6.49)

—w/2

R(z)

ejk.z cos e —
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which can be rewritten as
. k . . -
ehezeorte - 2 g oy 4 o (BP0} (6:50)
o
for a solution via the CG method. Upon a solution of J,(z), the
echowidth is now found by
2

E:(¢)

E(¢)

2 w/2
) / Jo(z')ed*= cosd ! (6.51)
w/2

o5(¢) = lim 2rp 1

where E? is the scattered field.

The expected current behavior is now singular near the strip edges
as R(z) — 0 and, therefore, the unavoidable truncation of E.[((,z)(k,)
will cause aliasing errors unless excessively high sampling rates are
employed in the spatial and spectral domains. This is, of course, unde-
sirable because it will increase the memory demand and execution time
per iteration. However, since the integral in (6.49) calls for a knowledge
of Héz)(k°|z|) only over —w < z < w, we may assume it periodic with
a period of 2w and compute its transform numerically using the dis-
crete Fourier transform. Based on the definition of the discrete Fourier
transform, aliasing is now eliminated provided the FFT length is twice
the width of the strip (2V — 1 points, where N is the number of sam-
ple points) and the Nyquist criterion when sampling J,(z) is satisfied.
Nevertheless, because of the singularity of H((,z)(k°|z|) at z = 0, even
this approach may prove impractical and to overcome the difficulty, an
alternative is to discretize the integral in (6.49) before proceeding with
its computation via the discrete Fourier transform. That is, assuming
a pulse basis expansion for the current density, we may write it as

w/2

/ 7.2V (kolzm — ') da’
—-w/2
3n+%

N-1
= z J.(25) H((,z) (kolzm — 2'|) dz’ (6.52)

n=0
T —

N,
= Z Jz(zn)gl(zm - z")

n=0
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where z, = —¥ + (n + })Az with a similar definition for z,, and

Az [1- & (nkepe _ 0.4228)] n=m

91(zm — zp) ~ @)
AzHy" (ko|zm — z4]) n#m

(6.53)

Since g1(2m — 2,) is not singular anywhere, the evaluation of the con-
volution integral may now be carried out without aliasing errors via
the discrete Fourier transform as

w/2

/ T2V H P (ko|2m — 2'|)da’ = F~1 {.‘Igl} (6.54)
-w/2

where, as usual, §; implies the discrete transform of the sample train
91(zn). A comparison of I.I((,z)(k,_.) and §; is shown in Fig. 6.11 and as
expected, §; has a ripple which is attributed to the finite duration of
gl(zn)-

Expression (6.54) renders the evaluation of the integral in (6.49)
relatively insensitive to the length of the FFT provided the convolution
requirement is satisfied. As illustrated in Fig. 6.12 for the case of normal
incidence on a perfectly conducting strip one wavelength wide, the
predicted current distribution agrees with the MoM result when (6.54)
is employed in the CGFFT algorithm with an FFT size Jjust twice the
length of the strip. In contrast, when employing the sampled continuous
analytic transform for the evaluation of the same integral, the resulting
current distribution remains in disagreement with the MoM solution
even when an FFT size of order 3 is employed. The corresponding
comparison of the scattering patterns is shown in Fig. 6.13 and the
same observations again apply.

In closing this section, we note that the above procedure for the
evaluation of a continuous convolution integral using the discrete Four-
ier transform can be applied at all times regardless of the expected form
of the current density. To do so in conjunction with (6.45), it again

amounts to replacing the sampled continuous transform flgz)(k,) with
91. However, the correction will not be as evident for H-polarization.
Further, for consistency, the continuous transform of the derivative

F { g—:} = jka3(ks) (6.55)



6.4 Scattering by a Resistive Strip 181

0.05

Hann ﬁ] %

B l:'o(kx)

1)

uu||lmnumlmnnuuunnmmuuuumuumumlnnmnnun’”ﬂ'ﬂnn

hillbe

1

0.04

s g

7]
’,
Ay ]

0.03

0.02

0.01

-

es=

——————

0.00 T T T T I I

Frequency Number

Figure 6.11 Comparison of the continuous transform of H, $”(k,}z[) and
the discrete transform of the sample train given by (8.58).
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Scattering from a Conducting Strip
w=1.0A, E-Pol., Normal Incidence
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Figure 6.12 Comparison of the current distribution on a perfectly con-

ducting strip with plane wave incidence (E-pol, ¢, = 0) as computed by
various methods.
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Scattering from a Conducting Strip
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Figure 6.13 Comparison by the bistatic echowidth with plane wave in-
cidence (E-pol, ¢, = 0) as computed by various methods.
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Figure 6.14 Geometry for a dielectric cylinder illuminated by a plane
wave.

may also be replaced by

r { Aa(z)} - F { s(z + %!)A—:(z -4 } ]2sm(k 3(ke)

Az
(6.56)
as suggested in [13]. The transforms of the continuous and discrete
derivatives become equal for Az — 0 and it is seen that the effect of
the second is to suppress the high frequency components.

6.5 Scattering by a Dielectric Cylinder

Consider the dielectric cylinder shown in Fig. 6.14. We are inter-
ested in computing the scattered field due to a given excitation field
E'. From [21], the scattered field due to any such excitation can be
represented by the radiation of equivalent electric (J) and magnetic
(M) currents within the volume V of the scatterer. The traditional



6.5 Scattering by Dielectric Cylinders 185

expressions for these are

a a b
J(z,y)——-—(e,—l)( +E) —§<z<§,—§<y<-2-
(6.57)
— . —i = a a b b
M(zay)—JkoZo(ﬂr_l)(H +H) —5<w<§,——2-<y<§
(6.58)

where (¢, #,) denote the relative constitutive parameters of the dielec-
tric cylinder and (E*,H') are the scattered fields evaluated at (z,9)
within the dielectric cylinder. They represent the radiated field by the
equivalent currents and can be expressed as

B =12 (A4 VV.4) -V xF (6.59)
3‘:—‘710—"-(k§F+VV-F)+VxZ (6.60)

with
= [[ 361667y (6.61)
F= [[#,v)66.7)aey (6.62)

being the vector potentials in which

G(77) = —3HS (kolp - 7') (6.63)

is the two-dimensional free space Green’s function where p = z£ + y§
and p’ = z'¢ + y'§ are the source and observation points, respectively,
and S is over the cross section of the cylinder.

Upon substitution of (6.59) and (6.60) into (6.57)~(6.58), a set of
coupled integral equations are formed for the solution of J and M.
For non-trivial u, and &,, (6.57)-(6.58) imply three unknown current
densities per volume location. In the case of H,-incidence (see (6.41))
two tangential electric and a z-directed magnetic currents are required.
Similarly, by invoking duality, in the case of E,-incidence (see (6.48))
two tangential magnetic and a z-directed electric currents are required.
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Recently [22], though, it was shown that the scattered field by an
inhomogeneous dielectric cylinder can be expressed in terms of only a
single current density throughout its cross-section and another current
density only over the periphery of the cylinder. Unfortunately, these
reduced integral equations are not amenable to a CGFFT solution.
Therefore, in this section we will only consider a CGFFT solution of
the traditional system implied by (6.57)-(6.60).

