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11.1 Introduction

Near-field antenna measurements have become widely used in an-
tenna testing since they allow for accurate measurements of antenna
patterns in a controlled environment. The earliest work in probe-com-
pensated near-field measurements which utilizes modal expansions was
performed in the early sixties by Brown and Jull [1] for cylindrical
scanning in two dimensions and Kerns [2] for three dimensional planar
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392 11. Near-Field to Far-Field Transformation

scanning. Probe-compensated spherical scanning formulas were devel-
oped by Jensen [3] in 1970. Wacker proposed a method to extract the
modal coefficients for probe-compensated spherical measurements and
a scheme to use the FFT to compute these coefficients [4-5]. Leach and
Paris (6] extended the two dimensional cylindrical scanning theory to
three dimensions in the early seventies. An overview of the develop-
ment of near-field scanning techniques is found in [7] and Appel-Hansen
presents a detailed description of planar, cylindrical and spherical scan-
ning [8].

In this work, a new approach is presented in which near-field data
over an arbitrary nonplanar surface is used to determine equivalent
currents which exist over the entire aperture of the antenna. Given
certain approximations, the currents should produce the correct far-
fields in all regions in front of the antenna. For the results presented
in this chapter, given the measured near-fields over an arbitrary non-
planar surface an equivalent planar source covering the actual antenna
is determined. A method of moments procedure is used in which the
equivalent currents on the planar source are discretized using rooftop
basis functions in two orthogonal directions equally spaced on a plate
whose minimum dimensions are greater than the maximum dimensions
of the antenna. The electric field integral equation (EFIE) is formu-
lated and a point matching procedure is used to express the known
near-fields in terms of the unknown current amplitudes [9]. A matrix
equation relating the near-fields at given points with the currents is
then formulated as,

AQ=E 1)

where @ represents the amplitudes of the unknown currents (which
may be electric, magnetic, or both depending on the antenna) and E
represents the electric field. If it is assumed that identical near-fields
are generated from the planar source as those of the antenna under
test, measured near-fields may be used for the right hand side of (1).
The matrix equation is solved using CGM. If the number of field points
exceeds the number of current patches, the matrix is rectangular and a
least-squares solution is found without explicitly forming AZ A, where
the superscript H denotes conjugate transpose, with computation of
order MN when A is M x N. The equivalent current approach has
several advantages as compared with the modal expansion approach.

1. Even for antennas which are not highly directive, planar, cylin-
drical or any other geometry may be used for near-field measure-
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ments since the far-fields outside the solid angle subtended by the
particular geometry can be extrapolated. In the modal expansion
method if a Fourier transform approach is used to compute the
modal coefficients, then the fields outside the measurement plane
are assumed to be zero for the planar case, and those outside of
the cylindrical measurement surface are assumed to be zero for the
cylindrical case. If a matrix method is used to compute the modal
coefficients, the fields can be sampled on an arbitrarily shaped sur-
face as long as the matrix is not singular or ill-conditioned. How-
ever, it is very difficult to incorporate probe compensation using
the matrix method. Probe-compensation is considerably simpler to
implement when the near-fields are measured over planar, cylindri-
cal, or spherical surfaces. Therefore, for all practical purposes it is
necessary to use spherical measurements to determine the far-fields
over all elevation and azimuthal ranges. Spherical measurements
require a complex test apparatus, and finding the modal coeffi-
cients is a computationally intense process. Using the equivalent
current approach, with a similar order of computation as planar
and cylindrical expansions, a similar accuracy in results as with
spherical model expansions is obtained.

2. The near-field measurements may be made on an arbitrarily sha-
ped surface, while still incorporating probe-compensation. Known
errors in the positioning of the probe in planar, cylindrical or spher-
ical geometries can be compensated for in the formulation.

3. An indication of the actual current distribution on the antenna is
obtained. This may be useful for applications such as the location
of faulty elements in an antenna array.

