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7.1 Introduction

There has been considerable research directed toward the devel-
opment of iterative techniques for frequency-domain electromagnetic
(EM) radiation and scattering problems. Since EM applications give
rise to complex-valued non-Hermitian matrix equations, the conjugate
gradient (CG) method appears to be superior to alternative iterative
approaches. This chapter presents an overview of the numerical im-
plementation process. In addition to a review of one CG algorithm, a
primary goal of the chapter is to identify situations applicable to iter-
ative solution methods. Fundamentally, any iterative method will only
be advantageous if it can produce a solution more efficiently than LU
factorization or some other direct method. Unfortunately, for general
systems of equations LU factorization usually requires fewer arithmetic
operations than the CG algorithm. The CG algorithm has been pri-
marily employed to exploit structure or sparsity in the matrix equation
under consideration, in order to reduce the associated memory signifi-
cantly below that required for a direct method of solution. By reducing
the required amount of directly-addressable memory, the CG algorithm
can permit the analysis of electrically larger geometries. However, not
all problems can be formulated to permit storage reduction. The for-
mulation of EM problems will be reviewed, with emphasis placed on
the creation of structure in the system matrix.

In addition to the use of the CG method to exploit matrix struc-
ture, the algorithm can be efficient if its rate of convergence is relatively
fast. The convergence rate of the CG algorithm is directly related to
the number of distinct eigenvalues arising in the iteration matrix and
their weighting in the eigenvector decomposition of the initial resid-
ual [Peterson, Smith and Mittra, 1988]. This analysis can be used to
explain the observed behavior of the CG algorithm. It is unfortunate
that in many cases the algorithm does not converge at a sufficiently
fast rate for the CG approach to be superior to direct methods of
solution. However, direct methods may fail (due to a buildup of round-
off errors) if the system matrix becomes very ill-conditioned. The CG
method is sometimes proposed as an alternative algorithm for treat-
ing ill-conditioned systems, since, in principle, rounding errors do not
build from one iteration step to the next. Special cases where the CG
method is likely to be useful for treating poorly conditioned systems
are identified.

Although certain situations may favor the use of iteration, the
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trade-off between iterative and direct methods of solution is also de-
pendent on the machine in use. Recommendations on the general effi-
ciency of the CG method must take into account the specific computer
(the word length, the amount of available fast memory, and the pres-
ence or absence of specialized architectures such as pipeline processors
or highly parallel configurations). With this in mind, the information
presented in this chapter is intended to aid the reader in deciding when
to use the CG algorithm for a given problem.

The CG method appears to have been first employed for EM
applications by Daniel and Mittra [Daniel and Mittra, 1970], who
used the algorithm to treat an overdetermined system representing a
two-dimensional EM scattering problem. Although the algorithm per-
formed well, it did not receive widespread use until the early 1980s
[Sarkar, Siarkiewicz and Stratton, 1981; Sarkar and Rao, 1984; van
den Berg, 1984; Peterson and Mittra, 1985]. The roots of this research
began in the late 1960s when Bojarski and others investigated the
iterative treatment of systems containing slightly perturbed Toeplitz
symmetries [Ko and Mittra, 1976; Tsao and Mittra, 1982; Kastner
and Mittra, 1983abc; Borup and Gandhi, 1984; Nyo, Adams, Harring-
ton, 1985]. These systems have the advantage of discrete-convolutional
symmetries that allow the use of the FFT algorithm to implement the
matrix-vector multiplications required within an iterative algorithm.
The primary difficulty with these early iterative approaches was that
they employed a Jacobi-type algorithm that often diverged when ap-
plied to the complex-valued non-Hermitian systems. The CG algorithm
provided a convergent replacement for the simple Jacobi algorithm, and
in recent years has achieved widespread use for treating systems with
perturbed Toeplitz symmetries under the name “CG-FFT” [Borup
and Gandhi, 1985; Sarkar, Arvas and Rao, 1985; Su, 1987; Peters and
Volakis, 1988].

Numerous CG implementations have been proposed. In many of
these, the algorithm is cast into a continuous form and applied di-
rectly to a continuous operator equation [van den Berg, 1984; Mittra
and Chan, 1985]. This approach sometimes leads to a different way of
looking at the required operations, and might suggest improvements in
the way of organizing these operations. In order to implement the CG
method numerically, however, the operator must be discretized into
a finite-dimensional matrix [Ray and Peterson, 1988]. Thus, any nu-
merical implementation of the CG method is equivalent to using the
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CG algorithm to solve the associated matrix equation. Without loss of
generality, we consider only the matrix form of the algorithm below.

7.2 Numerical Formulation of Electromagnetics
Problems

The numerical treatment of a frequency-domain electromagnetics
problem requires that the problem be posed in terms of a continuous
equation and subsequently discretized into matrix form. Several dif-
ferent types of equations are employed. Open-region scattering prob-
lems can be formulated in terms of integral equations containing a
singular Green’s function or in terms of differential equations explic-
itly incorporating some form of radiation condition [Peterson, 1988].
The integral equation formulation permits the computational domain
to be limited to the surface or volume of the scatterer under consid-
eration, whereas the differential equation formulation usually requires
additional unknowns to be assigned to some part of the region out-
side the scatterer. Although integral equation formulations generally
require fewer unknowns, they discretize to produce fully- populated
matrices. Differential equation formulations produce sparse matrices.
In general, the matrix operators produced by either type of formulation
are complex-valued and non-Hermitian.

The continuous equation to be discretized can be expressed in
general operator form as

Lf=g (7.1)

where L denotes the operator, f is the unknown function to be de-
termined, and g is the given excitation (usually in the form of a field
produced by some external source). This general form could represent
a surface integral equation (SIE), a volume integral equation (VIE),
or a volume differential equation (VDE). While several different pro-
cedures are in use to discretize these equations into matrix form, we
consider only one, the method of moments (MOM) [Harrington, 1982].

The MOM discretization process begins with the selection of a set
of expansion or basis functions to represent the unknown function f
(the domain space of the operator L). In addition, a set of weighting
or testing functions must be selected to represent the range space of
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L. If f is replaced by

N
f23 &™pe (1.2)

n=1

in (7.1), and the equation is enforced approximately by taking an inner
product with each of the testing functions, the result is the discrete
system

Az =b (7.3)

where z is a column vector containing the coefficients {z(™)} from
(7.2), the entries of the matrix A are

Almn) = (7(™) [ B(™)) (7.4)
and the column vector b contains entries
(™) = (T(™), g) (7.5)

Usually, the number of basis and testing functions is identical
and A is a square N x N matrix. However, this does not have to be
the case. Note that other discretization procedures, such as the finite
difference method, produce similar matrix equations and in many cases
can be placed on a one-to-one correspondence with a particular MOM
discretization.

In Section 7.5, we will return to the question of whether or not
we want to consider an iterative solution to (7.3). To a large degree,
this will depend on the presence of any special symmetries or sparsity
in the matrix A, which in turn depend on the nature of the operator
L and the expansion and testing functions. In practice, the CG algo-
rithm is often employed to treat equations where A contains perturbed
Toeplitz symmetries. Section 7.6 describes the manner in which these
symmetries can be exploited to reduce the required computer storage
and computation within a CG solution. Sections 7.7-7.10 present ex-
amples illustrating perturbed Toeplitz symmetries and the CG-FFT
implementation.
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7.3 The Conjugate Gradient Algorithm

There are several different ways in which we can develop the CG
algorithm. For example, we can construct the algorithm from the min-
imization of an error functional or from an orthogonal expansion of
the solution. In actuality, these two ideas are linked together, i.e., each
functional is associated with a specific orthogonal expansion. The CG
algorithm reduces to the process of generating the orthogonal functions
and finding the proper coefficients to represent the desired solution.

It suffices to consider the non-singular matrix equation

Az =) (7.6)

where A denotes an N X N matrix, z is the unknown N X1 column
vector to be determined, and b is a given N X1 column vector usually
denoted as the “right-hand side.” It is necessary to define an inner
product, and we employ the conventional Euclidean scalar product

(z,9) =y"= (7.7)

and its associated norm

lzll = v/(=,=) (7.8)

where the “*” denotes transpose-conjugate matrix.