Let us now consider a CGFFT implementation of (6.57)—(6.60) on
the assumption of H,-incidence (see (6.41)). The corresponding solu-
tion for E,-incidence can then be obtained via duality. Referring to the
two-dimensional transform pair defined in (6.5)-(6.6) we may expand
(6.59) and (6.60) to obtain

E.] 1 2J.
E, | =| zJ, |+7 {[C,,(k,,k,,)] H(kesky)}  (6.64)
$Z, vYm Zo
el LeRtmM,
where
B 7z [ (fcﬁ - k:) —ksky Jky - (5
Ch] = i | Rk (RR-ED) ik | BP(keky)
L —iks 2 (K2 +E)
) (6.65)
; Ja | .
I(kz, ky) = Jy | Plkzyky) (6.66)
M,
—jZo —jY;:
Ze = ——— Yo=——7+ 6.67
(er = 1)k’ (#r — 1)k, (6.67)
and P(k,, k) is the transform of the pulse basis function given in
(6.25).

The two-dimensional continuous Fourier transform of the Hankel
function can be obtained by noting the identity

o0

s 2 e
/ HY (kor/aT 1 37) emhevde = T VRTR (e
yielding
4

HP (kpy k) = — (6.69)

kK2 k2 — k2
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However, as noted in the previous section, use of (6.69) in (6.65) will
result in aliasing errors when truncated for implementation using the
discrete FFT. An additional difficulty will also arise because of the ring
singularity of (6.69) defined by kZ + k2 = kZ. The inherent approxima-
tion in the implementation of the inverse FFT that the transform be
constant over each cell is obviously not valid for those cells coinciding
with the ring singularity. This can lead to substantial errors and of-
ten the failure of the sampled or discrete system to be an acceptable
representation of the continuous one.

To correct for both of the above sources of error, the procedure
described earlier in connection with the one-dimensional FFT can be
employed here as well. That is, the original continuous integrals are
first discretized before proceeding with their evaluation via the discrete
Fourier transform. This amounts to replacing P(k,, ky)I-Igz)(kz,ky) in
(6.65) by §2 which corresponds to the discrete Fourier transform of the
sample train

cu+%'." ym+e‘2"

92(ZnsYm) = / / H(()z) (ko z'? + y’z) dy'de’

L N

3
- { sz [WkoPoHl(z)(koPo) —_ 2]] Ty = Ym =

0
) (6.70)
AzAyHy" (kopnm) otherwise

in which
Po = Asz/W’ Pnm = V 33; + yrzn (6'71)

and H. §2)(') denotes the first order Hankel function of the second kind.
For consistency, when discretizing the original integral equations (6.57)
—(6.63), the continuous derivatives may also be replaced by their dis-
crete counterparts. From a comparison of (6.55) with (6.56), this simply
amounts to letting

25in (B2)

k-
- Az
and
2sin (’5"#)
ky » ———=
Ay

wherever they appear in the matrix [C}].
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6.6 The Material Plate

a. Formulation

In this section we consider the simulation of a thin material plate.
This is an example of a three-dimensional geometry of practical inter-
est because it represents a possible component of airframe structures.
Its simulation, however, demands a large number of unknowns and,
as a result, traditional matrix inversion techniques do not permit the
analysis of large size plates. In contrast, the CGFFT solution method
can be applied with the same ease and effectiveness as done earlier in
the case of the wire and strip geometries, even as the plate size be-
comes as large as 100 square wavelengths. Below we first develop the
necessary integral equations which are then transformed to a suitable
form for a solution via the CGFFT method.

Consider the thin dielectric plate of thickness 7 with 7 <« A,, where
Ap is the wavelength within the material. The material plate (see Fig.
6.15) has a relative permittivity ¢, and a relative permeability u,. It
is illuminated by an incident field F; and we are interested in evalu-
ating the scattered field due to the presence of the plate. As in the
case of the dielectric cylinder, the traditional approach for computing
the scattered field is to introduce equivalent volume electric (J) and
magnetic (M) currents within the volume of the thin plate. Expres-
sions (6.57)—(6.58) are still valid for this case with the dependence in
z understood. However, for a thin plate we may assume that J and M
are constant across the thickness of the plate and can, therefore, be
replaced by the equivalent sheet currents

fc("” y) = 77(3’ Y, 2) (6.72)

Fn(zi y) = Tﬂ(z, Y, %) (6.73)
When these are employed in (6.57) — (6.58) we have

E' +E'=RK (6.74)
T+ =GE™ (6.75)
in which v Y
=—dle _Im
G= (r — Dot~ T (6.76)
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Figure 6.15 Plate geometry.

is the conductivity of the layer in mhos per square and R is the corre-
sponding resistivity given by (6.38). The scattered fields (E’, H') are
again given by (6.59) and (6.60) with the vector potentials now defined

A= / S/ K (', 4')Go(F — 7)de'dy’ (6.77)

F= / S/ K™(2',y')Go(F — 7)dz'dy’ (6.78)

where S defines the surface of the plate. In these,
e~ ko [F—7'|

anfF— 7

Go(F - 7) = (6.79)
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is the free space Green’s function with

T =22+ yj+ 23, F=a'd +y'y+ 2z (6.80)

denoting the observation and integration points, respectively. Since the
plate lies on the zy plane, z/ = 0 and z is set to zero in the application
of (6.74)(6.75).

The integral equations satisfied by K° and X are obtained from
(6.74)~(6.75) once the integral expressions for the scattered fields are
introduced. To write these in a concise form it is convenient to define
the operators:

Li=k+ 2, Li=k-k

Ly = 3%, Ly=—k.k,

Ly=k3+ 25, Li=k-k2 (6.51)
Li=fax+4m Li=-(K+8) '
Ly = £, Ls = jk,

Le= £, L¢ = jk,

where F{L;} = L;. The system satisfied by the sheet currents K= =
2K+ 9Ky +2K; and K = 2K + JK* + :K™ can now be written
in a matrix form as (since K~ are assumed constant across the plate
thickness, all derivatives with respect to 2z vanish)

_ RK; -
RK
e RKS
GZ,K™
GZ. K™
L Hr GZOK;” d

in which

[Clkar k)] =

o8 E: -
By
- - E?
-1 _ z
+ 7 [¢(ke, k,,)] H(kosky) } = nui| (682
ZoH;!
| Z,H}
'coI.q c,,Z, 0 0 0 j}e T
Co.zz Coi:; 0 0 0 'I’IS
0 0 —CO.Z4 -.Ee Es 0 P
0 0 —ize Co.i1 CO.ZZ 0 Go(kc’ ky)
0 0 .Z5 Co.zlz COE3 0
| .Ee —.ts 0 0 0 —Coi4_

(6.83)
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with ¢, = £,

- R . . . . . T .