4. Electrically large probe antennas can be modeled in a simple man-
ner.

5. In many cases, the maximum sample spacing is greater than the
generally accepted maximum allowable spacings for planar, cylin-
drical and spherical scanning in the modal expansion method,
when a Fourier transform is used to compute the coefficients.

The disadvantage of the equivalent current approach is that the
matrix sizes can be prohibitively large as antenna size becomes large.
To alleviate this problem, CGFFT may be applied. In planar scanning,
if the number and spacing of the field points and current patches are
chosen the same, the resulting matrix is square and is block Toeplitz.
The structure of the matrix can be exploited by noting that a two
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dimensional Fourier transform may be utilized to evaluate AP and
AHR in CGM, where P is the search direction and R is the residual.
This results in a tremendous decrease in storage and computation. The
method has been called CGFFT and has previously been applied to
scattering problems [10].

The theoretical basis for the equivalent current approach is detailed
in section 11.2. The formulation of the matrix equation is detailed in
section 11.3. The application of CGFFT is presented in section 11.4.
Numerical results for several antenna configurations are presented in
section 11.5.

11.2 THEORY

A. Arbitrarily Shaped Antenna

Consider an arbitrarily shaped antenna radiating into free space.
Let the antenna be surrounded by a “box” with surface ¥ . The surface
So is a plane which encompasses the aperture of the antenna, as shown
in Fig. 11.1a. To find equivalent currents on the surface ¥ which ra-
diate the same fields (E,H) external to the box, let us postulate zero
fields inside the box. To support such fields, equivalent currents must
exist on ¥ which are,

J=R"XHonZ (2a)
M=EX7@onZ (20)

as shown in Fig. 11.1b. These currents radiate identical fields external
to the box as the original source. It is further assumed that the fields
external to the box on ¥ are zero on all surfaces of the box except Sp,
then J and M exist only on Sp. This amounts to assum.mg that the
leakage and backward radiation from the antenna is negligible. Since
it is assumed that E and H are zero inside the box, we can replace it
by free space. Then J and M radiate into free space as shown in Fig.
11.1c. We can then use measured near-fields to determine J and M .

B. Special Case of a Planar Current Distribution

Consider a planar current distribution as shown in Fig. 11.2a,
where I is the plane containing the currents, and S, encompasses the
entire current distribution. Let us postulate the original fields (E,H)
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Figure 11.1 Arbitrarily shaped antenna.
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in the right-half plane, and zero fields in the left-half plane. There can
be no tangential component of H in any plane containing the elec-
tric currents [11]. Therefore, to support such fields, equivalent currents
must exist on ¥ which are,

J=nX Hon S, (3a)
M=EXm@onXx (3b)

These currents radiate identical fields in the right-half plane as the
original source. If we place a perfect magnetic conductor as shown in
Fig. 11.2b, then the magnetic currents are “shorted out”. Then using
image theory, we can express J as,

J=2nX Hon S (4)

where J radiates into free space as shown in Fig. 11.1c. We can now
use measured near-fields to determine J.

C. Special Case of an Aperture in a Plane Conductor

Consider a planar aperture as shown in Fig. 11.3a, where ¥ is
the plane containing the conductor, and Sy encompasses the entire
aperture. Let us postulate the original fields (E, H) in the right-half
plane, and zero fields in the left-half plane. The tangential components
of E and H on the conducting plane are zero. Therefore, to support
such fields, equivalent currents must exist on ¥ which are,

J=nXHonS (5a)
M=EXmonS, (5b)

These currents radiate identical fields in the right-hand plane as the
original source. If we place a perfect electric conductor over the aper-
ture as shown in Fig. 11.3b, then the electric currents are “shorted
out”. Then using image theory, we can express M as,

H=2_EXﬁOTlSo (6)

where M radiate into free space as shown in Fig. 11.3c. We can now
use measured near-fields to determine M .

From Sections A, B and C it is clear that the solution for an arbi-
trary antenna is the superposition of that of the planar current case,
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and the planar aperture case. In the remainder of this chapter, planar
currents are dealt with. Analogous formulations for apertures can be
found, and a superposition of the two will result in the formulation for
arbitrary antennas.

