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10.1 Introduction

We discuss the frequency-domain scattering of cylindrical com-
pressional (P) waves by a cylindrical target (with axis parallel to 2)
buried in the lower of two half-spaces separated by a horizontal planar
interface (the y — z plane). All media are linear, isotropic, non vis-
cous fluids and variations of density are neglected. We consider targets
whose transverse dimensions (in the z — y plane) are of the order of
the wavelength A; in the lower medium or larger, and whose sound
velocity and attenuation may vary arbitrarily with position (z,¥). The
field sources consist of a finite number of time-harmonic line sources
parallel to the axis of the target and placed on a horizontal line above
the interface. For each source we are interested in the anomalous field
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352 10. FFT-based iterative computations of the anomalous fleld

(the difference between the total field and the field that exists in the
absence of the target) observed above the interface along the same
line or another one (still horizontal). Indeed, variations of anomalous
field are directly linked with the acoustical or geometrical parameters
of the target and can be used to probe such parameters if unknown,
i.e., to solve an inverse scattering problem. In our case, we use diffrac-
tion tomography algorithms to image the target using linear arrays of
sources and receivers usually \;/2-stepped, e.g., [1-2]. Obvious appli-
cations of imaging procedures of buried structures in a plane-layered
medium (ours or any others which might be devised in this situation)
can be found in civil and biomedical engineering [3-5]. In a first step,
many simulations of these imaging procedures are needed. Therefore,
we must have a fast and accurate computational procedure to gener-
ate the synthetic data (i.e., the anomalous field along the probing line
for various targets, embedding media and illuminations) in taking into
account all scattering phenomena occuring in the entire structure (the
target and its environment). Indeed, most imaging techniques are lin-
earized solutions of the inverse scattering problem based on first-order
field approximations (e.g., Born’s or Rytov’s), but they must be able
to work with data that are not calculated using hypotheses of weak
scattering [6].

So far, we have developed an effective numerical solution of a sim-
ilar though less involved scattering problem: the cylindrical target is
located in a homogeneous medium and the field sources are located
at infinity and generate plane-waves [7]. To do so, we start from the
second kind Fredholm integral equation satisfied by the field (or the in-
duced sources) in the target which we easily obtain by applying Green’s
theorem. Then, a method of moments with pulse-basis and Dirac delta
weight-function, e.g., [8-9], yields a discrete version of this equation
whose solution is calculated (i) : either directly with a Gauss-Jordan
inversion algorithm, or (ii) : using conjugate-gradient algorithms (that
minimize the residual or the error on the solution itself), or (iii) : by
expansion of the pressure into Neumann’s series (with active extrapo-
lation to speed up the convergence). The convolution products which
appear in each iteration are computed by 2-D Fast Fourier Transforms.
But, when the target is embedded in a stratified space, the kernel of
the integral equation is much more complicated; the free-space Green’s
function is replaced by the Green’s function of the stratified space
which takes into account transmission through and reflection upon ev-
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ery interface and which is now only known in closed form in the spec-
tral domain (it is given by means of Fourier integrals). Convolution
and correlation products with respect to depth have to be simulta-
neously calculated. Nevertheless, direct solutions (first) and iterative
ones (next) have been developed for planar illuminations [1], [10], and
(recently) for line-sources [2]. Their performances are fair but they do
not employ FFT algorithms to compute the convolution and correla-
tion products and consequently require high CPU time, particularly for
large and/or high-contrast targets; when we deal with a large number
of illuminations, as is frequent in imaging problems, this may become
prohibitive.

The purpose of this chapter is then to show how we can obtain fast
iterative solutions of a typical scalar scattering problem in fluid acous-
tics (the buried target). The numerical simulations are performed in
ultrasonics. However, the same approach would be valid fully in elec-
tromagnetics for lossy dielectric cylindrical inhomogeneities immersed
in a plane-layered medium when the electric field is polarized along
their axes, even though the strong influence of absorption and the fact
that the half-space where the sources are located would generally be
the one with lower index might lead to somewhat different conclusions
from a computational point-of-view.

To our knowledge, a similar solution of this (these) problem(s) has
not yet been presented in the literature. Obviously, there exist very in-
teresting numerical investigations of exact solutions of the direct scat-
tering problem by buried targets. We may quote [11], where compu-
tational efficiency is attained by using a Galerkin method of moments
with plane-wave basis and specializing the procedure to a homogeneous
penetrable rectangular cylinder (illuminated by a time-harmonic line-
source). T-matrix style solutions in both electromagnetics and acous-
tics have also been developed for targets that are either homogeneous
or could be divided into several homogeneous regions, with some sym-
metry (for example a stratified cylinder), but numerical studies seem to
have been limited to perfectly hard or soft homogeneous targets [12-13
(see in addition refs. quoted)]. Boundary-integral formulations are also
employed when dealing with such scatterers (where integrals along the
contours of the subregions, but also along the interface, or all interfaces
in case of a multilayered embedding, are considered), the calculations
being mostly carried out directly in time-domain, e.g., [14-15]. Also, an
involved but powerful method of computation of the seismograms due
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to a (rigid) underground scatterer and which takes part of its inspi-
ration from that observation is investigated in [16]. Finally, one could
apply Finite-Elements techniques, which are commonly used in seis-
mic modeling of lateral inhomogeneities (in an otherwise plane-layered
earth) or in studies about magnetic non-destructive testing of defaults
in metal structures, and whose pros and cons (in particular due to
artificial side reflections) are well-documented, but which we will not
dwell upon herein.

Two of the main numerical techniques we apply in our investigation
are a simple version of the method of moments, and iterative solutions
of the resulting set of discrete equations. The method of moments has
been widely used these last twenty years or so, and everybody is now
aware of its very many applications. Some of them in electromagnetics
have been reviewed recently [17]. A concise and up-to-date exposition
of the method itself illustrated by some examples can be found in [8],
and we may also refer the reader to a broad and thoughtful survey
of so-called computational electromagnetics [9]. As for the topic of
iterative solutions of radiation and scattering problems, a great number
of papers have been published since the original study on conjugate-
gradient [18], and some controversy also went on in the mid-80’s (as
is summarized, e.g., in [19]). Here, we will leave aside the abundant
literature on iterative solution of the inverse scattering problem (for
example, a thorough investigation of optimal solutions in 1-D cases and
many references could be found in [20], and various other examples of
optimal research are given in [21]) and in short we would only like to
point-out, without pretending to exhaustivity, some useful references:

(i) : an early and quite complete article (published in 1967) on
iterative solutions of operator equations [22];

(ii) : an investigation [23] of scattering by perfectly conducting
cylinders published in 1973, which (in particular) uses a method of
moments solution with a conjugate-gradient algorithm for one of the
first times in computational electromagnetics.