(kg ky) = [ZOK;,ZOK;,Z.,K:,K;“,K;",K;"] P(ko k,)  (6.84)
and

e k24 kI < K2

;%3 2 x 0

Golkerky) = § PVRTRTNE L (685)

7k’+k_3k3’ k + k > k

is the continuous Fourier transform of the free space Green’s function.
As usual, K&™ K; "™ and K™ denote the discrete transforms of the
corresponding sampled current densities. Also, to avoid aliasing as well
as limit the required FFT pad to order 1, G’o(k,,k )P (kz, k,) should

be replaced by the discrete transform of the sample train

. zn+—ym+ 2

_Jko zl?+yl2
yo(lm ym) - / / . 2/2 n y,z dydz

2

&e—jk,p,/z‘m e 2, = =0
z{ 2 Z—*“gzi n = Ym (6.86)

—ikop .
S AzAy otherwise

with p, and pnm, as defined in (6.71). Further, the replacements for k,
and k, suggested in the previous section could be introduced in (6.81)
if so desired. We note that (6.86) has been shown to be of acceptable
accuracy when Az = Ay < 0.1),.

It should be noted from an examination of the matrix in (6.83)
that not all currents are coupled. Specifically, K¢ y and K7* may be
solved independently from the remaining three currents As a result,
the entire system may be split into half for a more efficient solution
on a machine having a vector-concurrent facility as discussed in a later
section. Finally, we observe that the matrix [C(k., k)] is symmetric
and, therefore, the adjoint of the systems (6.82) needed in the execution
of the CG algorithm is easily found provided we replace K* by —K™.

Often, of interest is the simulation of resistive plates satisfying the
boundary condition (6.40). In that case, only the first two equations
of the system (6.82) are required with K¢ and K being the only non
zero currents. We, thus, have

R [i,] + CoZoF { (Llf{; ¥ Ezkz) g"} = [E;’] (6.87)

(I?sz:, + Eafff,) o E,




192 8. Applications of the conjugate gradient method

valid for a resistive plate of resistivity R. When R = 0, then (6.87)
represent the system for the surface currents on a perfectly conducting
plate.

The systems (6.82) and (6.87) are, of course, suitable for a solution
via the CG method. Upon evaluation of the currents K~ and K™ the
scattered field is given as

e—Jkr

E'(6,¢) = jko—— [# x N7 (6:¢) — Z,N; (6, ¢)] (6.88)

where (r,0, ¢) are the spherical coordinates of the observation point
and

. T T
r= F‘f[ = ; (6.89)
Also, ;
N.T(6,4) = ONGT(6,9) + NS (6, 9) (6.90)
N5™(0,6) = cos 8 [cos pST™ (6, ¢) + sin $S5™ (6, 8)] (6.91)
—sin055™(6, ¢) '
N;™(6,4) = —sin¢S;™ (6, ¢) + cos $S;™(8, ¢) (6.92)
and

?‘.m(o, ¢) — // fﬂm(zl’ yl)ejk, cos @[z’ cos 0+y' sin@]dzldyl (6.93)

plate

The field E’ can also be described as that attributed to the radiation

of the plate currents and is responsible for the radar cross section of
the plate defined as

o= lim axm B2l (6.94)
r—00 |E |2

in which p, is a unit vector denoting the polarization of the receiving
antenna.
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Figure 6.16 Geometry of an arbitrarily oriented Hertzian dipole in the
vicinity of a plate.

b. Applications
1. Radiation of a dipole in the presence of a plate

In this subsection we consider a few applications to radiation and
scattering associated with a material plate. As a first example, we
consider the problem of radiation by a Hertzian dipole in the presence
of a resistive plate, illustrated in Fig. 6.16. The dipole is centered at
(21,91,21), is of length £({ < ),) and carries a constant excitation
current equal to unity. Its presence excites currents on the resistive
plate which contribute to the overall radiation pattern. To compute
the plate currents we must solve the system (6.87) with the incident
field given as

E: = (E.# + Ep0') -2 (6.95)
E, = (E,#' + Ep8') - j (6.96)

where the primes indicate spherical system parameters measured with
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respect to the coordinate system at the dipole as shown in Fig. 6.16.
We have

1 g~ Iker! N
E,.' = 2Zokol (1 + j—k:’;‘—’> W(z T ) (6-97)

Eo = jZokot |14+ — L 1™ ATy (698)
6 = J %00 + Jkor!'  (kor')? |

47!

in which 2’ denotes the dipole orientation and can be represented as
% = cos ¢, sinf, % + sin ¢, sin @, 9 + cos 8,2 (6.99)

where (6,,,) are the spherical angles of the dipole axis with respect
to the plate’s coordinate system. Also, ¥ = r'#' is the vector drawn
from the dipole’s location to the observation point on the plate and

. Ex#

= 2 X 100
EXTil (6.100)

Radiation patterns based on a solution of (6.87) are given in Figs.
6.17 and 6.18. In particular, Fig. 6.17 illustrates the dominant current
component on a perfectly conducting and a resistive 1\, X 1), rect-
angular plate due to illumination by a horizontal electric dipole \,/4
above the center of the plate. Fig. 6.18 shows a principal plane radi-
ation pattern due to a vertical dipole also A,/4 above the center of
the plate. As seen, the pattern computed with the CGFFT is in good
agreement with that based on the MoM technique [23].

2. Plane wave scattering by perfectly conducting and resistive plates

Plates have been of considerable interest in scattering because they
often represent building blocks in the simulation of more complex con-
figurations of practical interest. An understanding of their scattering
characteristics can, therefore, provide insightful information for design
applications. In this case, simple high frequency formulae are usually
more suitable, but unfortunately, available expressions have not been
found to yield accurate results. On the other hand, numerical simu-
lations demand an excessive storage requirement making the CGFFT
solution method attractive for such simulations.

Consider the plate in Fig. 6.15 illuminated by a plane wave of unity
amplitude. If

ki = —ko(2 cos ¢; sin 0; + § sin ¢; sin 6; +  cos 6;) (6.101)
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Figure 6.17 The like-polarized component of the surface current density
ona 1}, Xx 1), plate excited by a horizontal Hertzian dipole )\,/4 above the
center of the plate (25 X 25 unknowns). (a) plate geometry, (b) current
distribution on a perfectly conducting plate, (c) current distribution on
a resistive plate.
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Figure 6.19 Examples of discretized plate geometries.
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For a perfectly conducting or a resistive plate, the system (6.87)
is applicable for the solution of the electric currents generated on the
plate due to a plane wave illumination. Using a computer program
based on a CGFFT algorithm, computations were performed for a
variety of plate sizes and shapes. These are shown in Fig. 6.19 and as
seen, their discrete model is a collection of rectangular cells. At first,
it is of interest to examine the current distributions on the rectangular
plate. It will be seen that these have a rather unique and predictable
behavior, particularly for principal plane incidences.