All iterative algorithms for the solution of (7.6) seek an estimate
of the solution in the form

Tp =2Zp-1+ anpn (79)

where z,,_; is a previous estimate of the solution, p, is a “direction”
vector (p, determines the direction in the N-dimensional space in
which the algorithm moves to correct the estimate of z), and ay, is a
scalar coefficient (o, determines how far the algorithm moves in the
Pn direction). Although all iterative methods are similar in that they
follow the form of (7.9), they differ in the procedure by which they
generate a, and p,. Non-divergence can be guaranteed by selecting
ay in order to minimize an error functional. The CG algorithm to be
presented is based on the error functional

En(z,) = || Az - b|)? (7.10)
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Note that other functionals have been used and give rise to related
members of the family of CG algorithms. The coefficient a, from

(7.9) that minimizes the functional is given by

_ _("n—l.Apn>

a, = 7.11
"= T ApP (7.11)

where for convenience we define the residual vector
r, = Az, — b (7.12)

The error functional from (7.10) is related to an orthogonality
property. In order to connect these ideas, consider a solution estimate
of the form

Tp =Tp_1 + an(pn + ,Bnqn) (7'13)

where the direction vectors p, and g, are fixed, and the scalar co-
efficients a, and B, are to be obtained in order to simultaneously
minimize the error functional of (7.10). Carrying out the simultaneous
minimization, we find that a, is given by (7.11) with p, replaced by
(Pn + Bngn) and B, is given by

B = ("'n—l.AQn)”APn“z - ("n—l,APn)(APn,Aqn>
r <rn—1,Apn)”AQn“2 - (rn—l,AQn)(AQn,Apﬂ->

(7.14)

Suppose that p, and ¢, are arbitrary direction vectors, but that ¢,
has been previously used in the iterative procedure, so that

Tnol = Tp-2+ ap_14n (7.15)
where a,_; was previously found to minimize the error functional,

ie.,

_ _(rn-2,AQn)

Ap.1 = 7.16
S VA (7:16)
It immediately follows that
("'n—l,AQn) = <7'n—2 + an—lAQn,AQn) =0 (717)
- A n A n
8, = =(4pn, Agn) (7.18)

| Agnl|®
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and
(Agn, A(Pn + Brgn)) = 0 (7.19)

Therefore, the process of selecting direction vectors and coefficients
to minimize the error functional of (7.10) is optimized when vectors
satisfying the orthogonality condition

(Ap:;,Ap;) =0 i#j (7.20)

are used. If an arbitrary set of direction vectors are employed, the
process of minimizing (7.10) will adjust their coefficients in order to
generate a sequence satisfying (7.20). Vectors which satisfy (7.20) are
said to be mutually conjugate with respect to the operator A* A4, where
A* is the adjoint with respect to the inner product, i.e,

(A*z,y) = (z, Ay) (7.21)

In accordance with our definition for the inner product, the matrix A*
is the transpose-conjugate of A.

Suppose that a set of direction vectors satisfying the orthogonality
condition of (7.20) is readily available. Since A4 is non-singular, these
vectors are linearly independent and span the N dimensional space.
The solution can be expressed in the form

z=zo+yp1 + a2p2+ -+ anpn (7.22)

where, for generality, the arbitrary vector zo can be thought of as an
initial estimate or “guess” for the solution z. Because of the orthogo-
nality of (7.20), each coefficient can be found independently according

to (ro,Apn)
—\T0,APn
ap = ————= 7.23
pI? (7.2
where ro is defined in (7.12).
From the above relationships, it is apparent that
rn =70+ a1Ap1 + -+ + anAp, (7-24)
and recursive relationships are given as
Pn =Pp_1 + a,Ap, (7.25)

ZTp =Zp_1 + AnPn (7.26)
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and

lIrall? = llra-all® = lanl?[| Apnll® (7.27)
From (7.20), (7.23), and (7.24) we can readily deduce that

App <m
(7o, Apm) = {<r°' o ) N (7.28)

Therefore, (7.11) and (7.23) are equivalent.
In order to judge the accuracy of z,, it is desirable to estimate
the error vector

en=2—2, (7.29)

at each iteration step. However, this quantity is not directly com-
putable since we do not know the solution z. Instead, it is convenient
to compute the residual norm

|7l || Azn — |
N = =
" el liell

(7.30)

The residual norm only provides an indirect bound on the error, ac-
cording to

”e"” < K.(A)”rn“ (7_31)

where x(A) is the condition number of the matrix A [Golub and
Van Loan, 1983]. x(A) is always greater than unity. If the matrix A
becomes ill-conditioned, x(A) will grow large and the residual norm
N,. may be a poor indication of the accuracy of z,,. As illustrated by
(7.27), the residual norm must decrease monotonically (a direct conse-
quence of minimizing the error norm of (7.10) at each iteration step).
The CG algorithm can be terminated when the residual norm decreases
to some predetermined value. As long as A is fairly well-conditioned,
N, < 10™* suggests that several decimal places of accuracy are ob-
tained in the n-th iteration estimate z,,.

The above process of expanding a solution in terms of mutu-
ally conjugate direction vectors is known as the “conjugate direction
method,” after Hestenes and Stiefel [Hestenes and Stiefel, 1952]. The
conjugate direction method does not specify the means for generating
a mutually conjugate sequence, however. An approach based on the
conjugate direction method which includes a procedure for generating
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the p-vectors was introduced by Hestenes and Stiefel and is known as
the “conjugate gradient” method. The process begins with the choice

p1=—A'ro (7.32)

which is proportional to the gradient of the functional E,, at z = z,.
Subsequent functions are found from

Pn+1 = _‘A*rn + IBnpn (733)
where the scalar coeflicient £, is chosen to ensure
(A" App,pni1) = 0 (7.34)

We will demonstrate that enforcing (7.34) is sufficient to ensure that
the p-vectors form a mutually conjugate set. To illustrate, we first
present several relationships involving the vectors generated within the

CG algorithm.
Based upon (7.33), we write
(Prt1,4%rm) = —(A%ry A*rr) + Br(pn,A"Tm) (7.35)

From (7.28), the first and last inner product in (7.35) vanish for m > n,
leaving

(A*rp A*rm) =0 m#n (7.36)
Equations (7.28) and (7.33) can be combined to yield
(A*Pp Pnp1) = —(A%rp A'rn ) = —||A%r,||? (7.37)
It follows from (7.11) that
| A*rn_a]l?
Qp = ———— 7.38
Azl (739
From (7.25), we have
A'rp = A*rp 1 + a, A" Ap, (7.39)

Because of the orthogonality expressed in (7.36), an inner product
between A*r,, and (7.39) leads to the result

w* 2
(B m=n

Qn

(A*App A*rp) = { ZllAI2 g (7.40)

Qn

0 otherwise
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Using (7.40) with m = n, we find the value of f, from (7.33) and
(7.34) to be
| 4*ra|”

To see that the formula for 8, guarantees the proper orthogonal-
ity between vectors when (7.20) is not explicitly enforced, consider the
above iterative process. During the first iteration, (7.11) and (7.25) are
enforced explicitly, so that

(A*rip1) =0 (7.42)

Using (7.32), this is equivalent to
| (A*rg A*r1) =0 (7.43)
Because of (7.43), the expression for 8, presented in (7.41) is sufficient

to ensure that
(A*Apg'pl) = 0 (744)

On the second iteration, (7.25), (7.42) and (7.44) guarantee that
(A*’I‘z,pl) = —-(A*’I'z,A*'I‘o) =0 (745)

Taking an inner product of (7.33) (with n = 1) and A*r,, we find
that

(A*’I'I,A*’I'2> =0 (746)
Therefore, the value of 8, from (7.41) is sufficient ta ensure that

(A*Ap;;’pz) =0 (7.47)
What remains is the validity of

<A*Ap3'p1) =0 (748)

From (7.33) and (7.41), p,, can be written as

n-1 *
. i
Pn = —”A rn—lllz Z “A*"'i”2 (7-49)
1=0
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Using (7.49) with n = 3 it follows that

(A*Apy A*ry)

2
A*A = —||4*ry))?
( P1,P3) || 2” Z ||A*"’i||2

1=0

But, by the relationship established in (7.40) (which is valid for these
values of n and m as established in (7.43), (7.45), and (7.46), the
above reduces to

(7.50)

(4 appe) = -armalP {2+ 2] =0 (1.51)
ay ay
Thus, in an inductive fashion we see that the direction vectors gener-
ated by the above procedure satisfy the assumed orthogonality prop-
erties of the conjugate direction method.

In the computer science literature, this particular form of the
conjugate gradient algorithm is sometimes referred to as the “conju-
gate gradient method applied to the normal equations.” The original
CG algorithm due to Hestenes and Stiefel was only valid for a Hermi-
tian positive definite matrix A. To apply the algorithm to arbitrary
systems, we have in effect premultiplied the matrix equation by A*,
constructing the “normal equations.” Note that a variety of related
conjugate gradient algorithms are possible, based on different error
functionals or different definitions of the inner product.

The conjugate gradient algorithm is summarized as follows:

Initial steps:

Guess zg
To ZAzo -b
P =—A'rg

Iterate (n = 1,2,...):

(rn1,4Pn) _ I14%rns?
Il Apnl|? | Apal|?
Tp =2Tpn-1+ QnPn
ry =Az, —b=7r,_ 1+ anAp,
ﬂn = ”A*Tnllz
| A*rn_s]f?
Pny1 = — A*rn + Bnpn

Qy = —
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7.4 Convergence of the Conjugate Gradient Algorithm

For an arbitrary non-singular matrix 4, the CG algorithm out-
lined in the previous section produces a solution in at most N iteration
steps (assuming infinite precision arithmetic). This is a direct conse-
quence of the fact that N p-vectors span the solution space. In addi-
tion to this desirable feature of the CG method, the solution estimates
generated at each iteration step have the property that

|2 —zpll < |z —2m|| n>m (7.52)

Thus, the error in the solution estimate decreases monotonically as
the algorithm progresses. To show this result, consider (7.49) and the
orthogonality of the A*r, vectors as shown in (7.36). These equations
can be combined to yield the inequality

(pi,pj) 2 0 (7.53)

From the definition of z,,, it follows that

n
Tp — Ty = Z a;p; (7.54)

i=m+1

Note that the coefficients a; are nonnegative by (7.38). Equations
(7.53) and (7.54) can be combined to produce

(2n —2ZmzZN -2, >20 N>n>m (7.55)
Finally, (7.55) can be combined with the identity
12 = 2mll* = ll2zn = 2m|* + ||z — 2nl|* + 2Re{(2n — 2m,z — 24)} (7.56)

to prove (7.52).