(iii) : three papers published in the early 80’s, where it was shown
how large linear systems of equations like those obtained when using
methods of moments can be solved in an effective manner [24], or how
functional minimizations of integrated-square errors can be devised in
a very general setting and still yield practical numerical solutions of
real-world scattering problems ([25] in 2-D transient linear acoustics
and [26] in microwave hyperthermia);
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(iv) : several of the papers published at the beginning of 1986 in
a (delayed) special issue of Electromagnetics on Iterative Methods in
Electromagnetics [27-30], [7] (the other papers of the issue mainly dealt
with periodic structures, a subject of great interest but a bit out of
the scope of our chapter); many different aspects of iterative solutions
and various applications are investigated herein, with, in particular,
discussion of “new” tools, i.e., FFT’s (see also [31], which motivated
the authors to use them successfully, and [32]) and a lot of references
are obviously made available.

(v) : recent contributions (see also [19] which we already refered
to) that either give a comprehensive survey of conjugate-gradient-like
algorithms including handy computer programs [33] or detail the per-
formances of one of them (generalized biconjugate) [34], or investigate
both theoretically and numerically the relationship between eigenval-
ues of a continuous operator and of its discrete counterpart as produced
by a method of moments (and, consequently, how the convergence rate
of a conjugate-gradient algorithm varies) [35-36], or deal with the key
problem of preconditioning [37];

(vi) : a detailed analysis of FFT-conjugate-gradient techniques ap-
plied to calculation of scattering by a dielectric cylinder illuminated
under oblique incidence [38]. (Note that the case of the dielectric cylin-
der under TE and TM illumination, which has been the subject of
well-known early applications of the method of moments with direct
inversion of the matrix system [39-40], is one of the test-cases stud-
ied in {35], whereas FFT-iterative techniques are systematically used
in our laboratory since 1985 to calculate scattering by cylinders with
arbitrary shapes in fluid acoustics, as is briefly described in [7)], or in
microwaves, e.g., [41].)

The solution we propose is based on the method of moments (pulse
basis + delta functions) and uses either (i) : a conjugate-gradient al-
gorithm that minimizes residuals, or (ii) : a conjugate-gradient algo-
rithm that minimizes solution errors, or (iii) : Neumann’s series ex-
pansion with Aitken’s extrapolation (one of the simplest extrapolation
algorithms, see in particular [42]) when convergent (it would be com-
putationally prohibitive to establish a priori the convergence of this
expansion but it is easily appraised after one or at the most a few iter-
ations). 2-D FFT algorithms are employed to compute all convolution
and correlation products [43], while 1-D FFT algorithms enable us to
calculate the Fourier integrals as is usual. In particular, we show how
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the various procedures (conjugate-gradients, Neumann’s series) behave
with respect to each other, and as a function of the parameters of the
line source and of the target. (These parameters are also of prime im-
portance when we look at the perfomances of any imaging technique for
concealed targets.) As we would like to be able to consider a large num-
ber of sources, the importance of a good compromise between number
of operations and size of the storage, both parameters being directly
related to the accuracy of the computed field, is emphasized.

10.2 Theory

10.2.1 The integral formulation

Let us refer to Fig. 10.1. We consider two homogeneous fluid half-
spaces D; and D; with respective sound velocites ¢; and ¢, and atten-
uations a; (henceforth reduced to zero) and o, which are separated
by a horizontal planar interface located at z = 0. The fluid cylindri-
cal target, of limited cross-section with arbitrary shape Dy in the x-y
plane and with sound velocity cq and attenuation aq varying with po-
sition (z,y), is embedded in the lower half-space and is illuminated,
at the operating frequency f (f = w/2x), by a line source or a set of
line sources located in the upper half-space. The density is constant
throughout space and a time dependence e~7¢t is assumed. In the fol-
lowing, we restrict ourselves to velocity c, larger than c1, with the
implicit assumption that the upper space consists of water, but this
is not an obligation. In that particular case, if we would like to go
back to electromagnetics, we easily see that we would be dealing with
propagation of E-polarized cylindrical waves from a lossless medium
(D1) with dielectric index n; = 1 to a (possibly lossy) medium (D)
with lower index (its real part will be n; = ¢;/c; < 1) where some
inhomogeneous cylinder with arbitary index is located.

Let us now describe the integral representation of the fields, partly
for the sake of completeness since the parallel case of a planar illumi-
nation is already treated [10] and partly because it is easier to explain
the numerical procedure once this representation is established.

As is well-known, the scalar pressure field p(z,y) observed at any
point (z,y) when the target is illuminated by a line-source located at
(2s,ys) in half-space D, satisfies, in the distribution sense, the wave
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Figure 10.1 Geometry of the scattering problem.
equation:

Ap(z‘) y) + kzp(z’ y) == 6(3 —ZT5Y— yS)6m1

(2,¥) € Dpn; k =kp; m=1,2,0Q (10.1)

where k,, is the complex-valued propagation constant of medium
m(km = w/cm + jam, with kg function of space),§ is the Dirac distri-
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bution and §,,; is the Kronecker symbol. Boundary conditions (conti-
nuity of the pressure and of its normal derivative) are implied, and the
pressure satisfies a Sommerfeld radiation condition at infinity.

Pressure p is obtained by applying Green’s theorem to functions
p and Gy, with p satisfying (10.1) and G,,,, being the Green’s func-
tion of the layered medium (i.e., without the scatterer). This function
satisfies in the distribution sense:

AGmn(z’ Y, 2'1 y') + kyznGmn(z, Y, zl, yl) = —6(3 - Z', Y- yl)amn

(2,9) € Dp; (2',y') € Dp; m=1,2; n=1,2 (10.2)

and the same boundary and radiation conditions as those of p hold.
Note that Gmn(2,y;2',y’) represents the field observed at (z,y) when a
line source is located at (z',y’), the target being absent. G,,,, is known
in closed form in the spectral domain, after expansion into plane waves:

1 [t .
Gmn(z’y, z" yl) = ﬂ/ gmn(ta a, zlv yl)eJﬂllda (10‘3)
~00

and its expression depends upon the respective position of the line
source (z',3’) and of the observation point (z,y). We define the usual
propagation factors #; and B, as follows:

m = Vk:t —a?, ImB,>0,m=1,2 (10.4)