D. Probe Compensation

Consider case (B) where the planar currents have been replaced
by equivalent electric currents, and a probe has been placed in the
right-half plane in order to measure the near-fields radiated by the
test antenna. Let the principle fields radiated by the test antenna be
E, and those radiated by the probe be Ej. Let the fields scattered
by the probe when the test antenna is turned on be E,,. Similar
definitions apply for the currents on the test antenna and the probe
Jay Jass Jb, and Jbs . The amplitudes of the near-field data are ob-
tained by measuring the voltage across a load on the terminals of the
probe. This voltage is proportional to the open-circuit received volt-
age on the probe. To within a constant of proportionality, the received
signal when the probe is positioned at 7o is [12-13],

PB(?o)A/V (Ea-Jo—Ep-Jb,)dV (7

The second term on the right arises from the induced current on the
test antenna due to the presence of the probe. If this term is neglected,

Py(ro) ~ /V By -T.dV = /V B, - Tydv 8)

One can approximate the currents on the probe with known basis func-
tions and determine J} . If the probe is assumed to be an ideal Hertzian
dipole located at (z¢,yy,2f), the current J} is,

To=6(z' — 24)6(y' — y5)8(2' — 2¢) 9

Then evaluating (8) is equivalent to finding the scattered fields due to
J. at a point (z4,ys,24) in the &, direction from,

Pg(To) = E(z4,y5,21) - @ (10)
Pp(7o) = (—jwpu — V@) - a (11)
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If a method of moments procedure is used to discretize J, in terms of
known basis functions, then (11) is equivalent to using a point matching
procedure to form a matrix equation. The formulation is detailed in
Section 11.3.

Probe-compensation can be incorporated using a method of mo-
ments procedure, without neglecting the currents induced on the test
antenna due to the probe or the interaction between the induced cur-
rents and the induced fields (referred to as multiple reflections). When
the planar current J, and the current on the probe J, are discretized
in terms of known basis functions with unknown coefficients, a moment
matrix [Zg] can be formed. For example,

< —E-a)jb >= [Zab][Ia] (12)

Here, < E,,Jy > is the reaction of E, on Jp and is given by (8).
Consider the case when the test antenna alone is radiating into
free space and is excited by [V;].

[Zaa][I]} = [V1] (13)

[Zaa] is the self-impedance matrix of the equivalent sources, and I
are the equivalent sources. These are the currents which are required
to compute the correct far-fields.

Now consider the test antenna in the presence of the probe as
shown in Fig. 11.4. The probe may be electrically large. From network

theory,
[[Zaa] [Zab]] [[Ia]] — [[Vl]] (14)
[Zba]  [Z3s] | | [16] [V2]
[Zes] is the self-impedance matrix of the probe. It is a diagonal matrix
whose elements are the impedance seen through the terminals of the
probe when it is located at each measurement position. Each of the

elements may be approximated to be the same. If the excitation (V1]
is the same in the cases with and without the probe,

[Zsa]  [Zes] | [ (5] [V]
From Thevenin’s and Norton’s equivalent circuits, if a load impedance
Zy, is placed across the terminals of the probe, the voltage across the



11.2 THEORY 401

"V" Free Space

"H" Probe

"a" Test Antenna

Figure 11.4 Probe compensation geometry.

load is,

Zy
= _—'Voc
Zw+ 21,
~ZwlL
= ZwAL o 16
Zw + Zp, (16)

Therefore the signal on the probe to within a constant of proportion-
ality is,

Vi

Pg(To) = ~Zpp Iy |vy=0 (17)

From (15) and (17),
[Zaa] (1a) = [13]) = [Zab][Z66) [P (To)] (18)
[Zaa][1a] = [PB(To)] (19)

Equations (18) and (19) can be solved for [I']. By utilizing [I!] to
compute the far-fields, the effects of all induced currents are removed.
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11.3 Formulation of Matrix Equation

Consider the equivalent source distribution to be a plate in the z—
z plane composed of equally spaced rooftop function representations
for the currents. The currents are given by,