Figures 6.20 — 6.25 depict three-dimensional views of the like and
cross-polarization currents on rectangular plates. Specifically, Figs. 6.
20 - 6.22 [25] illustrate currents on a 2}, X 2], plate for E-polarization
(a; = 90°) with 6; = 0,¢; = 0 (normal incidence); 6; = 45°, ¢; = 0,
and 6; = 90° ¢; = 0. Some important observations with regards to
these plots are the high current density values near the edges and the
increasing significance of the cross polarization currents as 6 increases.
For example, at normal incidence the like-polarized currents are more
than five times larger than the cross-polarized (K¢) currents indicating
that K¢ is not significant and this is consistent with the physical optics
approximation. The singular behavior of the K7 currents at the edges
is, of course, noteworthy and generic to perfectly conducting structures
with sharp edges. These singularities are responsible for the diffracted
fields and are the primary source of difficulty in numerical simulations.
As 0 increases, the strength of the cross-polarization currents also in-
creases effecting the behavior of the like-polarized currents, especially
those toward the back edge of the plate. When 8 = 90°, K¢ have their
greatest strength. They are concentrated near the side edges and are
responsible for the travelling edge waves which, although not radiating
at backscatter, are crucial in determining the back edge like-polarized
current behavior. The lobing structure of the edge currents is particu-
larly interesting and unique to all rectangular plates regardless of their
size. For example, a similar current behavior is observed in the case of
a 5A, X 5, and a 10A, x 10}, plate as illustrated in Figs. 6.23 and
6.24, respectively. Generally, we may conclude that for a nA, X nl,
plate, the magnitude of the like-polarized currents are associated with
n maxima near the front and back edges, whereas the cross polarized
currents have 2n maxima near the side edges. Unfortunately, this cur-
rent behavior is not maintained for non-principal plane incidences, as
demonstrated in Fig. 6.25, although the singular edge behavior of the
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Figure 6.20 Conducting plate currents; Polarization: a; = 90°, Direction
of incidence: ¢; = 0,6; = 0, Plate size: 2], X 2),, No. of samples: 55 x 55,
No. of iterations: 100, Normal residual: 0.00919.
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Figure 6.21 Conducting plate currents; Polarization: a; = 90°, Direction
of incidence: ¢; = 0, 6; = 45°; Plate size: 2), X 2),; No. of samples: 55 x 55;
FFT pad size: 120 x 120; No. of iterations: 100; Normal residual: 0.01489.
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Figure 6.22 Conducting plate currents; Polarization: a; = 90°, Direction
of incidence: ¢; = 0, §; = 90°, Plate size: 2), X 2),; No. of samples: 55 x 55;
No. of iterations: 100; Norm. Residual: 0.02942.
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Figure 6.23 Like polarized conducting plate currents; Polarization: o; =
90°, Direction of incidence: ¢; = 0, 8; = 0°, Plate size: 51, X 5),; No. of
samples: 125 x 125; FFT pad size: 256 x 256.

current densities is still apparent.

As expected, (see Fig. 6.26) the current densities associated with a
resistive or dielectric (possibly with moderate loss tangent) plate do not
exhibit such singularities near the edges and are also associated with
small cross polarized currents. This translates to faster convergence in
the CGFFT solution and also implies that a physical optics calculation
is suitable for far zone scattering computations [24].

Using the computed plate current densities the radar cross sec-
tion (RCS) of the plate can be found in accordance with (6.88)—(6.94).
Since the RCS of a structure is an easily measured quantity, it provides
a means for validating the CGFFT solution. Figs. 6.27 to 6.29 show
principal plane backscatter RCS patterns as computed via the CGFFT
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Figure 6.24 Like polarized conducting plate currents; Polarization: a; =
90°, Direction of incidence: ¢; = 0, 6; = 0°, Plate size: 10A, X 10),; No.
of samples: 250 x 250; FFT pad size: 512 x 512.

for square, triangular and circular plates. Both, E- and H-polarization
patterns are given and, as shown, in all cases the agreement with mea-
sured data is very good. It should be noted that the calculation of
the currents associated with the conducting plate in Fig. 6.24 required
nearly 125,000 unknowns. This large number of unknowns presents a
challenge for direct matrix inversion approaches because of their large
storage requirement. In contrast, the CGFFT solution could be per-
formed on a relatively small computer.

The computation of volumetric backscatter RCS patterns requires
an excessive computation time since the CGFFT solution must be
repeated for each incidence angle. Some time savings can indeed be re-
alized by employing the solution of a previous incidence as the starting
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Figure 6.25 Conducting plate currents; Polarization: a; = 90°, Direction
of incidence: ¢; = 45, §; = 45°, Plate size: 2), X 2),; No. of samples:
55 x 55; No. of iterations: 100; Normal residual: 0.01275.
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Figure 6.26 Dielectric plate currents; Polarization: a; = 90°, Direction of
incidence: ¢; = 0,0; = 0°, Plate size: 2A, X 2A,; Plate thickness: 0.0254);
Plate constitutive parameters: ¢, = 7.4 — j1.11, 4, = 1; No. of samples:
55 x 55; No. of iterations: 52; Normal residual: 0.00001.
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Figure 6.27 Backscatter patterns from a square material plate; Plate
size: 2), X 2A,; Plate thickness: 7 = 0.0254),; Plate relative constitutive
parameters: &, = 7.4—751.11, 4, = 1.4~30.672; No. of samples: 39x39; Max.
No. of iterations: 50 per angle. (a) a; = 90°, ¢; = 0°, average normalized
residual error = 0.0014, (b) a; = 0°, ¢; = 0°, average normalized residual
error = 0.003.
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point for the next, but even then the overall computation time for a
volumetric pattern remains substantial. However, volumetric bistatic
patterns can be easily computed and Fig. 6.30 shows one such pattern
for a perfectly conducting 2), x 2], plate [25].

6.7 Coated Perfectly Conducting Plate

The material coated plate consists of a perfectly conducting plate
having one face covered with a thin material layer of the same dimen-
sions. Mathematically, it may be simulated by a pair of stacked layers
and in this manner we may construct any arbitrary three dimensional
structure. A study of the scattering by the coated plate, therefore,
represents a step toward the simulation of general three dimensional
configurations.

Consider the plane wave (6.102)-(6.104) illuminating the coated
plate configuration shown in Fig. 6.31. To compute the scattered field
due to this excitation we introduce the usual equivalent electric (J;)
and a magnetic (M) currents within the dielectric. Also an electric
current sheet

K; =2KZ, + K5 (6.107)

must be introduced on the perfectly conducting plate located at z = 0.
Further, on the assumption of a thin coating/layer, J, and M, may
be replaced by the sheet currents

E =T72 = :i!K;z + ‘!}K:,z + 2K:2

—_—m = ) ) ) (6.108)
K, =TM, = zK;"2+yL'; + 2

placed at z = 7/2, the center of the coating.
For a coating having relative constitutive parameters (e,, s, ), the

boundary conditions satisfied by the sheet currents are (see (6.57)-
(6.58))

E +E’ = RK, ; z=171/2
T+ = GK, : z2=1/2 (6.109)
E +E' =0 H z=0

with R and G as defined in (6.38) and (6.76). The vector potentials
employed in the definition of the scattered fields (6.59)-(6.60) are now
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Figure 6.28 Backscatter patterns from a circular dielectric plate; Plate
radius: A,; Plate thickness = 0.01),; Plate relative constitutive parame-
ters: &, = 2 — 510, 4, = 15 No. of samples: 39 x 39; Max. No. of iterations:
50 per angle. (a) a; = 90°, ¢; = 0°, average normalized residual error =
0.00006, (b) a; = 0°, ¢; = 0°, average normalized residual error = 0.00007.
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given by
Z=// Ki(z',9')Go(F — 7,)dz'dy’
plate
+ // K3(2',9')Go(F — 7y)dz'dy’' (6.110)
plate
F= / / K3 (2,4')Go(F — 75)dz'dy’
plate
where
nn=2e+yy, T=22+y'i+7/22 (6.111)