When source and observation points are on the same side m with
respect to the interface: (2/,3') and (z,y) € Du(m = 1 or 2), G
comprises both a singular term (superscript s) and a regular term
(superscript ns) with

gmm(z’ a, z" yl) = g::m(z$ «, z,’ y,) + gr‘nm(z7 Qa, zla yl)

YL (B2 = B1) B (lel+12') ,~say’
26m (81 + 2)

1 .
Imm(2,2',y") = j éﬁ—e’”"'"“" lg=dev’ (10.5a)

m

gmm(za a’ ’yl) = J(
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When source and observation points are on opposite sides: (z’,3') €
D,, (z,y) € Dm (m = 1, n = 2, and conversely), we only have regular
terms (denoted with superscript ns), which correspond to

't ns o .e.‘i(ﬁnlw']-i-ﬂmlw[) -jay'
ymn(za a,T,Yy ) = gmn(z’ a, T,y ) = Jwe (10.5b)

The singular term in (10.5a) is nothing other than the Fourier trans-
form of the 2-D Green’s function in free-space (with propagation con-
stant kp,):

Grm(2,3,2',') =2 Hy(kmv/(z = 22 + (¥ - )?)
1 [t

=on gr‘nm(zsaaz’a yl)ejayda (10.6)
27 J oo

with H} the first-kind zero-order Hankel function.

We observe that G,,n,m # n, is a function of three variables: z, 2’
and difference (y — y’), that Gy, is a function of two variables: either
the differences (z — z’) and (y — y’) for the singular part, or the sum
(z + 2) and the difference (y — y') for the regular part (with z and
z' of the same sign). Then, we may substitute G, (2,2',y — ') to
Gmn(z,2',9,7), Ghm(z—2',y— y') to Ghm(2,2',y, y,) and G}, (= +
2,y - y') to Gmm(z,2',9, y')-

We introduce the contrast function x that is characteristic of the
target Dq with respect to its embedding in D,, and the induced sources
Ja within this target:

Xﬂ(zay) = ka(t, y) - kg

Ja(z,¥) = xa(2,¥)p(z,y) (10.7)

Applying Green’s theorem to functions p and Gy, over a domain which
covers the entire space R?, and using the fact that the target is totally
contained in the lower half-space Dy(D; D Dgq), we easily get the
volume integral formulation of the induced sources

Ja(2,y) =Jo(2,y) + xa(z,y)x
I I0(e) (6356 + 2y - ) + Gtale — 2,5 - ¥)
a
dz'dy’
(10.8a)
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with a source term Jo(2,y) proportional to the incident field (the field
that exists in the absence of the target)

Jo(2,¥) = xa(2,y)Ga(z,zs,y — ys) (10.8b)

Let us now consider that we place a set of receivers at different
points (z g, yr) along a probing line parallel to the interface and located
in the upper half-space ((zr,yr) € D;). The anomalous field p4 on
this probing line for a given location of the source (zs,ys) is obtained
by straightforward integration over Dgq:

pa(zR,YR) = //D Ja(z',y')G1a(zR, 2", yr — ¥)dz'dy’  (10.9)
a

10.2.2 The discrete formulation

Solution of the problem summarized by (10.8) and (10.9) is carried
out by the means of a method of moments with pulse-basis functions
and point-matching. First, we assume that the target cross-section Dq
is inscribed into a square centered at ¢ = z¢, ¥ = yc (yc is equated to
0 for the sake of computational simplicity) and we define new coordi-
nates X =z —z¢ and Y = y — y¢, which we henceforth use systemat-
ically. Then, we divide this square into a number N? (N odd number)
of square cells with side A small with respect to the local wavelength.
We then have N cells along each axis of coordinates centered at

(Xp, Yq) = (pA, gA);

pg=—-(N-1)/2,...,-1,0,1,...,+(N - 1)/2; (10.10)
Xp 2 —2¢

In each cell (p,q) we assume that contrast and field remain constant
with respective values x(Xp,Y,) and p(X,,Y;), which yield constant
sources Jq(Xp,Y,). Let us point out that the size A of the cell, equated
to a fraction of the wavelength in D,, is independent of N (N charac-
terizes the overall size of the target).

The induced source at center (X,,,Y,) of a given cell (m,n) is
expressed as a linear function of the induced sources in the N2 cells of
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the mesh, this particular cell included, i.e., at the N? points (X, Y;).
First, we write at any (X, Y,)

/ Jn(X', Y')Gn(Xm,Yn,X',Y')dX'dY'
Dq

= Z Ja(Xp, Yy) / G22(Xmy Yp, X', Y')dX'dY'
cell(p,q)

= Ja(Xp, Vo) Hao( Xy Yoy X, Vo) (10.11a)
pr.q

where reversing order of integration with respect to a and with respect
to Q yields

. . o
HZZ(Xma Yn’X;nI/q) = 5"/ (1011b)

T J-

[// 922(Xm, a, X', Y’)dX'dY'] eI Yn do
cell(p.q)

subject to careful self-patch integration (when cells (p,¢) and (m,n)
coincide). In order to get simpler expressions, we take into account
the dependence of the regular part and of the singular part of the
Green’s function G32 upon (X + X') and (X — X') respectively, and
upon (Y —Y’) for both. The finite-valued, integrated terms H,, are
obtained after a few calculations.

(i): H (Xm + X,, Y, — Y,) results from ana.lytlcally carrying out
the integration of the non-singular term (27)~1g38(Xpm, a, X', Y")eIo¥»
versus X' and Y’ on each square cell centered at (Xp,Y,) a.nd is given
by a Fourier integral

+o00 ) ] .
H’?z‘(Us V) = / C(a)eJﬁiUezlﬁzzc eJana

C(a) B(a) & )fl (10.12a)

sm(aA/2) sin(B2A/2)
Ta B2 + B

B(a) =
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U(= Xm + X,) is always larger than or equal to —2z¢ in the above
integrand. Note also that there is a factor equivalent to 3 in the de-
nominator when a is close to k;. The Fourier integral is absolutely
convergent provided that U > —2z¢ and will be computed by means
of FFT algorithms without particular problems (with adequate sam-
pling at values of o other than k;) as is said in subsection 10.2.3.

(ii): H3y(Xm — Xp,Yn — Y,) results from analytically carrying out
the integration of the free-space Green’s function (we take into account
relation (10.6)) after replacing as is usual the square cell by a circular
disk of the same area (radius d = A//7); it only depends upon the
distance R = /(Xm — Xp)? + (Yo — Y;)? between integration point
(X,,Yy) and observation point (X,,,Y,) and is known in closed form

{ k;2[0.5j7kod H} (kod) — 1] if (m,n) = (p,q)
H3,(R) = ' (10.12b)
0.5jmdk; L HE (k2 R)J1(kad) if (myn) # (p,9)

with H. 11 the first-kind first-order Hankel function and J; the first-order
Bessel function.