Although the above analysis shows that the CG algorithm pro-
duces estimates 2, that converge monotonically to the solution of
the matrix equation, it says nothing about the rate of convergence.
Furthermore, it might appear that the entire set of direction vectors

{p1,p2,---pN} are required to produce the solution. In order to study
the convergence of the CG method from a different perspective, note
that the residual at the n-th iteration step can be written as

rn = Rn(A4*)rg (7.57)
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where R,(AA*) is the residual polynomial of order n in the matrix
AA*, ie.,

R.(AA*) = zn: Enk(AA*)E (7.58)
k=

The coefficients {{,r}in (7.58) are combinations of the previous scalars
a and (3 from (7.38) and (7.41), and are therefore real-valued [Stiefel,
1958; Jennings, 1977].

To relate the residual polynomial to the error norm produced
by the CG algorithm at the n-th iteration step, let {);} denote the
eigenvalues of the matrix AA* (these are also the eigenvalues of the
matrix A*A) and let {u;} denote the orthonormal eigenvectors of
AA*. The initial residual vector can be decomposed into an eigenvector
expansion according to

N

T = Z(u,-,ro)ui (7.59)

=1

Inserting this expansion into (7.57), replacing (AA*)*u; by (\;)*u;,
and using the orthonormal property of the eigenvectors produces the
result

N
En=(rnrn) = ) [(ui,ro) [ Ra()]? (7.60)

=1

Equation (7.60) can be used to draw a variety of conclusions about
the CG algorithm [Stiefel, 1958; Jennings, 1977; Peterson, Smith and
Mittra, 1988]. First, note that at some point in the iteration process,
the algorithm will terminate with E, = 0. At this point, the algo-
rithm will have generated a residual polynomial R,()) having zeros
at each of the eigenvalues );. Since the algorithm can place one ad-
ditional zero in this polynomial at each iteration step, and will place
these zeros in order to minimize E,, it follows that the algorithm will
require at most M steps to converge, where M is the number of in-
dependent eigenvalues of AA*. In addition, if eigenvalues are repeated
or clustered together in groups, the algorithm may only need to place
one zero somewhere within the cluster in order to significantly reduce
the error as measured by (7.60). Furthermore, the terms in (7.60) are
weighted by the coefficients of the eigenvector decomposition of the ini-
tial residual. If some of these coefficients are very small, the algorithm



7.5 Use the CG Method in Computational Electromagnetics 255

will not need to place a zero of the polynomial at the corresponding
eigenvalues. In fact, if the initial residual can be represented by ex-
actly one eigenvector, the CG algorithm will converge in exactly one
iteration!

The effect of the initial estimate of the solution on the convergence
behavior is to alter the initial residual. The choice of 2o = 0 as an
initial estimate of the solution produces an initial residual norm of
No =1 in accordance with (7.30). A “good” initial guess will be one
that reduces No from unity to some smaller value (No = 10~2?) by
altering the coefficients in (7.60) without introducing additional terms
into the summation. In other words, it would be counterproductive to
employ an initial estimate of the solution that excites more eigenvectors
in the decomposition of (7.59) than a zero estimate for zo would excite,
because more iteration steps would be required despite a smaller initial
residual. Because of the difficulty of ensuring this property, the zero
estimate for 2o is often employed in practice and is sometimes called
an “optimal” starting value. (The “best” starting value would be the
solution z!)

A similar analysis could be employed to evaluate preconditioning
strategies used with the CG algorithm [Evans, 1983; Kas and Yip,
1987]. Although a detailed discussion of preconditioning is beyond the
scope of the present article, the technique can be viewed as the solution
of the modified equation

M4z =M (7.61)

where M~1 is an approximate inverse to the matrix 4. A good pre-
conditioning would alter the eigenvalue distribution of the iteration
matrix or the eigenvector decomposition of the initial residual in order
to ensure convergence in fewer steps than required by the CG algorithm
applied to the original equation Az = b.

7.5 When to Use the CG Method in Computational
Electromagnetics

Recent research suggests that iterative methods offer advantages
over direct methods in three situations [Peterson, 1987]. The most
common use of iteration is to exploit some storage reduction feature
present in the matrix equation. Iterative algorithms can easily exploit



256 7. Electromagnetic Scattering

any sparsity or redundancy in the matrix elements to reduce computer
memory requirements, permitting the treatment of systems too large to
be analyzed in other ways and improving the computational efficiency
for entire classes of problems. The sparse systems arising from differ-
ential equation formulations of electromagnetics problems [Peterson,
1988] could be treated in an obvious manner using the CG method.
For EM applications formulated in terms of integral equations, the CG
algorithm has been widely employed to treat equations with slightly
perturbed Toeplitz symmetries [Borup and Gandhi, 1985; Cwik and
Mittra, 1985; Pearson, 1985; Peterson and Mittra, 1985, 1987; Peter-
son, 1986]. Because of its importance, this class of problems is examined
in detail in Sections 7.6-7.10. A second situation in which iteration may
be preferable to direct methods of solution arises if the convergence of
the iterative algorithm is very rapid. As discussed in the preceding
section, fast convergence is a result of the specific eigenvalue distribu-
tion and eigenvector decomposition of the excitation. A third situation
where iteration may be preferable to direct methods of solution involves
the failure of direct methods due to ill-conditioning. It is sometimes ar-
gued that iteration may be the only stable way to solve ill-conditioned
equations [Sarkar et al., 1981]. This argument has merit, but only in
special cases.

The question of whether to use the CG algorithm for a given class
of problems may be brought into better focus by a discussion of when
not to use the iterative algorithm. It is relatively easy to identify sit-
uations when iterative methods will be less efficient than alternative
direct methods of solution. For example, if many right- hand sides are
to be treated, it is doubtful that iterative methods can compete with
direct methods that generate an implicit inverse matrix (i.e., in the
form of an LU factorization). A similar situation arises if the conver-
gence of the iterative method proves to be extremely slow. Because of
the uncertainty associated with convergence rates, it is usually con-
ceded that direct methods are preferable for the treatment of systems
small enough to be stored in primary memory. (A modern supercom-
puter can store fully- populated systems having order in the thousands;
specialized machines that spool data from secondary storage can treat
full matrix equations having order in the tens of thousands.) Iterative
methods might prove superior for specialized large-order equations that
can not be stored in directly-addressable memory.

There are a variety of factors that affect the efficiency of iteration
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as compared to direct methods such as LU factorization. Iteration can
be terminated after a few digits of accuracy are obtained in the solu-
tion, which may be all that is desired or needed for the application at
hand. If a good initial estimate of the solution is available, an iterative
algorithm may be able to refine the result to necessary accuracy in
far less time than required for the direct solution of the same system
(which does not make use of the initial estimate). It is possible that an
iterative algorithm may converge quickly even without a good initial
estimate of the solution (for instance, fast convergence may result if
only a few eigenvectors are excited by the initial residual). In other
words, there are circumstances where iterative algorithms require less
computation than direct methods. It is difficult, however, to identify
these situations except by trial and error. In terms of the error func-
tional as written in (7,60), the convergence behavior is determined by
the eigenvalue distribution of the operator and the eigenvector decom-
position of the initial residual. The properties of certain canonical elec-
tromagnetics problems can be studied to learn more about the typical
behavior of the CG algorithm for EM applications [Peterson, Smith
and Mittra, 1988]. In order to accomplish this, we need to relate the
eigenvalue structure of the original continuous operator to that of the
MOM matrix operator.

To relate the eigenvalues of the MOM matrix to those of the orig-
inal operator, consider the continuous eigenvalue equation involving
the original operator, namely,

LE = \E (7.62)

(Assuming the existence of solutions to this equation, E is an eigen-
function and A an eigenvalue.) The discretization of (7.62) using the
identical expansion and testing functions employed in (7.2-5) produces
the generalized matrix eigenvalue equation

Ae = ASe (7.63)

where the entries of matrix A are defined in (7.4) and the entries of
matrix S are given by

Smn = (T(™, B™) (7.64)

The inner product used in (7.64) is the same as that employed in (7.4)
and (7.5). The S-matrix is a scaling matrix that alters the location of
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Eigenvalues of A Square of mag of Eigenvalues
eigs of A of AA*
346.495 — j 45.1867 122101 122101
114.592 + 3198.680 52605.3 52605.2
114.592 + 3198.680 52605.2 52605.2
7.8130 + 37108.948 11930.8 11930.8
7.8130 + 5108.948 11930.7 11930.7
0.2265 + 7 66.7360 4453.74 4453.74
0.2265 4+ 35 66.7359 4453.74 4453.73
0.0036 4 j 52.2904 2734.29 2734.28
0.0036 + j 52.2904 2734.28 2734.28
0.0000 + ; 48.4810 2350.41 2350.40

Table 7.1 Eigenvalues of the MOM matrix A and the matrix AA*, for
an order-10 matrix constructed from the electric-fleld integral equation
using subsectional pulse basis functions and Dirac delta testing functions.
The scatterer is a circular conducting cylinder illuminated by a TM wave.
A is complex-symmetric and circulant.

the original eigenvalues in the complex plane when projecting them
onto the matrix operator. Equation (7.63) suggests that the eigenval-
ues of the matrix §~1A will be some sort of approximation to the
eigenvalue spectrum of the original continuous operator L. This re-
lationship has been verified by numerical experimentation [Peterson,
Smith, Mittra, 1988].

The interpretation of the CG algorithm embodied in (7.60) uses
the eigenvalues of AA* rather than those of A. For a general non-
Hermitian matrix A, a precise mathematical relationship can not be
found between the complex eigenvalues of A and the real eigenvalues of
the Hermitian matrix AA*. However, in special cases such as electro-
magnetic scattering from circular perfectly conducting cylinders, the
eigenvalues of AA* are the square of the magnitude of the eigenvalues
of A (Table 7.1). Thus, there is reason to believe that some corre-
spondence exists that can be used to link these ideas for many actual
applications.