. M N M N
J = &,Zza;jpz(zi, zj)‘*‘dzzz,aijpz(zi,zj) (20)
i=1 j=1 i=1 j=1

where P are rooftop functions, with P, defined as,

Py(zi,25) =

(2 —2;) 1 ;- Az <z <z
Az + zj—Az[2< z2< z;+ Az/2

—(z —z;) 1 zi<z<z+ Az
Az + zi—Az[2< z2< zj + Az[2

=0, otherwise (21)

and P, defined as,
Ly (2= %) zj~Az< 222
Py(zi,2;) = Az +1 z;—Az/2 <z <z + Az/2

z—(z—zj)+1 z;<z<z;+ Az _
Az z; - Az/2 <z < z; + Az/2
=0, otherwise (22)

a;; and B;; are the unknown coefficients to be solved for. The field at
any point (z4,y¢,2¢) can be found from,

E(zs,y5,2f) = —jwu[ZZJ(k,l) //g(F-ﬁz)dSh

k=1 l=1
1 _
-/, V'.J(k,z)V'g(F—F;,adsaz] (29
(1]

where, g is the three dimensional Green’s function,
e—JkR
4R
R=[(z -2+ () + (- )" (25)

g(F— F;el) = g(z’y’z’w” z,) = (24)
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The first term due to the vector potential may be simply evaluated by
approximating the rooftop functions to be pulses where the integration
is performed over the ki** current patch. The second term due to
the charge may be evaluated by finding the divergence of the current
from (20) using,

M N M N

V. &wzz q@P (a:,,z_,) +a ZZﬁuaP 2 (24, 25) (26)

i=1 j=1 i=1 j=1

Defining the coordinate of the center of each current patch as (z,y;)
and the following points,

z, =z — Az /2 z. = zp + Az/2
zg=21—Az[2  ze=z+ Az[2

21 =2, — Az Ty =T 23 =2 + Az
21 =2 - Az =2z z3=2z14+ Az

The components of the field at a point (z4,yy,2¢) can be found. The
z -component of the field is,

E.(z,yf,27) = —jwp [EA(Jc) + Ef(']z) + Ef(Jz)] (28)

where E4 which represents the field due to the magnetic potential
term is given by,

EA(J ) = Zzau/“m /z'_z g (F — 7y )dz'dZ’ (29)

=1 l=1

where, Ep represents the fields due to the scalar potential term and
are given by,

EP(J.) k’Az Z Z apl

k=1 I=1
/ [g(zf’yfa zf,:c3,z')+g(a:f,yf,zf,:c1,z')
-29(zf,yf, 2f, 22, z’) ] dz’ (30)
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EP,) = szz Z Z B

klll

[ , [g(mf,yf,zf,:ce,z’)—g(zf,yf,zf,:cs,z')]dz'
z2
_/1 [g(a:f,yf,zf,a:e,z')

- g(zf, yfyzf,zs, zl)] dz,:l (31)
The y-component of the field is,
Eu(z.f’ Yty 2f) = —jw/‘[Ef(Jz) + Ef(Jz)] (32)
where,
P 1 M N ze x3 ;. ,
B =gmm o om [ [ ettt
k=1 I=1 zs x2
*2
—/ a(zfyf,2f,2',2") d:c’] dz (33)
zl
23
EP(J)"‘ sz ZZﬁkl/ [/2 gy(zf,yf’zf,z,’z,)dzl
k=1 1=1 2
z2
—/ a(=f,yf,zf,2',2") dz'] dz' (34)
zl
with,
, e—Jd JkR
9y(2,y,2,2',2') = WY (Jk + ) (35)

The z-component of the field is, -

E.(24,y5,2¢) = —jwp [EA(Jx) + EzP(Jz) + Ef(Jz)] (36)

where,

M N Ze Ze
BAJL) =5 pu / / g (F—7) de’ do’ (37)

k=1 l=1
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sz Z Z Ak

k=1 1=1

[/2 [g(zﬁyf,zf,z,’ze) - g(‘c.f’yfazf,z,’zs)] dz'