Now, we are able to write down a system of N? linear equations,
one for each cell (X,,,Yy):

Jﬂ(Xma Yn)_XO(Xm’ Yn){z Jﬂ(Xp’Yq) [H;;(Xm + Xp, Yn - Yq)+

P9

H3p(Xm — Xp, Yo — Y.,)]} = Jo(Xm» Ya) (10.13)

where the source term Jo(Xy,, Yy, ) is deduced from (10.5b)(10.8b) after
simply changing the set of coordinates and is given by

JO(Xm,Yn) = Xﬂ(Xm) Yn)Gzl(Xm’XS,Yn - YS)

G21(Xm9 Xu U)
i [t

= ﬁ (ﬁl + ﬂz)“le".‘iﬂlxs ejﬁzxme—j(ﬁl—ﬁz)cc ejaUda (10.14)

with Xs = 23 — z¢ and with Yg = ys equated to +sA,s positive
integer (this Fourier integral will be calculated like Hz; by means of a
FFT algorithm).
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Once the induced sources are computed, in one way or another,
the anomalous field observed above the interface at (Xg,Yg), then at
height | Xg + z¢|, with Yg also taken as a multiple of A(Yg = +rA),
is

pA(-XR, YR) = Z JQ(Xm, Yn)H12(XR, Xm, YR - Yn) (10153)

mmn
integration on the square cell centered at (X,,,Y,) yielding H;,

+oo . . . ]
Hy3(XR, Xm,V) = / B(a)g:e"’ﬂ‘x“ eIP2Xm o=i(B1—Ba)zc giaV 4.

—C0
(10.15b)
where B is defined in (10.12a) above.

Several direct (QGauss-Jordan,...) and iterative (conjugate-gradient,
...) techniques can be applied in order to calculate the solution of the
linear system AJ = Jp with rank N2 which we easily deduce from
(10.13). Also

(i) : the unknown sources could be expanded into Neumann’s series
(which is like solving the system J = A'J + Jo where A’ =T — A, I
identity matrix, by means of a fixed-point algorithm) and very fast
convergence observed in the case of low-contrast structures that are
frequently encountered in fluid ultrasonics when, in addition, active
extrapolation is employed,

(ii) : we could simply be content with Born’s approximated anoma-
lous field (equating Jg to Jp in (10.9)).

When equations are of the convolutional form and iterative so-
lution methods are applied, it is well-known that using Fast Fourier
Transform algorithms to estimate the discrete convolution products at
each iteration will speed up the procedure, without loss of accuracy if
this is done carefully enough (in particular to avoid aliasing [31]).

However, in the case of a buried scatterer as herein, using such
FFT algorithms does not appear so easy at first sight because of the
complexity of the kernel of the integral equation (10.8a) or of its dis-
crete counterpart (10.13), since both convolution products (which arise
with the singular part of the Green’s function) and correlation prod-
ucts (which arise with the regular part) with respect to depth must
be calculated, in addition to convolution products with respect to the
horizontal coordinate (in both cases).

We can still employ a “brute force” procedure in order to calculate
and sum up all the discrete terms involved in the expressions of the
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coefficients of the matrix A and of the anomalous field, as we did
in [1] in the case of a plane illumination and in [2] with line sources.
Therefore, in addition to computations of Hj, for N(N +1)/2 different
values of the argument R in (10.12b), we have to compute at least

(i) : N one-dimensional FFT’s with respect to a in order to obtain
the values of G3; at each point X,, = +mA,m = 0,1,... y(N —1)/2
and for any Y,, — Y5 = (n — s)A needed (see (10.14)). Such FFT’s are
performed using a large number of o; = +iAa,i = 0,1,... s No, with
step Aa = 2m/A; for example, 2N, = 2048. (This number must be
larger than Sup(2|n — s|).)

(ii) : 2NV — 1 one-dimensional FFT’s with respect to a in order to
obtain the values of HJJ for each value taken by X,, + X, = +ilA,i=
L,2,...,N and for any Y,, — Y5 needed (see (10.12a) and observations
made above in (i)). .

(iii) : NV one-dimensional FFT’s with respect to a are also required
to compute H;; at each X,, in Dg and at any ¥, — Yg needed (see
(10.15b)) which is exactly the kind of computation we effected to get
G21 (put Ys instead of Yg in (i)).

Obviously, the main task remains, that is calculate the solution of
the N2 x N2 matrix system AJ = J,. We can do it directly : at least
(N?%)3/3 operations are required, or we can do it iteratively : at least
N* operations per iteration for Neumann’s series expansion or 2N*
for a conjugate-gradient algorithm are required, the total number of
iterations being at most equal to the rank N2 (we hope to get accurate
results — and generally do — with much less).

Even though we can obtain fair results in so doing, the computa-
tional burden of the above approach may become excessive. (It would
be straightforward to compute the summations that involve the singu-
lar part of the Green’s function G5, by means of FFT algorithms, and
it will avoid some operations, but the contributions of the regular part
are still to be accounted for.) This is especially true

(i) : when we have to deal with targets D that are of high-contrast
with respect to D, or/and are embedded in a medium D, very different
from D; (we generally observe that a large number of iterations are
required to obtain good results),

(ii) : when the target is large with respect to the wavelength in
D; (even though the convergence of the iterative procedure often re-
mains quite good, manipulating large complex-valued matrices is time-
consuming and may even need too large a share of the computer re-
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sources),

(iii) : when the number of illuminations is high as we have to repeat
the iterative procedure all over for each incident field, even though
taking the induced sources computed for a given illumination as initial
values to compute those associated to the next one may spare us some
iterations when the characteristics of the two illuminations are not too
different (indeed, we are closer to the exact solution, but, at least in
the scalar scattering cases we considered until now, it did not change
the overall performances of the iterative procedure much).

Consequently, we have devised a set of iterative procedures that
fully take into account the particular dependence upon spatial variables
X and Y, i.e., which use FFT algorithms to compute both convolution
and correlation products, as is described in the next subsection.