For EM scattering problems formulated in terms of integral equa-
tions and involving uniform plane wave excitations, numerical experi-
ments have shown that approximately N/3 eigenvectors are excited sig-
nificantly by the right-hand side when a discretization involving about
10 subsectional cells per wavelength is employed [Peterson and Mittra,
1986). While this is not a general result, it is typical that far less than
the full N iteration steps are required with the CG algorithm to re-
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duce N,, to 10~%. However, it was also observed that seldom does the
CG algorithm converge in fewer than N/6 iteration steps, unless the
discretization level is very fine [Peterson and Mittra, 1986]. This sug-
gests that the CG algorithm is usually not fast enough to outperform
a direct method such as LU factorization. A small body of experience
suggests that the convergence rate of the CG algorithm can be quite
slow when treating the sparse systems arising from a discretization of
the differential equations for EM scattering [Smith, Peterson and Mit-
tra, 1990], unless preconditioning is employed. From these results, we
conclude that the CG algorithm is probably not as efficient as direct
methods for solving general, fully-populated systems arising from EM
problems. Only in special cases (such as described in Sections 7.6-7.10)
is the CG algorithm likely to prove consistently superior.

Direct methods such as LU factorization can fail because of ac-
cumulated rounding errors in a variety of situations [Golub and Van
Loan, 1983]. If the matrix is ill-conditioned, slight errors in the ma-
trix entries can lead to gross errors in the solution regardless of the
particular technique (direct or iterative) used to solve the equation.
LU factorization can also fail if Wilkinson’s growth factor [Golub and
Van Loan, 1983] becomes relatively large during factorization, or if the
matrix is very ill-conditioned. A remedy to either of these latter situ-
ations may require an increase in the precision of the calculations. If
implemented in a robust manner, iterative methods are thought to be
less susceptible to a progressive buildup of round-off error. However,
the convergence rate of iterative algorithms depends on the condition
number of the system matrix, and in practice is slow for systems that
are ill-conditioned [Evans, 1983]. To understand why the convergence
rate of the CG algorithm is expected to be slower for poorly condi-
tioned systems, consider (7.60). The residual polynomial R,(A) must
vanish at each important eigenvalue appearing in the summation of
(7.60). However, the residual polynomial has unity value at the origin
(A = 0). As the matrix becomes poorly conditioned and the eigenvalue
spectrum of AA* spreads along the positive real axis, more degrees
in the polynomial are necessary in order to effectively reduce the error
measured by (7.60). In addition, because of increased round-off errors
during the computation of the matrix-vector operations, the finite step
termination property of the CG algorithm is no longer obtained. If the
equation is very badly conditioned convergence may slow to the point
of stagnation [Peterson and Mittra, 1985, 1987]. Finally, because of
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(7.31) the residual norm usually employed to estimate the accuracy of
the solution will not be valid as A becomes poorly conditioned. Thus,
a reliable criterion for terminating the CG algorithm is not apparent.

These observations cast doubt on the likely success of the CG al-
gorithm applied to very ill-conditioned systems. However, if the initial
residual is orthogonal to the eigenvectors that correspond to the near-
zero eigenvalues, the matrix operator will appear to be better condi-
tioned than it actually is. In this case, the CG algorithm should remain
relatively robust and the convergence rate may be acceptable. For the
purpose of discussion, we refer to eigenvalues and eigenvectors that are
not excited by the initial residual as eztraneous. Examples illustrating
the successful iterative solution of poorly conditioned systems usually
involve extraneous eigenvalues [Sarkar et al., 1981].

As an example, extraneous eigenvalues can arise when an extreme-
ly fine discretization is used within the numerical model of an un-
bounded operator. Consider the numerical treatment of the electric-
field integral equation (EFIE) representing TE-wave scattering from a
perfectly conducting cylinder. For circular cylinders, the spectrum of
the EFIE consists of an infinite set of discrete eigenvalues which tend to
be spread along the negative imaginary axis in the complex plane [Pe-
terson, Smith and Mittra, 1988]. As the order of the matrix equation is
increased, eigenvalues having progressively larger magnitudes are pro-
jected from the continuous operator to the matrix operator. Although
the condition number will increase with each eigenvalue, the EM field
incident upon the scatterer generally contains a decreasing contribu-
tion from each additional eigenfunction. As the order of the matrix
increases, the addition of extraneous eigenvalues will degrade the con-
dition number until the LU factorization becomes unstable because of
the extraneous eigenvalues. However, iterative algorithms don’t “see”
the extraneous eigenvalues and may provide a stable solution.

Thus, it is possible that iteration can be used to solve certain
systems that are too ill-conditioned for treatment by direct methods.
However, in the absence of theoretical support indicating that near-
zero eigenvalues (or very large eigenvalues) are extraneous, there is
little reason to expect iteration to succeed in the solution of a very
ill-conditioned system.
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7.6 Discrete-Convolutional Symmetries and
the CG-FFT

Electromagnetic scattering problems posed in terms of integral
equation formulations require the solution of a fully-populated matrix
equation. Because general purpose direct algorithms for matrix solu-
tion require the full N x N matrix to be stored in computer memory,
a bottleneck is placed on the solution process for large systems. There
are certain EM problems that provide a significant degree of structure
in the system matrix, and these allow the bottleneck to be avoided.
The class of problems to be discussed are those posed in terms of
integral equations having convolutional kernels. For relatively simple
geometries, these equations can sometimes be discretized to yield ma-
trices having discrete-convolutional symmetries. The types of scatter-
ing geometries treated in this manner include flat plates and surfaces
of constant curvature [Pearson, 1985; Nyo, Adams and Harrington,
1985; Peterson, 1986; Peterson and Mittra, 1987; Peters and Volakis,
1988], penetrable dielectric bodies [Borup and Gandhi, 1984, 1985; Su,
1987), and planar frequency selective surfaces [Tsao and Mittra, 1982;
Cwik and Mittra, 1985; Montgomery and Davey, 1985]. Unfortunately,
arbitrarily-shaped structures that are convenient to analyze with sur-
face integral equations (such as bent wires, airplanes, etc.) do not fall
into the class that naturally produce discrete-convolutional symmetries
in the associated system matrix. This appears to fundamentally limit
the occurrence of this type of symmetry in electromagnetics equations.
Although specialized Toeplitz algorithms [Pries, 1972; Golub and Van
Loan, 1983] are sometimes appropriate for the systems of interest, it-
erative methods offer the possibility of treating more general matrix
equations. For example, the slightly perturbed Toeplitz systems dis-
cussed below can not usually be treated with conventional Toeplitz
routines.

The type of matrix structure of interest contains one or more
discrete convolution operations. A general discrete convolution is an
operation of the form [Brigham, 1974; Oppenheim and Schafer, 1975]

N-1
€m = Z jn 9m-n (7‘65)

n=0

where e, j, and g denote sequences of numbers. Equation (7.65) is
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equivalent to the matrix equation

90 9 9-2 -+ G1-N

j e
@i g0 9-1 v 2N ;‘,’ e‘l’
92 91 go ° G3-N D= (7.66)
: : : : o en.
gN-1 9gN-2 9gN-3 -*- Jo IN-1 !

The N x N matrix depicted in (7.66) is a general Toeplitz matrix.
All of the elements of this matrix are described by the 2N — 1 entries
of the first row and column. If the elements of the sequence g repeat
with period N, so that

In-N = gn n=12,...,.N-1 (7.67)

the operation is known as a circular discrete convolution (and the N x
N matrix in (7.66) is circulant). Otherwise, the operation is a linear
discrete convolution. Note that any linear discrete convolution of length
N can be embedded into a circular discrete convolution of length 2N —
1. This can be accomplished by extending the original sequence g to
repeat with period 2N — 1, zero-padding the sequence j to length
2N — 1, and changing the upper limit of the summation in (7.65) to
2N - 2.

The fast Fourier transform (FFT) algorithm is an efficient way of
implementing the discrete Fourier transform [Brigham, 1974]

gn= e ® n=0,1,...,N-1 (7.68)
k=0

The inverse discrete Fourier transform is defined

1
=NZgn k=0,1,---,N—-1 (7.69)
n=0
For notational purposes, we use
§ =FFTn(g) (7.70)

g =FFT(3) (1.71)
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to denote the discrete Fourier transform pair for a sequence of length
N. The discrete convolution theorem states that if (7.65) is a circular
discrete convolution of length N, it is equivalent to

n = Jniin n=0,1,---, N -1 (7.72)

If Equation (7.65) is a linear discrete convolution, the equivalence holds
if the linear convolution is embedded in a circular convolution of length
2N — 1 as described above.

To summarize, the discrete convolution operation of (7.65) is
equivalent to the Toeplitz matrix multiplication of (7.66). Furthermore,
either can be implemented using the FFT and inverse FFT algorithm
according to the discrete convolution theorem [Brigham, 1974; Oppen-
heim and Schafer, 1975]

e = FFT {FFTn(j)FFTn(g)} (7.73)

If the discrete convolution is of the linear type, the FFT’s must be of
length 2N — 1 rather than length N.

The above conclusions are easily generalized to two or three di-
mensions. A two-dimensional discrete convolution is an operation of
the form

N-1M-1
€pq = Z Ejnmgp—-n,q_m {':} =0, ]_,...,N_]_ (7.74)
n=0 m=0

This equation is equivalent to the matrix operation

Go G, -+ Gi-N Jo Ep
G G oo Gao J E
Al I R () e (7.75)
: : . Ga-n : :
GN-1 GN-z -+ Gy JN-1 En_y

where each element of the N x N block Toeplitz matrix of (7.75) is
itself a Toeplitz matrix of the form depicted in (7.66). The relationship
established in (7.73) can be extended to multiple dimensions in an
obvious manner.