Go(7,7') has been defined in (6.79) and 7 is the observation vector
given in (6.80). For convenience, let us also define the vectors

71 = 22 + y7, To =z +yy+71/22 (6.112)
and employ the notation

=// -I—(—;(z',y')Go(F,-—ﬁ)dz'dy'

plate

// ; (2,9')G,(F: — 75)dz'dy’

plate

(6.113)

From (6.109), the integral equations satisfied by the currents can now
be expressed as [25]

CoZoLl [A:,l + A:,z] + CQZ()L2 [A;l + A;z]

0 0 ;
+ cozoLsng}f - 5F,}z + Le¢F}? = E%,
coZoLs [Ai.l + A;z] + coZyL3 [Allll + A;z]
0 0 .
+ COZQLeaAiz + 5;1":2 - LSF.:Z = E;l

RK;Z + CoZoLl [A:l + Aiz]
+coZoL, [AZ' + A2?] + LeF?? = EL,
.RK;z + CoZoLz [A:l + Aiz]
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Figure 6.29 Backscatter patterns from a perfectly conducting equilateral
triangular plate (§; = 90° corresponds to tip-on); Plate side length =
2,3 No. of samples: 39 X 39; Max. No. of iterations: 50 per angle. (a)
a; = 90°, ¢; = 0°, average normalized residual error = 0.032, (b) o; =
0°, ¢; = 0°, average normalized residual error = 0.079.
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Figure 6.31 Geometry of a dielectrically coated perfectly conducting
plate.

+ coL2F22 — ZoLeA?? = ZoH},

8
GZoK}; — Z°5;A:1 + coL,F2?

+ CQLaFiz + ZoLsAiz = ZoH;;z
p,GZoKS + ZoLg [A:l + A:z] — ZoLg
(A2 + A2%] — coLyF?* = Z,H}, (6.114)

where L; are the operators defined in (6.81), ¢, = j/k, and we have
assumed a constant field variation across the thickness of the coating.

Also, E denotes the electric field observed at z = 0 and likewise
(E3, H,) denotes the fields measured at z = /2.
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The entire system (6.114) involves a total of eight unknown sheet
currents to represent the presence of the coated plate. On the as-
sumption of a non-magnetic coating (g, = 1),K, vanishes and thus
only the first five equations of the system (6.114) are required for the
simulation of the coated plate. Further, in the case of E-polarization
(Ei = 0)K¢, = 0 and the system (6.114) reduces to

coLy [AL' + AZ?] + coLp [AL! + AL?] =EL,

coLz [A7! + AJ%] + coLs (4} + 4] =Ej,
RKZ;, + coLy [AZ + AZ%] + coL, [AZ' + AZ?] =ES,
RKZ, + coLs [AZ + AZ] + coLs [A2! + A2?] =

(6.115)

To write (6.114) or (6.115) in a form compatible with (6.29) for a
CGFFT solution we note the relations

LA =F 7 { B P(kay ky)Golke, ky) } (6.116)
—i3 . Se.

LA =F LK P(ke, k)G (key by )} (6.117)

Lo F* =F 7 LK Py ky)Golkar y)} (6.118)

L.F? = {1.K; P (kas k)G (kay k) } (6.119)

X
Lo ai =(=1)'F- {i, K;P(k., l,)G,,,(k,.,,k,,)} (6.120)

and

L ai = (1) F 7 {EmK; Plhe,ky)Ghilkerky)}  (6.121)

allowing the evaluation of the pertinent integral without a need to
generate a square matrix. In (6.116)—(6.121), Go(kz, ky) has already
been given in (6.85),

é:(kmkv) =-7“-{G0(F1 - Flz)} = f{GO(ﬁ = F’1)}
-Jr/z,/lﬂ-k’—k’ kz +k2 < kz
(6.122)

25 k’ h’

274 71.2 +k3 i
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and

0
G:-z(kz’ ky) ]: {GO(T - 7'1)},_1-/2 5;7: {GO(F - FIZ)}::O

e EEE g

= _%e_r/z, [l +k3 —k3 k2 + k; > k2
(6.123)
As noted earlier, (6.85), (6.122) and (6.123) are analytically de-
rived continuous transforms. Therefore, to avoid aliasing, in a nu-
merical implementation of (6.114) in conjunction with (6.116)~(6.121)
Go(ka, ky) Pk, ky) should be replaced by the transform of its discrete

counterpart g,(zm) given by (6.86). Also, G (kz,k,)P(ks, k,) should
be replaced by the transform of the discrete function

znt+ 52 ym+ 5L

+ e_jko z"+y" +(1’/2)2 d ld '
ZnyYm) = z
95 (2ns ¥m) / /.u PRy = v e e

e_jka \/ l:e"n'}'("'/z)2
= A:cAy
A7 A/ Phm + (1/2)?

Likewise G, (ka, ky) P (2, ky,) should be replaced by the transform of
the d.mcrete function

(6.124)

dz'dy’

+
gz(zmym) =§‘8' /
ae

+
_Jko z::+yn+za
/ 22 + y/z + 22

z=7/2

T 1 e—ikor/PAm+(7/2)?
= ( Jko + 3 2) AzAy
T2 Pam +(7/2)2) 4x\/p2,. + (7/2)?

(6.125)

6.8 Scattering by a Material Filled Groove

a. Introduction to Higher Order Boundary Conditions

In this section we consider the application of higher order bound-
ary conditions [26, 27] for the simulation of a material filled groove
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Figure 6.32 Geometry of the rectangular groove in a ground plane.

~<>

N

e

Figure 6.33 Geometry of the profile to be simulated with a boundary
condition at y = 0.

as shown in Fig. 6.32. Traditional formulations [28] result in integral
equations not amenable to a CGFFT solution. In contrast, the appli-
cation of higher order or generalized impedance boundary conditions
(GIBCs) lead to an integral equation that is suited for a CGFFT so-
lution. These involve higher order field derivatives beyond the first
and have been found to provide a substantially better simulation for
fairly thick dielectric coatings than the standard impedance boundary
condition [27, 29].
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For a planar surface coincident with the zz plane, as shown in Fig.
6.33, the GIBCs take the form

% am O™E,

; = 6.126
mz=0 (_Jko)m 3y"‘ ( )
Mg ! m
3 —m Hy _, (6.127)

2 ik Gy
where a,, and a/, are constants specific to the surface of the layer or
coating being modeled. On the basis of duality, these cannot be chosen
independently and they can be shown [27] to satisfy the relation

> am) (Z a. =1 > am) Y an.| (6.128)

m=0,2,... m=0,2 m=1,3,... m=1g3,...