10.2.83 FFT implementation of the iterative solutions

First, let us denote ® x or ®y, the convolution products with re-
spect to X or Y, and (© x the correlation ones with respect to X (after
changing coordinates). Now, let us limit ourselves to products with re-
spect to X, since the convolution products with respect to Y could be
dealt with in the same fashion as the convolution ones with respect to
X. Then, introducing for the sake of the exposé two complex-valued
functions of a real variable: X € R — E(X) and F(X) € C, with E
null outside [~ (N - 1)A/2,+(N — 1)A/2] and F defined on the entire
line ]—o0, +00[ , we are able to write identities like:

+HN-1)4a/ z
e(X) = / X)F(X - X)X’
(N- 1)A/2

- / E(X')F(X - X")dX'= E®x F
+(N-1)A/2
f(X)= / va/s E(X"\F(X + X')dX'
= / E(X')F(X + X')dX'= EQxF  (10.16a)

Straightforward application of Fourier transforms then yields

e(X)=FT"![FT(E) x FT(F)]
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f(X) =FT [(FT(E)) x FT(F)| (10.16b)

where FT and FT~! denote application of a direct and of an inverse
Fourier Transform on the function of interest (which should be de-
fined on the entire line }-0o, +o0[), with usual overbar mark chosen
for conjugate.

Since we deal with finite discrete summations after applying the
method of moments, i.e., since we have to calculate terms like:

+(N-1)/2

e(Xm) = Z E(Xp)F(Xm — Xp)
p=—(N-1)/2

+(N=-1)/2
fXm)= Y E(Xp)F(Xm+X,) (10.17a)
p==(N-1)/2
m=4i,i=0,1,...,(N - 1)/2

we can do it with similar accuracy and at considerable saving over

direct operations by means of one-dimensional Fast Fourier Transforms
algorithms:

e =FFT~![FFT(E) x FFT(F)]

f =FFT~* [(FFI(E)) x FFT(F)| (10.17b)

where FFT and FFT~! mark that we respectively take the direct and
inverse Fast Fourier Transform of a discrete sequence (a row vector
typed in bold style). Each sequence (e, f, E and F) in the above
relations consists of M elements (M even number) at X,, = tmA,m =
0,1,...,M/2 (-MA is excluded). We emphasize the following.

(i) : M must be larger than (or at least equal to) twice the number
N of elements in the discrete summations (M > 2N) in order to avoid
aliasing, and M is usually equated to the closest integer power of 2 for
taking advantage of the most efficient FFT algorithms (in the following,
M is always larger than 2NV).

(ii) : Extension of E to M elements is done (“zero-padding”) by
setting E(X,, = mA) =0form = +(N -1)/2+1,...,M/2 and for
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m=—(N-1)/2-1,...,~M/2+1, and by keeping the same N central
samples.

(iii) : F is made of M elements by setting F(X,, = mA) = 0 for
m=N,...,M/2 and for m = —-N,...,~M/2 + 1, and by keeping the
same 2N —1 central samples, as we are only interested in the N central
elements of e and f.

(iv) : e and f consist of M samples, whose N central ones are the
elements of e and f given in (10.17a); these elements are calculated ex-
actly. (Note that e and f will always be multiplied by an array which
represents the contrast function xq and whose only the N central val-
ues are non zero.)

Using the preceding observations, we are now able to efficiently
solve our 2-D scattering problem. The induced sources formulation
becomes (with condensed notations)

Ja = Jo+ xa[Ja©x ®y G3; + Ja ®x ®yG3,) (10.18a)

and its FFT-counterpart is

Jo=J0+ XqFFT™! [{FFTX (FFTan’ X FFTxyH'z';}
+ {FFTxyJq X FFTxyHj3,}] (10.18b)

with bold-typed M x M arrays Jo, Ja, Xq, H}, and H}Z, where FFTy
means that we apply on the two-dimensional array under consideration
a direct Fast Fourier Transform with respect to dimension(s) U(= X
and/or Y') and where FFT~! means that we perform the inverse FFT
with respect to the two corresponding directions in the spectral do-
main.

The N2 samples of functions Jg, Jg or xa (null outside Dgq) yield
M » M-arrays after extension to zero. The H3, and H33 M x M-arrays
are deduced from the discrete homologues H3,(X,,Y,) and Hjs(X,, Y;)
[calculated like H3y (X — Xp, Yo — ¥,) and H(Xm + Xp,Yp — Y, )] of
the singular and regular parts of the Green’s function (which is defined
for any position of the source and observation points inside the domain
Dgq) as follows:

. i . J-NA<< X, <+NA
b = {sz(Xm Y, if { -NA <Y, < +NA (10.19)
0 elsewhere
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where the superscript 1 is either s or ns, and where H3(X,,Y;) is given
by (10.12a) when i = ns, and by (10.12b) when i = s.

Once the above relations are established, the solution methods are
easily derived. First, let us consider the Neumann’s series procedure. In
that case, the basic functional relationship that relates the nth. iterate
J3 to the (n — 1)th. J3~! is, starting from n = 1,

JG=Jo+xal/g ' ©x ®r G35 + J5 7 ©x ®vG3,]  (10.20a)

and its FFT-counterpart is

J% =Jo + XqFFT! [{FFTX(FFTyJa“l) X FFTXYH;‘;}

+ {FFTnya_l X FFTxyH;,z}] (10.20b)

Aitken’s extrapolation allows us to speed up the rate of convergence
(this should not necessarily be true every time and theoretically re-
quires that the convergence be at least linear, but we have observed
that phenomenon in all computations we made using Neumann’s se-
ries). In effect, it is sufficient each three iterations (starting at n = 2)
to replace the normal iterate J3 by a new one J'j given by

8 - 57
Jg-2J57 +up?

Ja=J5 - (10.20c¢)

Then we identify J' and J3, continue the Neumann’s expansion the
next two steps, carry out again Aitken’s extrapolation, and so on. Do-
ing so has obviously a trade-off since we are (at least) obliged to store
three N * N arrays (non-null values of the currents at steps n, n — 1
and n — 2). The procedure is stopped when the iterates stay almost
constant between two iterations (of the Neuman’s kind), i.e., when
the mean-squared norm |(J3 — J§~')/J3|? becomes less than a small
positive factor ¢.