To illustrate the appearance of discrete convolutional structure

in electromagnetics equations, consider the one-dimensional integral
equation

E(z)= ./ab J(z')K(z-z')dz'’ a<z<b (7.76)
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J(z) represents the unknown function to be determined and E and
K are given. If we consider an application of the method of moments
as described in Section 7.2, under the restriction that basis and testing
functions have the form

B™(z) =B(z — z,,) (7.77)
T™")(z) =T(z — 2m) (7.78)
where
z, = 29 + nAz (7.79)
the discrete system described in (7.3) can be written as
N
€m = Z]n Im-n (7.80)
n=1

which is exactly the discrete-convolutional form identified above. In
Equation (7.80),

Im—n = /_: T(z—2m) /-Z B(z' — z,)K(z — 2')dz'dz  (7.81)

In contrast to direct methods, iterative algorithms only require
the presence of an implicit matrix operator (a subroutine that when
given a column vector returns the product of the N x N system ma-
trix with the column vector). As a result, any type of structure in the
matrix can be easily exploited using iterative algorithms. The matrix
structure or sparsity can be completely accounted for in the subroutine
that performs the matrix-vector multiplication. Therefore, the specific
type of matrix structure need not affect the organization of the part
of the computer program that involves the main body of the itera-
tive algorithm. The CG driver routine can be thought of as a “black
box” similar in form to library routines that perform Gaussian elimina-
tion. Although the perturbed Toeplitz structure is probably the most
common arising from integral equation formulations, it only occurs
in special cases involving relatively simple geometries. In many other
practical problems, most of the N x N matrix will not contain any
type of structure.

To illustrate the appearance of discrete-convolutional symmetries
in actual electromagnetic problems, the following sections present ex-
amples of several applications of the CG-FFT, including scattering



7.7 TM-Wave Scattering by Inhomogeneous Dielectric Cylinders 265

from inhomogeneous dielectric cylinders, hollow finite-length circular
cylinders, resistive or conducting plates, and frequency selective sur-
faces. In each case, the problem formulation and method-of-moments
discretization will be discussed, followed by an appraisal of several
advantages and disadvantages of each particular CG-FFT implemen-
tation.

7.7 TM-Wave Scattering by Inhomogeneous Dielectric
Cylinders

Figure 7.1 depicts an inhomogeneous dielectric cylinder that can
be characterized by a complex relative permittivity e,(z,y). If illu-
minated by a normally incident transverse magnetic (TM) wave, the
field components present are E,, H,, and H,. The dielectric mate-
rial may be replaced by equivalent polarization currents radiating in
free space, defined

J(z,y) = zjweo e (2,¥) — 1] Ex(2,v) (7.82)

Although this equivalent volumetric source is an unknown function, it
must satisfy the electric field integral equation (EFIE)

inc — JZ .
E(z,y) = jweole, —1) T Iwhod: (7.83)
where
A (z,y) = / J,(z',y')%jH((,z)(kR)dz'dy’ (7.84)
R=+/(z-2')2+(y - y')? (7.85)

and E{"™ denotes the known incident field (the field that would be
present in the absence of the dielectric material).

The cylinder cross-section can be divided into cells as illustrated
in Fig. 7.2. Each cell in the model is assumed to have a constant average
relative permittivity e,, that may vary from cell to cell. However, the
cell size and shape is constrained to follow the lattice structure depicted
in Fig. 7.2, in order to provide the necessary symmetry features needed
to employ the CG-FFT. For the moment, assume that the cells in
the model are numbered in some random fashion from 1 to N. If the
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Figure 7.1 Cross-sectional view of a dielectric cylinder illuminated by a
TM wave.
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Figure 7.2 Regular lattice of square cells used to model the cylinder
cross section.

unknown polarization current density is represented within each cell
by a constant or “pulse” basis function

_[1 if(z,y)€celln 7.86
Pn(2,9) {0 otherwise (7.86)

so that the global representation for the current density is the super-
position

N
Jo(2,9) 2 ) jnpa(2,) (7.87)

n=1

where j, are scalar coefficients to be determined, (7.83) reduces to
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Ein*(z,y) =

N
: nPn(2,Y) : // 1 2 .y
,éj"{jk[e,(z,y)—llﬂk” | it tRyd

(7.88)

Enforcing (7.88) at the centers of each of the N cells produces an
N x N system

CEr(z1,n1) ] [Zu Zaa 0 ZiN] [01]
E(22,y2) Zyy Zyy -+ Zan J2
| = (7.89)
LE™(zn,yn)]  LZny Zna --- Znwnd Ljnd

whose entries are given by

T = / [ BO(Rn)d mEn(1.90)
and
Zmm = ]lc(e,:’,, - + g / / H{(kRm)dz'dy’  (1.91)
where
B = V(2m =~ 22 + (ym — ¥')? (7.92)

The integrals in (7.90) and (7.91) can be evaluated in closed-
form if the cell shapes are approximated by circles of the same area
[Richmond, 1965]. The necessary integration is given by

ma )
/ / HP(kR)p'dp'd’ = {2 Jo(kp)H{(ka) — 4 p<a
$'=0Jp'=0

223 7y (ka) B (kp) p>a
(7.93)
where (p,¢) represent conventional cylindrical coordinates. Using the
circular-cell approximation, we obtain

z,,,,,:”’;—" (ke HD(kRpmn) m#n (7.94)
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where a,, is the equivalent radius of cell n and

Ry = \/(zm = 2a)2 + (Ym — Yn)? (7.95)

The relative permittivity ¢, only appears in the diagonal matrix en-
tries ra e
Zmm = nTmH£2)(kam) - k(_g:’":'r—_m_l) (7'96)
We now consider the lattice numbering suggested in Fig. 7.2. As-
suming that the lattice consists of N, by N, cells numbered globally
by rows parallel to the y-axis, the numbering follows the organization
1,2,...,Ny,Ny+1,...,2N,,... N. N, . Because of the lattice structure,
the matrix elements of (7.94) are only functions of the displacement
along the lattice relative to the source cell. It follows that the Z -matrix
from (7.89) can be written in the form of an N, by N, block Toeplitz
matrix

[ 720z Zy -+ ZNen
z, 2z, - Zne

Z, Z, 29 i Znas (7.97)

L ZNz—l ZN::—Z ZN::-—3 Z(()Nz—l) J

where each block has the N, by N, Toeplitz form

[ 2o z Z2 **+ ZNy-1]
21 20 2 *** ZNy-2
22 z zp ser ZNy-3 (7.98)

L ZNy-1 ZNy-2 2ZNy-3 °*° 2 J

The entries located along the main diagonal of (7.97) may be
perturbed from the Toeplitz structure because of the presence of ¢,
in (7.96).
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The Toeplitz/block Toeplitz structure of (7.89) can be alterna-
tively expressed in terms of a two-dimensional linear discrete convolu-
tion

Ny—-1 Nz-1
B =Dpndmn+ Y Y JpeKmpng
p=0 ¢=0
m=0,1,...,N, -1
n=0,1,...,N, - 1 (7.99)

where we have now adopted a two-dimensional indexing scheme to de-
note the relative location in the lattice of Fig. 7.2. Ei"¢ is the incident
field sampled at location mn in the lattice,

. D, = —JNErmn

“%(ermm — 1) (7.100)
Koo =?Hl(2)(ka) (7.101)
K;,; =Q¥J1(ka)ﬂéz)(kfi.-j) (7.102)

and 1.2;,' denotes the distance between the centers of two cells displaced
by ¢ cells along y and j cells along Z in the lattice of Fig. 7.2.
The redundancy present in the matrix is clearly indicated by the
Toeplitz structure of (7.97) and (7.98), and in fact the entire Z -matrix
can be generated from at most 2N,N, entries. Thus, the equation is
an excellent candidate for iterative solution. Iterative solution algo-
rithms do not explicitly require the presence of the N x N matrix,
since they only use the result of the matrix multiplied with a col-
umn vector. Because the matrix does not need to be stored in com-
puter memory, the necessary storage can be reduced from (N:N,)?
to O(N.N,). Since the matrix operator is primarily a linear discrete
convolution, it can be implemented using a two-dimensional FFT al-
gorithm. Although the required matrix-vector multiplications could be
implemented explicitly, the FFT permits a reduction in computation
from O(N?) to O(NlogN) and adds to the overall efficiency of the
implementation. However, there is a price to pay for the use of the FFT
in this manner. Because (7.99) involves a linear rather than a circular
convolution, it is necessary to employ zero-padding with the FFT. In
this two-dimensional problem, zero-padding effectively quadruples the
required storage associated with the arrays used to store the sequences
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J and K appearing in (7.99). (Although this is a relatively small price
to pay in this example, in a three-dimensional vector problem the stor-
age overhead could grow by more than a factor of 24 because of zero
padding.)

Note that to ensure the accuracy of the numerical approach the

cells must be small in terms of the wavelength in the dielectric medium,
defined as

Ad = — 2 (7.103)
e

As a “rule of thumb,” a minimum of 100 cells per square dielectric
wavelength is recommended. Although the formulation is capable of
treating a highly inhomogeneous cylinder, the constraint of the equal-
cell-size lattice geometry means that the cell size is dictated by the
wavelength in the cell having greatest relative permittivity. This may
impose a smaller cell size than necessary on much of the scatterer.