The value of Mg determines the order of the conditions, but in prac-
tice Mg should be kept as small as possible so that the resulting inte-
gral equation is less cumbersome for implementation. When Mg = 1,
(6.126)-(6.127) reduce to the well known standard impedance bound-
ary condition (SIBC)

_ ay 8Ey__0
jka, 8y v

ag BHy
- —_—= .1
Thas G5 =" (6.129)

Yy

where a1/ag = a,/a] in view of (6.128). Using Maxwell’s equations
(6.129) can also be written in terms of tangential components as

gx (FxE)= —zo‘;—°(g x H) (6.130)
1
which is a more commonly known form of the SIBC.

b. Higher Order Boundary Conditions for a Metal-Backed D:i-
electric Layer

In a numerical simulation of the groove in a ground plane, it is
of interest to replace its presence with an equivalent boundary con-
dition to be applied at the opening of the groove (y = 0%). Given
such a boundary condition, the equivalence principle may be applied
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Figure 6.34 Illustration of the application of the equivalance and image
theory in the case of a groove in a ground plane.

to extend the ground plane over the groove (see Fig. 6.34) since the
fields within the cavity are no longer needed explicitly. A magnetic
current may then be introduced satisfying the imposed boundary con-
dition and, subsequently, the ground plane can be removed by invoking
image theory.

To find a suitable boundary condition for this purpose, the groove
can be thought as a truncated metal-backed dielectric layer. However,
since the derivation of boundary conditions accounting for the pres-
ence of the specific groove terminations is not possible, we will instead
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consider boundary conditions derived for an infinite dielectric coating.
Customarily, such a coating is approximately simulated by the SIBC
given in (6.129) or (6.130) provided the constants are chosen as

?— = ]—- tan(koxt) (6.131)
1

where £ = /€yt €5 and p, are the relative permittivity and perme-
ability of the dielectric layer and t denotes its thickness (depth of the
groove). As shown in Fig. 6.35, the SIBC cannot accurately reproduce
the reflection coefficients of the coating unless it is of small thickness
and/or composed of a high contrast dielectric (x 3> 1). The primary
reason for this inaccuracy is because the SIBC is not capable of sim-
ulating polarization currents normal to the layer and, as a result, is
better suited for near normal incidences. However, by increasing the
order of the condition, it is possible to permit accurate simulations of
fairly thick layers.

A recently derived [27, 29] third order GIBC accomplishes a much
better simulation of the dielectric coating. The constants for this GIBC
to be placed at the surface of the layer are

()]

st ()
s e-n () o)

Js——r)

as =j’;f:” [ an(ktx )—ta.n(::)] (6.132)

and
=(2x% - 1) [1 + cot(ktk) cot (—lﬁ)]
2k
a; = — j2xpy |cot(ktk) — cot E-t-)
1= T JERM 2%
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Figure 6.35 Maximum allowed thickness vs || for a metal-backed dielec-
tric layer modelled using the first order (standard impedance) boundary
conditions at y = {+ with 2-degree and 10-degree phase errors. Curves

shown are for €, = 2 and ¢, = 7 with ¢ = 45°: (a) H-polarization, (b)
E-polarization.
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kt 1 kt
, proned — — —— — —
a; =1 + cot(ktk) cot (2&) + kt (n 2&) [cot(ktn) cot (2&)]

a3 =jktp, [1 + cot(ktk) cot (:—:)] (6.133)

They can be derived by employing a suitable expansion of the coating’s
Fresnel reflection coefficient compatible with that implied by (6.126)—
(6.127) and as shown in Fig. 6.36 they are substantially more accurate
than the SIBC. Unlike the SIBC, their accuracy improves as the in-
cidence angle approaches grazing. Also, they become more accurate
as the loss in the dielectric increases. Clearly, their limitation for the
present application concerns the terminations of the groove/coating
not accounted in the derivation of (6.132)—(6.133). This is rarely ad-
dressed in applications involving the SIBC but becomes a more im-
portant issue when dealing with higher order boundary conditions be-
cause of their inherent non-uniqueness at abrupt terminations. That
is, the GIBCs require supplemental conditions specifying the termina-
tion’s geometry across its depth. Before, however, we address corrective
measures relating to this difficulty, let us first examine a direct imple-
mentation of the GIBC as applied to the simulation of the groove.

¢. Formulation of Integral Equations Using GIBCs

Consider an illumination of the groove in Fig. 6.32 by the H-
polarized plane wave given in (6.41)(6.42). For this case, H, = 0,
and thus the relevant GIBC is (6.126). Expanding this for Mg = 3 we
have

a; 62 a az 0? ) OE, )
(ao k3 3!/’) Bt (—jko Tiksy?) By (6.134)
y=0t,0<z<w

Referring now to Fig. 6.34 we may introduce the equivalent magnetic
currents M = E X § = zE, in (6.134). To do so, we note that since

V-E=0

we have

=2 _ (6.135)
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Figure 6.36 Maximum allowed thickness vs |«x| for a metal-backed layer
modelled using third order GIBC with a 10-degree phase (and/or 10
percent amplitude) error. Curves shown are for ¢, = 2 and ¢, = 7 with
incidence at 55° from grazing (a) H-polarization, (b) E-polarization.



222 6. Applications of the conjugate gradient method

Substituting (6.135) into (6.134) yields

o2 (2, O\ [ NI Dk (e — 2'Vda!
4[ao+ R (ko + 822)] /2Mz(:c )B:cHO (kolz — 2'|)de
0

L . N T ] OM, (<) (6.136)
ik [“l T (’“" *5:2)| "oa
_ az 6% i
= (ao - %2 Byz) 2Z,cos ¢ H,

and in deriving this we have also employed the wave equation

’E, _0’E,
0y2 ~  0Oz?

— k3E, (6.137)

to change even derivatives with respect to y to corresponding deriva-
tives with respect to z. Further, we have set

E, = E, + E} + E} = 2Z,cos ¢, H. + E3 (6.138)
where
. w
B! = _i / oM, (2" )\ HD (ko) — 2'|)dz’ (6.139)
[+]

is the y component of the scattered field in which the factor of 2 is due
to image theory.

The integral equation (6.136) can be simplified further by integrat-
ing both sides with respect to z to eliminate one of the derivatives.
Doing so yields

] Y.M,(2) (6.140)
|



6.8 Scattering by a Material Filled Groove 2238

By employing the Fourier transform to evaluate the convolution inte-
grals, this may now be written as

S ] + 2oL F (8- k) i) + 2o Ma(e)+

- 2 _ 12y 57| = a2 ;2 sko(z— %) cos o
%2%]—' [(ko kz) Mz] 22, (1 + a sin ¢o) e 3
(6.141)

where §; is the discrete Fourier transform of g,(z,) given in (6.53)
and M, denotes the transform of the sample train representing M (z).
An implementation of (6.141) via the CGFFT method is a straightfor-
ward task. In contrast, a corresponding implementation of (6.140) via
the MoM could have resulted in numerical difficulties because of the
presence of the higher order derivatives in addition to having a O(N?)
memory demand.