Second, let us consider the conjugate-gradient procedures. What-
ever be the particular variant we use, we always have to define the
direct operator, denoted A as in the above, and the adjoint operator,
denoted A*. We keep the same notations as previously. When acting
onto functions E and F of (X,Y) which are null like x outside the



10.2 Theory 369

domain Dq (we henceforth drop the Q-dependence in order to avoid
too many subscripts in the expressions), they are written as

AE =E - x[EQx ®y G3; + E @x ®yG3,]

A'F = F - [(xF)©@x ®r G35 + (xF) ®x ®vGj,]  (10.21a)

and their FFT-counterparts are

AE =E — X x FFT"! [{FFTX(FFTyE) x FFTxyH;‘;}

+ {FFTxyE X FFTXYH;Z}]

A*F =F
— FFT-1 [{FFTX(FFTy(X x F)) x FFTxyH’z‘;}

+ {FFTXy(X x F) x FTxyﬂgz}] (10.21b)

The iterative procedures are schematized in Fig. 10.2, with choices
of real-valued factors a; and §; depending on the type of procedure
chosen; the objective function to be minimized is either the mean-
square norm of the solution error (J — J..), letting J., be the solution
we are looking for, which corresponds to the left-sided branchs of the
trees, or of the residual Jo— AJ,,, which corresponds to the right-sided
branchs. However, in both cases the minimization is stopped when
the normalized mean-square norm of the residual is decreased enough,
i.e., is lower than e. The stopping criterion is similar to the one used
in Neumann’s expansion, since the latter is stopped when J" — Jn-1
becomes small and is such that identity J* — J*1 = J, — 4J""1
applies. Note that the residual may not decrease during most iterations
when using the solution error procedure. Note also that we replaced
the usual R**! = R™ — o™ AP" operation by R*t! = Jo — AJ"*! for it
may avoid transfer of some numerical errors from the nth residual to
the next one, and that normalized variants of these procedures could
be employed.

Finally, it is interesting to count (approximately) the number of
operations involved when using FFT’s or not (note that the anomalous
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) =1Jp
Y
RO =Jo- Alp
Y
PO = A*RO
//1\
2
R 2| AR
|p|? |a*pn|?

Y
jn+l - Jn 4 onpn

Y

RN+ = Jo—AJ'“'l
Y
if (JR™*1* < ) then end A
+1]2 *gn+1]2
Bn=IRn I Bn=|ARn |
|R"|2 INUE
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pn+l = A*RMH 4 B“pn

n=n+1

Figure 10.2 Usual conjugate-gradient schemes. Left branch: minimization
of solution error, right branch: minimization of residuals. A4 is the direct
operator, A* is the adjoint one, ||> denotes the mean square norm, J*,
P™ and R™ are respectively the unknown source, the conjugate direction
and the residual at iteration n, with initial values J° (given by the user),
P% and R% the procedure is stopped when the norm of the residual is
small enough.
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field is computed in both cases by direct summation, see (10.15a)). In
the case of the Neumann’s procedure, if we consider that each 1-D FFT
requires M log M operations, we arrive at about 5M?log M(+3M?)
operations per iteration, say, about 20N? log2N in the usual M = 2N
situation, compared to about N* operations per iteration when FFT’s
are not utilized. When using conjugate-gradient algorithms, these fig-
ures are multiplied by two. Consequently, even for small values of N
(say N > 10), the number of operations is greatly reduced when us-
ing FFT’s. On the contrary, preliminary computations and storage
requirements get significantly heavier, about four times when using
FFT’s. Indeed, at the beginning, we have to calculate the elements of
the H,, arrays and the FFT’s of these arrays of order M; as the in-
tegrals over a are evaluated with the aid of a FFT algorithm of order
2N, we then have to carry out about (2N)%(2N,)log 2N, +2M%log M
operations, compared to about N2(2N,)log 2N, without FFT’s, while
storage increases in proportion to (M/N)32.

10.3 Numerical Results

10.9.1 Typical scattering cases

We illustrate the behavior of the iterative solution procedures in
a few canonical configurations. Many other configurations could be
studied, but we believe that those are various enough to show interest
and limitations of these procedures. Similar configurations have also
already been considered for the purpose of acoustical imaging studies
we would like refer the reader to [1]. All the numerical results have
been obtained by means of a standard UNIVAC 1190 sequential com-
puter with single-precision world length, the so-called virtual mode of
operation has been used in order to have enough space to store some
of the arrays required.

As therein, we first introduce three typical models (see Fig. 10.3a)
denoted by acronyms Z1, Z2 and Z3, and corresponding respectively
to a low-contrast case (wave-velocities ¢c; = 1560 m/s, cq = 1540 m/s),
a medium-contrast case (c; = 1800 m/s, cqg = 1540 m/s) and a high-
contrast case (c; = 1800 m/s, cq = 5900 m/s). The upper half-space
is water (c; = 1470 m/s), and the operating frequency is 2 MHz. For
example, in case Z2 and Z3, the lower half-space could be some not
firmly packed sand and in case Z3 the sound speed in the target is
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Figure 10.3a Configurations under investigation: square target.
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Figure 10.3b Configurations under investigation: two thin rectangles.
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approximately that of compressional waves in steel. Wavelength A; is
0.735 mm, wavelength ), is either 0.74 mm (Z1) or 0.9 mm (Z2 or Z3).
The target in the examples presented here is a homogeneous squared
cylinder with side equal to 1.95 mm (i.e., 13X2/6 in case Z2 or Z3),
centered close to or far from the interface at depth 2¢ = 1.8 mm or
9.0 mm (2 and 10); in both Z2 and Z3) and divided into N? = 225
cells with A = 0.13 mm (i.e., ® A3/7 in case Z2 or Z3). Sources and
receivers are placed on the same line parallel to the interface at fixed
distance |zg| = |zg| = 0.735 mm=A\,; we compute the anomalous field
every A between y = —18 and +18 mm (£20); in Z2 or Z3) for a line
source either central (at y = 0) or off-axis (at y = 7.8 mm=60A).

In addition (see Fig. 10.3b), at the same 2 MHz frequency and in a
low-speed medium D3 (¢2 = 1560 m/s), we consider two homogeneous
thin rectangles U and V, which have same geometry (length L = 1.95
mm, width L/13) and respective sound speeds cy (with values 2500
or 5900 m/s) and cy = 1800 m/s, and which are buried symmetrically
with respect to the y -axis at depth z¢ = L and at distance L from
one another. Each cylinder is divided into 13 squares (A = 0.15 mm),
and the target then consists of 169 cells whose only 26 have a contrast
x different from zero. The line source is placed at y = 0 or 7.8 mm at
A1 = 0.735 mm above the interface. The anomalous fields are computed
on the same line each A from —18 to 418 mm.