In general, the lattice shape may not coincide with the cross-
sectional shape of the cylinder under consideration. One possibility is
to assign any cell outside of the actual scatterer relative permittivity
€rmn = 1, and treat it as a part of the cylinder. However, this unneces-
sarily introduces additional unknowns into the system of equations. A
more efficient scheme is to employ “dummy cells” to fill out the lattice.
The idea is to incorporate terms for every location in the lattice into
the sequences J and K used within the discrete convolution. After
each convolution is computed via the FFT and inverse FFT, locations
that correspond to dummy cells in the resulting array are set equal to
zero. In this manner, the iterative algorithm does not see additional
unknowns at these cells and may converge faster.

The accuracy of the overall numerical formulation has been de-
monstrated in the literature [Richmond, 1965]. CG-FFT implemen-
tations of this formulation were developed independently by several
research groups in the early 1980s; we refer the reader to the literature
for additional implementation details and numerical results [van den
Berg, 1984; Borup and Gandhi, 1985; Su 1987]. The convergence rate of
the conjugate gradient method is relatively rapid for this formulation
[Peterson and Mittra, 1986].
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7.8 Scattering from Finite-Length, Hollow Conducting
Right-Circular Cylinders

The scattering of electromagnetic waves by a finite-length, hol-
low, perfectly conducting or resistive circular cylinder can also be for-
mulated in a manner enabling the use of the CG-FFT. This exam-
ple, which includes the hollow linear dipole antenna as a special case,
will also illustrate the combination of the so-called body-of-revolution
(BOR) formulation with the CG-FFT. Initially, we consider perfectly
conducting material, which may be replaced by equivalent electric cur-
rents radiating in free space. In accordance with the coordinate system
of Fig. 7.3, there are 2 and ¢ components of the current density

present. A suitable form of the electric field integral equation is given
by

i x E™ = —f x (—jwpod — V&,) (7.104)

where E*™* denotes the known incident electromagnetic field and # is
the outward normal vector to the surface of the cylinder. The magnetic
vector and electric scalar potentials are defined

ZN 2% ~jkR

A(a, $,2) = J(¢', z')e

zi=z¢ J$'=0

ad¢'dz' (7.105)

®.(a,,2) = Goe z’_”/ (v’ J) ad¢dz (7.106)

R =\/(z — 2')? + 4a?sin? (g—_zi) (7.107)

Note that (7.104) is valid only on the surface of the original cylinder.
For this cylindrical geometry, the unknown current densities, the

incident fields, and the Green’s function are periodic in ¢. Each of

these quantities can be expressed as a Fourier series according to

where

Jo(¢,2) = Y Jem(2)e™ (7.108)

m=—00
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Figure 7.8 Geometry of the hollow cylinder under consideration.
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JA(¢32) = ) Tm(d)e™? (7.109)
(g, 2) = Z EJ%(z)ei™¢ (7.110)
EP(¢,z)= Y Einc(z)e™ (7.111)
and
e—JkR oo N im(d—d)
R _Z Gm(z — 2')el (7.112)

where Jy(.r) and J,m(z") are unknowns to be determined,

"‘c(z) / "‘c(a,a z)e I™da (7.113)

=7

E”""‘ z ——1— E™(a,a,z)e" ™ da 7.114
2 z

T Jomm
and
LT R ey 7.115
m - =€ o .
where
R :\/(z — 2')? + 4a? sin? (%) (7.116)

Substituting the above expansions into the integral equation and
taking an inner product of both sides with the function

1 .

—e~P¢ 7.117
o€ (7.117)
separates the original equation into independent equations for each of
the Fourier harmonics. The coupled system for the m-th harmonic is
given by

2ra [*N Gm-1(z2 - 2')+ Gmy1(z - 2')
tnc k2 !
O R L ’

I=z°

+[_—-—J¢m( )4 2o ] m(z——z)}dz (7.118)
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_Ei(2) =j2‘:'€‘: / : BT (2)Gin(z — 2')d2’
CELE T s st
(7.119)
Equation (7.115) can be simplified to the form
' 1 T gJjkR
Gm(z-2)= o) /a:() 7 cos(ma)da (7.120)

where R is given in (7.116).
If the cylinder is divided into cells as illustrated in Fig. 7.3, the
unknown current densities may be expanded according to

N
Jom(2) =Y jonp(23 201, 2n) (7.121)
n=1
N-1
sz(z) = Z jzmt(z; Zn—14%n, zn+1) (7.122)
n=1

where p(z;z,,z2) and t(z;z1,23,23) denote subsectional pulse and
triangle basis functions, respectively, which are defined in Fig. 7.4.
If these expansions are substituted into the equations for the m-th
harmonic of the unknown current density, (7.118) and (7.119) may be
enforced approximately via an inner product with the testing functions

TP(2) =(Az),6 (7 — =L % 7.123
¢ p 2
T?(z) =p (z; zp“l; » +2z"+1) (7.124)

(also defined in Fig. 7.4) to produce the (2N — 1) x (2N — 1) matrix

equation
A B [is] _ [EF
EHINEES (129
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Figure 7.4 Definition of the basis and testing functions.
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where

m$=—uhhﬂﬁ(ﬁiiﬁ) p=1,2,...,N  (7.126)

2
l'+;zi
Ejnf=- /‘ try En(2)dz  p=1,2,...,N-1 (7.127)

2

) m? [ Zp1+ 2
Apn = — ]an(Az),,{;; Gm (%— - z') dz'
1

Zn~

. zp1+2p z¢_1+zg —
—k? " Gm-1 ( 2 ) t Gt ( i ) dz'
Zn-1 2
n=12,...,N
rp=12,...,N (7.128)

- 1 (= it s 4\ gy
B,, =(Az),mn { a2, /z,._ Gm ( 3 z) dz

B (Az:; /zn+l G (zp_12+ Zp _ z,) dZ’}
n+l Jz,

m
n=1,2,...,N—-1
p=12,...,N (7.129)

(7.130)

e
Dpn = —jan kz/ t(2'; Zn—15 Zns Zn41)Gm(z — 2')dZ'dz
pn { s _;.,,, - ] Y 4ny #n ) m( )

( Alz) - Gm (zp +2z,+1 - z/)

Zn—1
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251+ 2
_Gm(P 12 P_Zl)dzl

1 Ent1 Zp-1 + 2, '
ek [ ()
(Az)"+1 Zn 2
2y + 2
o (2t - 1) ar)

p=12,...,N-1
n=1,2...,N-1 (7.131)

and where Gy, is defined in (7.120).

If the cells in the model are constrained so each has the same
length Az, the above expressions simplify considerably to yield

Apn = — jan {k2(Az)K;,".,, — (Az) pﬂn} (7.132)

B —mﬂ{ p-n Ip-—-n-—l} (7’133)
CP"‘ —""7{ p-n+l " p-—-n} (7'134)
Dpn 2 = jan { (A0 + 135
[ — 2+ ]} (7.135)
where
%-
I = / > Gm(ghz - )2 (7.136)
2
and

Im-»l + Im+1

K =_3_____§_g___ (7.137)
Under this restriction, the sub-matrices of the system in (7.125) have
a considerable amount of structure due to the manner in which the
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equation was discretized. A and D are symmetric Toeplitz matrices
of order N and N —1 respectively. The B -matrix is not square, but
has the Toeplitz structure

[ —by by b3 -+ —by_1]
by =b —by -0 by
b b -by e =by_
B=| * T X v-s (7.138)
bn-2 bn-3 bN-4 -+ b
Lby-1 bn-2 bn_3z -:- by
The C-matrix is related to the B -matrix by
C=-BT (7.139)

Because of the Toeplitz symmetries, all of the elements of the
above matrices can be generated from the first rows of the A, B,
and D systems. This amounts to a considerable degree of redundancy
which can be exploited to reduce the necessary storage requirements
for large values of NV, if an iterative method is used to solve (7.125).
In addition, since these matrix operations can be written as linear
discrete convolutions, the FFT can be incorporated if desired to speed
the matrix-vector multiplications as discussed in Section 7.2.

Note that (7.125) must be solved for all of the significant Fourier
harmonics excited by the incident field, including both positive and
negative values of m. From an inspection of (7.136), we see that

IM=Im =1 =Ir (7.140)

and

K;‘:Kq_m=K'_"q=K:;" (7.141)

Thus, the A and D submatrices are independent of the sign of m,
and the B and C submatrices change sign with m . As a consequence,
it is not necessary to recompute the matrix entries in order to treat
both positive and negative harmonics.

To illustrate the performance of the CG-FFT method described
in this section, Fig. 7.5 shows the magnitude of the current density
produced on a 20 wavelength cylinder by an axially incident plane
wave. This result required the solution of one matrix equation of order
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Figure 7.5 Numerical solution for the current density induced on a

perfectly conducting cylinder.

399, which was accomplished by the conjugate gradient method in 79
iteration steps. The current density shows interference effects caused
by superimposing interior and exterior currents, as is necessary when
using the electric field integral equation to model thin structures.

The above formulation is readily extended to treat hollow cylin-
ders constructed of resistive material, provided that the surface resis-
tance of the resulting structure is independent of azimuthal variation.
In this case, (7.104) is modified to the form

i x E™ = i x R,J — # X (—jwpod — V&) (7.142)

where R, is the surface resistance. The presence of the additional term
in (7.142) may cause a perturbation of the Toeplitz structure along
the main diagonal and immediately adjacent diagonals of the A and
D matrices, but will not affect the remaining discrete convolutional
structure present in the matrix equation.