Typical results of the current and scattering as computed via a
CGFFT solution of (6.141) are compared with exact data in Fig. 6.37
for a \,/5 deep groove of width w = 1),. As expected, the solution
based on the third order GIBC predicts the magnitude and phase of
the current distribution reasonably well away from the groove termina-
tions. This, of course, is the cause of the discrepancies in the scattering
patterns, particularly, for near grazing incidence. Corresponding results
based on the SIBC are shown in Fig. 6.38. In contrast to the GIBC
results, the current distribution based on the SIBC represents only an
average value of the actual distribution.

d. Hybrid GIBC — Ezact Formulation

The GIBC formulation in conjunction with the CGFFT solution
method offers the advantage of having an O(N) memory requirement.
However, as seen in Fig. 6.37, the current distribution predicted by
the third order GIBC is not of acceptable accuracy when within 0.2
wavelengths of the groove terminations or so. To alleviate this difficulty,
one approach is to feed the currents predicted by the GIBC integral
equation (141) away from the edges into the exact integral equation
[30]. The last can then be solved for the remaining currents in the
vicinity of the groove terminations. This only requires the inversion of a
small matrix, thus alleviating the usual storage difficulties, particularly
when considering a three-dimensional application.
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Figure 6.37 Scattering by a groove in a ground plane; comparison of the
exact and third order GIBC solutions for a groove of width w = 12,,
depth t = 0.2),,£, = 7.0 — j1.0, and pup = 1.
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Figure 6.38 Scattering by a groove in a ground plane; comparison of
the exact and SIBC solutions for a groove of width w = 1), depth
t=0.2),,6p = 7.0 — 51.0, and pp = 1.



226 6. Applications of the conjugate gradient method

The exact integral equation for the equivalent magnetic currents
is

2ejko(m—w/2)cos¢a__k°2y° / M. (=) HP (kole - 2'|)da’
(6.142)

=— jkblﬁ,/Mz(z')Gb(z,z')dz

where
o0

n_ Ep pra’ prT
Gy(z,2') = ; ok, tan(id) cos ( ” ) cos ( ” ) (6.143)

is the Green’s function for the cavity,

1 jeY, a,
Yy=——=~-—— == .
*~Z ktan(k,xt) ay (6.144)
1 p=20
& {2 P (6.145)
and
T2

ky = \/kgs;,yb - (;) (6.146)

Suppose now that MZ(z) denotes the current computed via the
GIBC integral equation (6.141). Employing MS(z) in place of M,(z)
in (6.142) for zpo < z < w — zo we may then write

_fME(z) za<z<w-=z,s
M.(=) = {M;(z) 0<z<zp,w—zp<z<w (6.147)
and when this is substituted into (6.142) yields

w—rA
zejk.,(z—wlz)coa¢o+ / ( ') []k Y, Go(z,z ) - H(z)( kolz — zll)] dz’

A

k.Y,

A
- / M:(z') [jkbl’},Gb(z,:c’) 22 HA(k, |z — '|)] dz’

B /w M;(z') [kaYbi(ic z') - H(z)(k"lz -® l)] ,

(6.148)
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Assuming that MZ(z) has already been computed via a CGFFT so-
lution of (6.141), the entire left-hand side of (6.148) is known. Thus,
for zpo < 0.25,a 4 X 4 or a 6 X 6 square admittance matrix is required
for the solution of MZ(z). In general, continuity of the current density
must be imposed at the transition regions between MZ(z) and M¢(z),
and this can be accomplished through simple averaging.

The results presented in Fig. 6.39 clearly show that the proposed
hybrid formulation can provide an accurate prediction of the current
and scattering associated with the groove. Additional backscatter data
which provide a testament to the conclusion are given in Fig. 6.40. The
depth of the chosen groove corresponding to the patterns in Fig. 6.40
is 0.4}, and it is seen that the GIBC-exact hybrid solution (HYBRID-
3) is still in good agreement with the exact. In contrast, the SIBC or
SIBC-exact hybrid (HYBRID-1) solutions do not provide an acceptable
accuracy near edge-on incidences. As stated earlier, this is due to the
limited accuracy of the SIBC.

8.9 Additional Improvements in the Implementation
of the CGFFT Solution Algorithm

a. Differentiation in the spatial domain

In all applications of the CGFFT solution it was noted that the
FFT played a major role in the accuracy and convergence of the so-
lution. In particular, two issues were of crucial importance, both of
which were related to the discretization of the original continuous sys-
tem. One issue dealt with aliasing errors caused by the truncation of
the infinite domain associated with the continuous transform of the
Green’s function. Another dealt with errors because of differences be-
tween the transforms of the continuous function and its sample train.
The last was corrected by an explicit introduction of a basis function
as is usually done with MoM solutions. A corrective process was also
discussed to eliminate aliasing errors by discretizing the integral equa-
tion before application of the FFT. This eliminates the need to deal
with the infinite domain Green’s function replacing it with a discrete
function of finite duration which can be treated as a periodic function,
thus eliminating aliasing.

A general rule in improving the convergence of the CGFFT solu-
tion algorithm is to reduce the spectral content of the functions handled
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Figure 6.39 Scattering by a groove in a ground plane; comparison of
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by the FFT. The quantities forming the convolution integral must, of
course, be treated in the spectral domain to realize the memory ad-
vantage. However, the usual presence of derivatives increases the spec-
tral content of the transformed quantities if carried under the integral.
This is observed in the systems (6.45), (6.64)-(6.66), (6.82)-(6.85), and
(6.87). The replacement of the continuous derivative with a discrete,
as suggested by (6.56), introduces an envelope that acts as a filter to
reduce the effect of high frequency components. An alternative is to
handle the derivatives in the spatial domain. For example, (6.87) may
be instead written as

R+ COAEO [ {&zdo} + D7 {K"g"}] = E (6.149)
w5 e (k) 0 () - 5

where A = Az = Ay and D; are the discrete representations of the
operators A%L;. To O(A?) these can be approximated using center
difference formulas as

Dlsn,m =A2Ll-’n,m = Sn41,m + (k?,Az - 2)3n,m + Sn—-1,m

1
D23n,m =A2L23n,m = Z(3n+1,m+1 — Sn-1,m+1 (6‘150)

+8n—1,m—1 — Snt1,m-1)

The discrete forms of the remaining operators defined in (6.81) can be
written in a similar manner. We have,

2A2
D33n,m =A2L35n,m = Snm+1 + (koA - 2)3n,m + Spm-1 + O(Az)
2
D43n,m =A L43n,m = Sn+1,m + Snm+1 — 4-’n,m + S$n-1,m + Snm—1
D53n,m =2AL53n,m = Snti,m — Sn-1m

Ds-’n,m =2AL6"n,m = Sn,m+1 — Sn,m-1 (6.151)

A drawback in using (6.150)—(6.151) is the additional arithmetic
operations required for their implementation versus the simple mul-
tiplication that could be performed if the derivative operations were
carried under the integral to be evaluated via the FFT. One should, of
course, make the appropriate choice based on the advantages offered
by each process. That is, implementation of the differential operators
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should be done in the spatial domain as dictated by (6.150)—(6.181)
provided the time required for the additional arithmetic operations is
outweighed by the improved convergence rate. Otherwise, they should
be implemented as noted in the previous sections.

b. Vector and parallel implementation of the CGFFT algorithm

Most modern computing facilities now offer vector and parallel
processing capabilities. A vector facility exploits the independence of
operations, particularly those associated with the elements in an ar-
ray/vector. A typical example of vectorization occurs when performing
addition or the Hadamard product of two independent arrays/vectors.
In a scalar machine, each element product or addition will be done se-
quentially, whereas in a vector facility vector registers are employed to
perform several of the element operations concurrently. That is, when
a DO loop is encountered, the loop iterations are not executed sequen-
tially but in parallel provided there is no data dependences among the
loop iterations. When a parallel (concurrent) facility is also available,
independent operations or sections of the program may be executed on
different processors. In this manner, several matrix operations involv-
ing independent vectors/arrays may be performed in parallel. Typi-
cally, a vector instruction is capable of handling 32 to 128 data ele-
ments at once resulting in a two to four times increase in the execution
time.