Results shown in Figs. 10.4 and 10.5 are variations of log(ERR)
versus the number n of iterations, where ERR is the ratio of the resid-
ual mean-square norm |R"™|? to its initial value | R%|?, which we observe
in the case of the square target (cases Z1, Z2 and Z3) when we ex-
pand the induced sources into Neumann’s series (case Z1 only, as it
does not converge in other cases) or when we use both variants of
conjugate-gradient algorithm. In Fig. 10.4, these variations are given
in each contrast case for the shallow target (z¢ = 1.8 mm), the line
source being either the central one (Fig. 10.4a) or the off-axis one (Fig.
10.4b); in addition, Fig.10.4c shows an “enlargement” of Fig. 10.4a in
case Z1 only, which shows results obtained by Neumann’s procedure
and by conjugate-gradients. In Fig. 10.5, variations of the residual ob-
served when using the conjugate-gradient algorithm that minimizes
residuals are given in cases Z1 and Z2 for both square targets (shallow
and deep) and both sources (on- and off-axis). Similar variations ob-
served with the two-rectangle target are shown in Fig. 10.6 (cy = 2500
m/s in Fig. 10.6a and = 5900 m/s in Fig. 10.6b). Amplitudes of the
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Figure 10.4 Normalized residual ERR = |R"™|*/|R%|? (log scale) versus
number of iterations n for shallow square target in cases Z 1, Z2 and
Z3 when using conjugate-gradients (liness minimisation of solution er-
ror, symbols: minimization of residuals) for both sources (central: Pig.
10.4a, off-axis: Fig. 10.4b). In addition, Fig. 10.4c shows residuals in case
Z1 with extrapolated Neumann’s expansion (line) and both variants of
conjugate-gradients (superimposed symbols).
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anomalous fields p4 calculated in several of the above configurations
with FFT’s (drawn with full lines) or without FFT’s (drawn with sym-
bols) are shown in Figs. 10.7 to 10.11; we employ a logarithmic scale in
most of these figures as discrepancies between these results are mostly
apparent only for small relative amplitudes.

10.3.2 Conclusions

Results depicted in the figures have all been obtained using FFT’s
with 2N, = 2048 points to calculate the various Fourier integrals. In-
creasing this number of points by a factor of two (2Na = 4096) roughly
doubles the computation time of these integrals but results remain al-
most the same (and are graphically identical). Also, since targets under
investigation consist of at most NV * N = 15 x 15 cells, arrays extended
to M x M = 32 x 32 have been defined and Fourier transformed. These
results and others (not shown) allow us to underline the following ob-
servations.

1) When discrete convolution and correlation products are not
calculated by means of FFT’s, CPU time depends upon (i) : the total
number of cells N2, which determines the number of samples of Green’s
functions we have to calculate beforehand and consequently the volume
of preliminary computations, (ii) : the number of cells with contrast
different from zero (the number of unknown, non-zero induced sources),
which determines the number of operations within the diverse summa-
tions at each iteration. When these convolution/correlation products
are calculated using FFT’s, CPU time mostly depends upon rank M of
the arrays; if the target consists of, e.g., two or more separated parts,
we still have to manipulate arrays whose rank is proportional with
length of the rectangle containing them and the computational burden
remains of the same order of magnitude. But comparing performances
of both types of procedures (with/without FFT’s) is hindered by the
fact (mentioned in the previous section) that we were forced to take a
certain number of arrays as “virtual” ones, and a different number of
them for each type, which significantly influences computation times.
However, we can emphasize that

(i) : for “full” targets (like the square one), with N = 15 and
M/N =~ 2, each iteration takes about twice as long without FFT’s as
with FFT’s, whatever the iterative algorithm,

(ii) : for larger targets, the advantage of FFT-based procedures
further increases (at N = 23, we observed a ratio of almost 5 in favor
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Figure 10.5 Normalized residual ERR = |R"|?*/|R°? (log scale) versus
number of iterations n for square target in cases Z2 (Fig. 10.5a) and Z3
(Fig. 10.5b) showing influence of target’s depth (lines: shallow target,
symbols: deep target) and of position of the source (central: lettering C,
off-axis: lettering O). Conjugate-gradient algorithm with minimization
of the residuals is applied.
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of such procedures).

(iii) : on the contrary, for a hollow target, direct computations are
faster than FFT-based ones, e.g., in the case of thin rectangles, directly
carrying out each iteration is about five times faster, and storage is
reduced accordingly.

2) Performances of conjugate-gradient solution methods are those
expected. Both variants: minimizing residuals or minimizing solution
error, yield stable induced sources Jq within about the same num-
ber of iterations and stable anomalous fields in less iterations (due
to integration). Their numerical behaviors are different : residuals (as
enforced) continuously decrease with the first one, and they may not
with the other; then, variations of ERR become similar only after a
certain number of iterations. Obviously, performances are functions of
contrast (between target and half-spaces and between half-spaces) and
of position of the line source, as is shown in Figs. 10.4 and 10.5 (square
target).

(i) : The higher the contrast, the slower the rate of convergence.
If contrast is important enough (e.g., Z3), we observe a long phase
of “stagnation”, where ERR either decreases extremely slowly (when
minimizing residuals), or goes up and down in seemingly chaotic fash-
ion (when minimizing solution error); with lower contrast (e.g., Z1 and
at a lesser extent Z2), ERR decreases regularly — log(ERR) varies
linearly vs. n — and almost identically using either variant.*

(ii) : At given contrast, the larger is the lateral distance between
the position of the source and the target, the more difficult is the
convergence, with the more influence for high contrast.

(iii) : Convergence is almost the same whether the target is buried
close to the interface or buried far from it, all other parameters being
kept fixed.

When dealing with the thin rectangles, that is, a partitioned target
whose parts are of high-contrast with respect to one another and to
the embedding, but remain of small size, it is like dealing with the low-
contrast case Z1, since ERR decreases identically and at a fast pace

* We refer the reader to an investigation of radiation by thin-wire
structures [7] which evidences (see Fig. 10.4) similar “stagnation” of
residuals with Le Foll’s and conventional algorithms (minimizing solu-
tion error and residuals, respectively). Reviewer A. G. Tijhuis suggests
that it may be caused by an incorrect problem formulation, and the
discussion is open.
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Figure 10.6 Normalized residual ERR = |R™|?/|R°|? (log scale) versus
number of iterations n for thin rectangles of medium-contrast (Fig. 10.6a:
cy = 2500 m/s) or of high-contrast (Fig. 10.6b: cy = 5900 m/s) illumi-
nated by central source, using extrapolated Neumann’s expansion (lines)
and conjugate-gradients (symbols + : minimization of solution error, ¢ :

minimization of residuals).
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Figure 10.7 Anomalous field p4 (in dB) on the probing line for shallow
square target in case Z2 (central source only) as a function of stopping
criterion (ERR is compared to ¢). Symbol : Born’s approximated fleld
(the fleld within the target is equated to the incident field, e.g., n = 0);
symbol + : € = 1072%; line : ¢ = 10~4. (At lower ¢ anomalous flelds become
graphically identical with those for ¢ = 10~4).

with both conjugate-gradients, whereas at most one or two additional

iterations are needed when the source is placed (transversely) far away
from the target.