Because of the restriction on the geometry needed to impose the
body-of-revolution formulation and the discrete-convolutional struc-
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Figure 7.6 Geometry of the resistive plate.

ture, this particular example is quite specialized. As a result, few CG
applications involving a body-of-revolution approach have appeared to
date [Davidson and McNamara, 1988].

7.9 Scattering from Perfectly Conducting or Resistive
Plates

Figure 7.6 illustrates a conducting or resistive plate located in the
z = 0 plane and illuminated by an incident electromagnetic field. In
common with the preceding formulations, the plate may be replaced
by equivalent electric currents radiating in free space, which in turn
can be determined from a solution of the electric field integral equation

Ax E™ = ax R,J + 7 x (jwpod + VE) (7.143)

where R, is the surface resistance. The potential functions are defined
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Figure 7.7 Discretization of the plate.

by

a1 w0 e’

A(:c,y,z):/zl/y' J(z',y") iR de'dy (7.144)

8(z,y,7) = //(V' j)e_ijd:c’d' (7.145)

' Y _jweo oy 47FR Y .

where

R=y(z-2')2+(y-y) + 22 (7.146)

Although (7.144) and (7.145) are written for general locations of the
observer, the EFIE of (7.143) is valid only on the surface of the plate
0<z<a,0<y<bdz=0).

Consider the discretization of the rectangular plate geometry into
triangular patches as depicted in Fig. 7.7, so that there are M sub-
sections of width Az along the z coordinate and N subsections of
width Ay along the y coordinate. The vertex in the lower left cor-
ner of rectangle mn is located at (mAz,nAy). The lower and upper
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triangles in rectangle mn will be denoted T}, and T, . The cur-
rent density may be represented by the superposition of “triangular
rooftop” functions [Rao, Wilton and Glisson, 1982]

3 M-1N-t1

’y) Z z Z Junnfzmn(z, y) (7.147)

1=1 m=0 n=0

where {Jimn} are scalar coefficients to be determined and the basis
functions are defined as

_ L, [‘c - (m - I)A‘c]é + [y - nAy]f/ in T(m -1)n
fimn(2,9) TAzAy ) (m+1)Az—zlz +[(n+1)Ay~yl§j inT,,
0 elsewhere
(7.148)

_ L, [[E—-(m+1)Az]z+[y—nAyl§ inTF,
famn(2,9) =m [mAz —z]g + [(n+1)Ay - y]§ in T,
0

elsewhere
(7.149)
and
_ [z -(m+1)Az]e +[y— (n+1)Ay]§ in T,
f3mn(z { [mA:v - :!:]1‘. + [(n - 1)Ay y]y in Tr;(n 1)
elsewhere

(7.150)

where L; is the length of the interior edge of a type ¢ basis function.
These basis functions are shown in Fig. 7.8. The physical constraint
that the current density be confined to the plate dictates that Jion
and J3,m0 be set to zero.

If the expansion of (7.147) is substituted into the electric field in-
tegral equation, a Galerkin testing procedure (using testing functions
identical to the basis functions) can be employed to generate the dis-
crete system

Base = ) JimnRabeimn + 3 Jimn G oo (7.151)

tmn imn

where a and i assume the values {1,2,3}, b and m assume
{0,1,..., M -1}, and c and n assume {0,1,...,N — 1} (with the
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Figure 7.8 Triangular rooftop basis functions for the plate problem.
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exception of certain edge terms as mentioned above). The remaining
expressions are defined

Ege = /c /,, E(2,1) - Fasel ) (7.152)

Rabc,imn =L/lea(zay)}imn(z’y) ¢ ._fabc(z, y) (7'153)

and

Gb-m c—n /{;/y(]“”‘Oz + VQ)imn * }abc(z, y) (7.154)

Equation (7.151) is a matrix equation that can be solved to determine
the coefficients {Jimn}.

Equation (7.154) involves a quadruple integration which is ap-
proximated for reasons of numerical efficiency. The first term in (7.154)
can be evaluated according to

Asz

{Aimn (73sc) - Fabe(72sc)

+Aimn(i:b¢) * -—fabC(F:bc)}
(7.155)

,/;,/y Aimn(2,9) - fabe(z,y)

where F:bc and 7., are the centroids of the plus and minus triangles
associated with the test function f,s.. The second term in (7.154) is
evaluated by recognizing that

/z/vVQ,-m,, « fabe(2,9) = —/3/; BimnV * Fabe(Z,¥) (7.156)

and using approximations similar to those in (7.155). The remaining
double integrations required in (7.155) and (7.156) must be computed
by numerical integration. There are actually only three different types
of required integrals, namely

Aw —'-:n —JkR,'
14 _
It / i (7.157)
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Az pR%a'  _jkRE,
* =/ / &' ——dy'dz’ (7.158)
0 0 qu
and
Az p8vy _jkRE,
3 = / / oyt dyda (7.159)
o 0 RP‘I
where
RE =7t - 7| (7.160)
—t _ £ A VA £ A4
Tpg =(PAZ + a* Az) + (gAy + BEAY) (7.161)

(at,8%) = (2Az/3,Ay/3), the centroid of T, and (a=,87) =
(Az/3,2Ay/3), the centroid of Ty,. There are 6(2N + 1)(2M + 1)
numerical integrations required to completely specify the sequence G
appearing in (7.151).

The conjugate gradient algorithm can be applied directly to (7.
151) to determine the coefficients {J;n,}.In fact, because of the lattice
structure of the plate (Fig. 7.7), the discrete operator is convolutional
in form, and the summation can be performed using two-dimensional
FFTs. In total, nine FFTs are required to implement each application
of the discrete operator within the iterative solution process. (Although
the first term in (7.151) is not convolutional if the surface resistance is a
function of location, it is readily implemented by direct multiplication
since Rgpeimn = 0 whenever the basis and testing functions do not
overlap.

Although we have assumed that the plate is rectangular, plates of
other shape may be treated using the “dummy cell” approach described
in Section 7.7. (Because of the particular triangular-cell discretization
of Fig. 7.7, the plate contour may require approximation by rectangular
cells in some places.)

To illustrate the performance of the approach, Fig. 7.9 shows nu-
merical results for the surface current density induced on a square
plate constructed of both perfectly conducting and resistive material.
The plate has side dimension of three wavelengths, with the leading
and trailing edge constructed of resistive material linearly graded from
R, = 0 at the perfect conductor (which occupied approximately the
middle two-thirds of the plate) to R, = 500Q at the edges. The solu-
tion required M = N = 32 and 3008 unknowns.



7.9 Scattering from Perfectly Conducting or Resistive Plates 287

Figure 7.9 Magnitude of the £ component of the induced current on a
plate with resistive edge loading. Edge loading is confined to the leading
0.56) and trailing 0.56 of the 3\ x 3\ plate, and is graded from 0 at the
center region to 50002 at the edges. The incident E-field is propagating
from a spherical angle with § = 60° and ¢ = —90° and is polarized parallel
to the x-axis.

Other applications of the CG-FFT procedure to planar structures
have been described in the literature [Pearson, 1985; Peters and Vola-
kis, 1988; Catedra, Cuevas and Nuno, 1988].

Although the CG-FFT approach can permit the convenient anal-
ysis of relatively large scatterers, in general iterative methods suffer
in comparison to direct methods of solution when used to treat mul-
tiple incident fields. For example, suppose it is desired to determine
the solution for plane waves impinging on a square plate from 91 dif-
ferent incidence angles. Table 7.2 shows the execution times of both
the CG-FFT approach and conventional LU factorization for perfectly
conducting plates ranging in size from 1 square wavelength to 25 square



288 7. Electromagnetic Scattering

CG LU
a=b | no. of FFT avg. no. of | avg. CPU matrix CPU (sec)
(A) | unknowns size iterations (sec) size 1 RHS | 91 RHS
1.000 | 176 16x16 42 5.56 | 176x176 1.71 5.17
2.000 | 788 32x32 43 16.26 736x 736 65.54 188.21
8.125 | 3008 84x64 58 68.50 - - -
5.078 | 12160 128x128 78 616.52 - - -

Table 7.2 Comparison of the CPU time (CRAY XMP/24) required to
solve the system of equations for scattering from a perfectly conducting
square plate of dimension a x b by the CG-FFT algorithm and con-
ventional LU factorization with forward and back substitution. Solution
times are presented for a single excitation or right-hand side (RHS) and
for 91 different excitations. The averages shown are those obtained by
averaging over the 91 different excitations.

wavelengths. For the 2\ by 2X plate (736 unknowns), the CG-FFT ap-
proach produced an acceptable solution for one incident field in about
16 seconds (one fourth of the time required by LU factorization). How-
ever, if the CG-FFT is restarted anew for each of 91 incident angles, it
is an order of magnitude slower than LU factorization. It follows that
the tradeoff between iterative and direct methods is largely dependent
on the number of incident fields under consideration. It is noteworthy,
however, that the CG-FFT can solve much larger-order systems than
easily treated by direct methods. For instance, Table 7.2 indicates that
the CG-FFT was able to solve a system of order 12160 in 617 sec-
onds. The storage requirements associated with LU factorization for
this matrix were beyond the machine limits.

7.10 Analysis of Frequency Selective Surfaces

As a final example, we extend the previous formulation for elec-
tromagnetic scattering from a single plate to scattering from a doubly
periodic infinite array of plates (i.e., a frequency selective surface). Fig-
ure 7.10 shows a portion of such a structure. For simplicity, we assume
that each of the plates is identical in shape and resistivity, that the
lattice defining the periodicity is aligned with the x- and y-axes, and
that the incident field is a uniform plane wave of the general form

E™(2,y,2) = Eqe ik otk vtkes) (7.162)

where
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UNIT CELL

Figure 7.10 A portion of an infinite array of arbitrarily-shaped plates.