The CGFFT algorithm lends itself to vectorization and parallel
processing. Most operations involve array manipulations which are vec-
torizable. Also, several of the steps in the iteration algorithm can be
treated independently and can thus be performed on different proces-
sors. Most importantly, since the FFT is a highly vectorizable algo-
rithm, it plays a major role in the speed of the solution algorithm and
overall efficiency of the optimized code.

To demonstrate the speed advantage which can be realized when
executing the CGFFT solution on a vector-concurrent facility, a few
tests were performed on the Alliant FX /8 and the IBM 3090-600E. The
Alliant used in this study has four vector processors (expandable to 8),
56 Mbytes of main memory and 256 Kbytes of cache memory with a
bus capable of handling 188 Mbytes per second. The IBM 3090-600E
supercomputer has six processors, 256 Mbytes of real memory and 64
Kbytes of cache memory for each processor. Also, both machines offer
an optimized vectorized radix 2 FFT routine.
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CGFFT Code Scalar Vector Vector

Performance (scalar FFT) | (scalar FFT) | (vector FFT)
ELAPSED CPU, sec 148 129 34
VECTOR CPU, sec - 9 30
VECTORIZABLE CODE, sec - 28 144
VECTOR CONTENT - 18.9% 97.3%
VECTOR SPEED UP - 3.1 4.8
PROGRAM SPEED UP - 1.15 4.35

Table 6.1 Performance of the scalar and vectorized 3-D code on the IBM
3090.

Tables 6.1 and 6.2 show the performance of the CGFFT algorithm
executed on the Alliant and IBM vector facilities for computing the
currents on a 2), X 2, plate. It is clear from Table 6.1 that the majority
of the speed-up in the execution time for the IBM is attributed to the
vectorized FFT leading to an overall speed-up over 400 percent. In the
case of the Alliant, the overall speed-up was more than 600 percent
per iteration. The speed-up in execution time is even more impressive
when all four processors of the Alliant are utilized. As seen from Table
6.3, the speed-up when using the four processors is 3.5 times that over
the single. This implies a speed-up of more than 20 times per iteration
when combined with the data in Table 6.2. Interestingly, similar speed-
ups are observed for larger plates indicating that the aforementioned
results are independent of the cache memory [31].

Additional improvements in the execution speed of the FFT may
be realized by employing a prime factor FFT (15, 32-36]. Traditional
radix-2 FFTs are restricted to sizes which coincide with powers of 2. As
noted earlier, when employing the FFT in the CG solution method, it
is not necessary to choose an FFT size/pad more than twice the size of
the geometry. Therefore, the restriction associated with base-2 FFTs
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CGFFT Code Scalar Vector Vector

Performance (scalar FFT) | (scalar FFT) | (vector FFT)
INITIALIZATION, sec 2.39 0.72 0.80
CGFFT LOOP, sec 4307.0 1255.2 342.8
TOTAL CPU TIME, sec 4309.3 1255.9 343.6
ITERATIONS 111 111 59
PER ITERATION, sec 38.80 11.31 5.8
MEGAFLOPS 0.0527 0.1807 0.3512
PROGRAM SPEED UP - 3.43 12.54
SPEED UP/ITERATION - 3.43 6.69

Table 6.2 Performance of the scalar and vectorized 3-D code on the
Alliant FX/8.

will in most cases lead to additional storage and CPU time demand.
A prime factor FFT alleviates this restriction since its size can be
chosen with more arbitrariness without speed compromises. Although
the prime factor FFT does not indeed allow a complete arbitrariness in
size, it does allow a finer incrementation in size than the radix-2 FFT.
In general, one must be able to express the chosen size as a product
of prime factors. For example, the prime factors of 30 are 2, 3, and 5.
This allows the 30 point FFT to be written using 2 point, 3 point, and
5 point DFT modules requiring O(N) operations as is the case with
the radix-2 FFT.

A further reduction in the execution time of the CGFFT algorithm
may be achieved by employing special purpose FFTs which exploit the
zero padding of the current distribution. This introduces a substantial
amount of multiplications with zeros which can be eliminated a priori
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Optimized CGFFT " NO. of processors "
Performance |] 1 2 3 4 "

INITIALIZATION, sec 1.60 0.86 0.61 0.50

CGFFT LOOQOP, sec 407.4 | 211.0 | 146.7 | 115.6
TOTAL CPU TIME, sec || 409.0 | 211.8 | 147.3 | 116.1
ITERATIONS 59 59 59 59

PER ITERATiON, sec 6.91 3.58 2.49 1.96

MEGAFLOPS 0.2951 | 0.5697 | 0.8192 | 1.0340
SPEED UP - 1.93 2.78 3.52
EFFICIENCY - 96.5% | 92.7% | 88.0%

Table 8.8 FX/8 Vector-Concurrent performance for a 2\, X 2), plate.

to increase the speed of the algorithm as discussed in [15]. It is not clear,
however, whether such a special FFT algorithm can be vectorized as
effectively as the traditional one. In that case, the use of special purpose
FFT algorithms is not recommended. The same also holds for the use
of prime factor FFTs. That is, the use of a highly vectorizable FFT
algorithm translates into a substantial time savings in the execution of
the CG algorithm and may, thus, overcome any advantages offered by
special purpose FFTs.

6.10 Concluding Remarks

The theoretical and computational aspects related to the applica-
tion of the CGFFT method to problems of radiation and scattering
are established and well understood. Beyond the basic applications
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considered in this chapter, the extension to three dimensional dielec-
tric bodies [25, 36] with and without anisotropy is straightforward by
employing the three dimensional FFT. Also, the CGFFT method is
directly applicable in solving systems relating to scattering, transmis-
sion and radiation by periodic structures and arrays [38-42]. In that
case, the resulting system is discrete and no need arises for corrective
measures due to discretization.

The main advantage of the CGFFT method is its reduced memory
demand in comparison with matrix inversion techniques. For backscat-
ter computations, however, the method becomes computationally in-
tensive and time consuming since the entire solution process must be
repeated for each excitation. Speeding-up of the algorithm or solution
process will be an integral part of future research in this area, partic-
ularly in dealing with three dimensional applications. In this respect,
a possible approach, where the scattering pattern due to a given inci-
dence is found as a linear composition of those patterns corresponding
to a few special excitations (basis) [43], may prove useful. Most cer-
tainly, vectorization and parallelization of the underlying algorithms
will be of great importance in reducing the computation time and
improving the efficiency of the CGFFT solution method. New emerg-
ing methodologies which combine the CGFFT with other numerical
techniques will also play roles in this respect. For example, the Finite
Element and CGFFT methods can be combined [44,45] to reduce the
dimensionality of the required FFT and consequently improve the ef-
ficiency of the solution process. In general, hybrid methodologies will
likely prevail in overcoming restraints dealing with the computational
efficiency and versatility of the iterative solution methods.
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