3) Extrapolated Neumann’s expansion is confirmed to be quite ef-
ficient for low-contrast and/or small scatterers, like the thin rectangles
(see Fig. 10.6) or like the square target in case Z1 (see Fig. 10.4c); the
convergence rate is the same as or slightly slower than with conjugate-
gradients and computation time per iteration is approximately twice
shorter, with smaller storage. Convergence depends as usual on the
scattering configuration investigated; for example (not shown), with
the square target in case Z2, the expansion does not converge, ERR
strongly increasing after the first few iterations, and this already hap-
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Figure 10.8 Anomalous field p4 (in dB) on the probing line for shallow
square target, in cases Z1 (Fig. 10.8a), Z2 (Fig. 10.8b) and Z3 (Fig.
10.8c) and for both sources (central: lettering C, off-axis: lettering O),
calculated by using conjugate-gradients (¢ = 10~8) with FFT’s (lines) or
without (symbols). (Anomalous fields for small enough ¢ do not depend
upon the type of minimization — solution error or residuals.)
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pens at the second one in case Z3.

4) Convergence of anomalous fields is, as noted in the above, faster
than convergence of sources induced within the target (compare Fig.
10.7 that shows typical evolution of the anomalous fields versus number
of iterations and Fig. 10.5a that shows corresponding evolution of the
residuals associated to the induced sources). This results from summing
up fields radiated by every target’s cell to calculate the anomalous
field. Attaining ERR values of the order of 10~* then yields suitably
accurate fields in low- and median-contrast cases (actually, when ERR
decreases regularly), but this limit is generally not low enough in high-
contrast cases (e.g., Z3) where we have to proceed further in order to
leave the stagnation phase (ERR ~ 10~ appears suitable). However,
such observations may be too problem-dependent to be adequate to
other scattering or radiation problems.

5) Anomalous fields computed both ways (with/without FFT’s)
are in very good agreement, save exception.

(i) : Identical results are obtained in low-contrast case Z1 for any
positions of target, sources and receivers.

(ii) : In median-contrast case Z2, we may observe some discrep-
ancy, but when that happens, it only does for very low field amplitudes
(about 30 dB or more below field maxima) and at large transverse dis-
tance |y|; this discrepancy is more visible for the off-axis source than
for the central one. However, using absolute scales (see Fig. 10.9) puts
this phenomenon in right proportion, and confirms that we get at least
the same three first significant digits with and without FFT’s. (There
is no physical meaning to the small oscillations with period of one
or two A that often occur when the above discrepancy is observed.)
Similar observations are made with the hollow target, even in case of
high-contrast.

(iii) : In high-contrast case Z3, the fact that numerical results
slightly differ from one another for low level/far off-axis fields generally
becomes more noticeable (and in that case some oscillations of stronger
amplitude than with lower contrasts appear), or it may also not be ob-
served at all (shallow target with on-axis source). More surprising is the
discrepancy between anomalous fields on the y-axis or very close to it
(up to about 4A) that occurs for the shallow target illuminated by the
central source (Fig. 10.9¢c). This might be related to the computations
of the correlation products. Indeed, it is clear that : the stronger the
contrast between half-spaces (D;, D;), the more important the contri-
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Figure 10.9 Examples of Fig. 10.8b and Fig. 10.8c: shallow square target,
cases Z2 and Z3, with FFT’s (lines) or without (symbols), depicted using
absolute scale for p4. Case Z2: Fig. 10.9a and Fig. 10.9b, case Z3: Fig.
10.9¢ and 10.9d, central source : Fig. 10.9a and 10.9c, off-axis source:
Fig. 10.9b and 10.9d.
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bution of such products to sources within the target (when D; =~ D,,
contributive terms are mostly the convolution products, which are ac-
curately calculated by FFT’s), and that : the stronger the contrast of
the target with respect to D;, the more important is/may be the conse-
quence of small discrepancies when computing these sources. However,
considering the first point alone is not enough, for results do agree in
case Z2 but differ in case Z3 with the same stratified embedding in
both cases, and at the time of writing, this leaves the door open to
some speculation. This particular problem aside, agreement between
results computed with or without FFT’s agree (in short, we may count
on identical two — often three — first significant digits).

Finally, we would like to mention that two problems of interest
lie ahead. First, the above analysis has been carried out with using a
simple implementation of the method of moments; it is not sure that
the piecewise-constant expansion functions we utilized are sufficient for
every kind of buried target, whose shape and contrast may be such that
the induced sources vary too fast to be modeled with good accuracy
with our choice of functions. However, it would be interesting to know
if the gain in accuracy on the anomalous field we might observe with
better suited functions is worth the increase in complexity of the cal-
culations. Second, in practical applications in non-destructive testing,
the role of variations in density (in ultrasonics) and of permeability
(in electromagnetics) may be important and it is necessary to define a
fast computational tool that can take them into account; in particular,
when density or permeability of the half-spaces D; and D, differ, the
new Green’s function has the same shape than the one used herein, and
the calculations can be performed the same way, but when, in addi-
tion, the target consists of parts with different density or permeability,
contour integrals must be estimated.
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Figure 10.10 Anomalous fleld p4 (in dB) on the probing line for deep
square target, in cases Z2 (Fig. 10.10a) and Z3 (Fig. 10.10b) and for both
sources (central: lettering C, off-axis: lettering O), calculated by using
conjugate-gradients (¢ = 10~8) with FFT's (lines) or without (symbols).
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Figure 10.11 Anomalous field p4 (in dB) on the probing line for two thin
rectangles of high-contrast (cy = 5900 m/s) and for both sources (central:
lettering C, off-axis: lettering O), calculated by using conjugate-gradient
(¢ = 1078) with FFT’s (lines) or without (symbols).
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Erratum

Numerical results observed in one of the test cases (the high con-
trast case Z3) are partly suffering from a programming error. Adequate
correction leads to magnitudes of the fields calculated without FFT
shown in Figs. 10.9¢c and 10.9d which are almost the same as those cal-
culated with FFT (that is, the agreement between both types of results
is the same as in the other test cases). In these two figures, the curves
drawn with symbols should almost overlap those drawn with full lines
(which stay unchanged). Consequently, in part 2.2, the open problem
discussed in the conclusive comment numbered “5 (iii)” is solved. The
last sentence of the comment should simply read “Results computed
with or without FFT’s agree.”