(65) + (k570)? + (k) = &7 (7.163)

The individual plates are numbered with indices n and m denoting the
location along the x-axis and y-axis, respectively. The array has period
t: in the x direction and £, in the y direction. The current density on
plate nm is related to the current density on plate 00 by a phase shift
according to

J(z + nteyy + mty) = ._I(z,y)e_j(k;’ncnt‘ + 1k mty) (7.164)

Thus, it suffices to consider the current on plate 00 as the primary
unknown to be determined. If this plate is represented by equivalent
electric currents radiating in free space, the solution can be obtained
from an EFIE of the form

. 2—_
VV.+k v

Ax E"™ =ax R,J —fi x —
Jwéo

(7.165)
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where

Ae)= [[  I@ )62y -yisy  (166)
plate 00

Gz-2'y-y)=

Z Z e4 J";”"‘ —j(kirnt, + k;"‘mty)
™ mn

m=—0o0 N=—00

(7.167)

Rmn = \/(z -z - nt:v)z + (y - yl - mty)2 (7'168)

This EFIE is almost identical in form to that used in the preceding
section, the difference being the periodic Green’s function of (7.167).
This Green’s function is convolutional in z and y, however, and the
EFIE can be discretized in much the same manner as the single plate
formulation of Section 7.9.

Consider the discretization of plate 00 according to Fig. 7.7, and
the representation of the current density on this plate in terms of the
triangular rooftop functions defined in (7.147)—(7.150). If Galerkin’s
method is applied to convert the EFIE into a discrete system similar
in form to (7.151), it is apparent that the only difference in the problem
formulation is the computation of the entries G’b ® mec-n aDpearing in
(7.154). The numerical evaluation of these entries is comphcated by the
fact that the summation of (7.167) is very slowly convergent. Accel-
eration procedures for evaluating these integrals have been developed,
and we refer the reader to the literature for the implementation details
[Chan, 1988; Mittra, Chan and Cwik, 1988). The convolutional form
present in the individual plate formulation of Section 7.9 is also present
in the periodic plate formulation, and thus the CG-FFT approach can
be used to solve the discrete system.

Equation (7.167) is a function of the incident field, which pre-
scribes the phase delay seen at each cell in the infinite lattice. As a
result, the entries of the sequence G depend on the angle of inci-
dence, and must be recomputed for each incident field under consider-
ation. Thus, the relative advantage of LU factorization over CG-FFT
for treating multiple incident fields does not apply to this periodic
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Figure 7.11 Composite unit cell of a frequency selective surface made
from Jerusalem crosses of differing size.

structure in the same way it might apply to scattering from an indi-
vidual plate. This may explain the widespread use of the CG-FFT for
the analysis of periodic structures of this general class [Mittra, Chan
and Cwik, 1988].

To illustrate the performance of the approach, Fig. 7.11 shows a
unit cell associated with a particular frequency selective surface con-
structed of Jerusalem crosses of differing size. Together, these four
crosses can be thought of as plate 00 in the above formulation. The
power reflected from the corresponding infinite surface is displayed in
Fig. 7.12 as a function of frequency. The particular calculation required
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Figure 7.12 Frequency response of the periodic structure when illumi-
nated by a normally incident plane wave.

%> surface made entirely of the small Jerusalem crosses

—A—7%— surface made entirely of the large Jerusalem crosses

surface shown in Fig. 7.11

two-dimensional FFTs of size 32 x 32, and a total of 616 unknowns.

7.11 The Treatment of Multiple Right-Hand Sides with
the CG Algorithm

Electromagnetic scattering problems often require the repeated
solution of a matrix equation in order to treat additional right-hand
sides. For radar cross section applications, hundreds or thousands of
different incident fields must be analyzed. Thus, there has been con-
siderable interest in procedures to improve the relative inefficiency of
iterative methods for treating multiple right-hand sides.

The most straightforward approach for the iterative treatment of
multiple excitations requires the algorithm to be restarted anew for
each excitation angle, incorporating an initial estimate of the solution
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extrapolated from previous solutions for other angles of incidence. Pro-
vided that the solution for one angle of incidence is similar to that for
another angle, this procedure can be very efficient. However, we have
observed this to be effective only when the incremental angle is less
than a few degrees. In addition, although this technique works well
with certain geometries (i.e., flat strips), it has not been as successful
with more complicated scatterers.

Since the conjugate gradient (CG) algorithms generate orthogo-
nal direction vectors that eventually span the solution space, an al-
ternative approach is to simultaneously expand multiple solutions in
terms of a single set of the direction vectors. The bulk of the required
CG computation arises from the generation of the direction vectors,
and significant computational savings would result if multiple solu-
tions were expanded simultaneously in this manner. However, several
difficulties prevent this from being a trivial task. First, the direction
vectors generated by the CG algorithm will be orthogonal to any ma-
trix eigenvectors absent from the specific right-hand side used to start
the CG process. While this is partially responsible for the relatively
quick convergence of the CG algorithm in practice, it suggests that
the direction vectors are geared to represent the solution correspond-
ing to one specific right-hand side and will not be optimum for the
representation of other solutions. In addition, round-off errors cause a
progressive loss of orthogonality, and will prevent the set of direction
vectors from spanning the solution space.

In spite of these difficulties, some progress has been made in us-
ing the CG algorithm for the treatment of multiple right-hand sides
[Smith, Peterson and Mittra, 1989]. Features that make a multiple ex-
citation algorithm possible include the use of a composite system to
serve as an initial “seed” for the generation of the direction vectors
and the systematic restarting of the algorithm using a new seed when
required to maintain reasonable orthogonality between direction vec-
tors. Although this algorithm is generally not competitive with direct
methods, it appears to be an improvement over completely restarting
the CG procedure for each right-hand side.

Consider the solution of the family of matrix equations Az(™) =
(™). Each solution is represented in terms of a single set of the di-
rection vectors p;, so that the estimate of the solution for the mth
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excitation at the n*® iteration is

n
2™ = :c((,m) + E asm)p,- (7.169)
=1
The corresponding m'® residual at the nt® iteration is defined r{™ =
Az{™ — b(™). The coefficients can be computed according to

(m) — _
Q — —_—
" 1 4pa|12
The required overhead to treat multiple right-hand sides includes com-
puting as,m) for each solution estimate and updating the unknowns

zs,m) and the residuals r,(.,m) . The complete algorithm is as follows:
Initial steps:

(7.170)

Guess zf,"')

r((,m) =Azgm) -b

Py =— A* rgystemuseduseed

Iterate (n = 1,2,...):
(For the system used as seed compute:)

A* (Systemused asseed) |2
a(Syutemusedasseed) - ” Tn—1 ”
Ay =

|| 4pall?

(All other systems use:)

(m)
aS‘m) — _(rn—l,Apﬂ)

(All systems:)

2™ ={™) + a{™p,

™ =) + o™ 4p,
3 ”A*TS‘Systemusedu seed)llz

Bn

= "A*T(Sylltemusedu sced) I I 2
n—

Pny1 = — A*’,'(‘Syltemu.-eduseed) + Bnpn
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As discussed in Section 7.4, this CG algorithm will terminate
before N (the order of the system) iterations if the excitation is or-
thogonal to one or more eigenvectors of AA*, where A* denotes the
transpose-conjugate of A. This situation poses a problem for any mul-
tiple right-hand-side algorithm, and motivates the use of a “composite”
excitation as the seed for generating the direction vectors. The com-
posite excitation is obtained by summing all the excitations of interest,
thus ensuring in a statistical sense that all needed eigenvectors of the
iteration matrix will be generated. In finite precision arithmetic, the
algorithm will likely terminate by solving the composite system before
many of the solutions corresponding to other right-hand sides have
been produced to necessary accuracy. In this situation, the multiple
excitation algorithm restarts by using the most recent solutions as the
next initial solution estimates, and by iterating directly on the system
with the worst error (i.e., using that system to generate the direction
vectors employed to expand the remaining systems). The use of the
system with the worst error is motivated by the fact that the direc-
tion vectors up to this point in the procedure have not spanned that
particular solution space well. After the system used as a seed for the
direction vectors is solved to desired accuracy, systematic restarting
continues until all solutions have been produced to desired accuracy.
We often terminated the initial iteration (composite system) at a much
lower error level than the other systems in an attempt to initially gen-
erate a more complete set of direction vectors.

Because of the systematic restarting, the algorithm remains ro-
bust even if specific matrix eigenvectors are absent from the initial
seed vector. However, we have found that the use of the composite
system as an initial seed significantly reduces the number of required
iterations and thus improves the efficiency of the approach. Numeri-
cal examples of this multiple excitation algorithm are available in the
literature [Smith, Peterson and Mittra 1989].

7.12 Summary

An overview of the numerical implementation of the conjugate
gradient algorithm for frequency-domain electromagnetic scattering
problems has been discussed. Since the CG algorithm can be used to
solve any matrix equation, it can be used in an obvious manner within
the numerical treatment of any sort of EM problem. The critical ques-
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tion remaining is when to use a direct method of solution and when
to use iteration. Situations have been identified where the CG method
may be advantageous. In addition, we have discussed the convergence
behavior of the algorithm and considered the CG-FFT implementation
in detail. This background information is intended to aid the reader in
evaluating the suitability of the iterative procedure for a given appli-
cation.
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