EP(J,) =

a2
—/1 [g(zf,yf,zf,z’,ze)
- (298,21, 29)] do] (38)

E;(J.) = sz ZZ,BM

k 1l=1
[g(zf’yf’ zf, z"z3)+ g(zf,yf,zf,:c',zl)

- 2g(zfa vfs2f, 3" 12) dz'] (39)

Equations (28), (32) and (36) represent the EFIE, and when a point
matching procedure is used, a component of the electric field in any
direction at the given point may be found. This is proportional to
the signal on a probe measuring the electric field in that direction,
when it is assumed that the probe is a small dipole. For the special
cases of planar, cylindrical and spherical scanning, the following matrix
equations are obtained -

[Eo(J2) Eo(J:)] [Je] - .Ez(zf’yf’z.f).
LEz(Jz) -Ez(Jz)_ _Ez(zf’yf’zf)_
for planar scanning,
[Eg(Je) Eg(J:)] [J=] _ [Es(zs95021)] (41)
Ez(Jz) Ez(Jz)_‘ _Jz_ _Ez(zfvyf’zf)_

for cylindrical scanning, and

-EU(JE) EO(JZ). -Jz. FE@(zfayfazf)1

(40)

= 42
| E¢(Jz) Eg(Jz)] | T:] ~ | Bo(zs 950 2¢) ] (42)
for spherical scanning. In (40), the various blocks of the matrix are,
Ez(Jz) = EA(Jz) + Ef("w) (43)
E.(J.) = EF(J,) (44)
E.(J.) = EF(J.) (45)

E.(J:) = EA(Jz) + Ef(Jz) (46)
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The E4 and EP terms are defined in (29)-(31), (33)-(34) and (37)-
(39). The relationship of E4 and Eg with E,, E, and E, are given in
[11]. For example, consider Ey(J,),

Ey(Jz) = —E.(Jz)sing + Ey(J,) cos ¢ (47)
with
. Yy
sin¢ =
z% +

zsf
cos P = 48
b=ty (48)

The matrix equation is solved using CGM (case A), the algorithm
for which is outlined in [14].

11.4 CGFFT For Planar Measurements

In planar measurements in which the plane containing the current
patches and that over which the field points are taken are parallel, and
of the same size, the computation and storage requirements can be
tremendously reduced by using CGFFT. Most of the computation at
each iteration in CGM occurs in the calculation of A P and AH R,
where P is the search direction and R is the residual. When the dis-
cretization of the current patches and field points is chosen to be equal,
the resulting matrix is block Toeplitz. In this case, A P and AH¥ R
represent discrete convolutions, and can be evaluated by multiplying
their discrete Fourier transforms and inverse Fourier transforming the
result [15]. This can be performed efficiently using a two dimensional
FFT. :

Consider the matrix equation (40), which must be evaluated when
computing AP or AJ . This is of the form,

-Ez(J:n) E:c(Jz) P, _ APw(zf,yf’zf)
e Frea) [P] - [AP;(zf,w,zf)] (49)
Then [AP,] can be found from,
[4R) = £ { FAIE.()},} F (1P}

+ F{{E(J)]5} F {[Pz]o}} (50)
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and [AP,] can be found from,

(4P =F{ P (BJ2))} F (P21}
¥ F{E(J)}} F {[Pz]o}} (51)

Here F denotes a two dimensional discrete Fourier transform and F~1!
is a two-dimensional inverse discrete Fourier transform. The subscript
p denotes a periodic extension of the matrix, the subscript 0 denotes
the matrix with zero padding, and the subscript T denotes the trunca-
tion operator. The adjoint operator is also required to compute A7 R.
This is given by,

EH(J,) EE(J,)][R.] _ [A®R.(zs,us,2
[EHH EfEJ,;] [R] = [AHRzgw;,gi,zﬁ] 52
From (52) [A¥R,] is computed using,

(A7 R,] = FH{ F((B2(22)} F{[Rel}
+ P {EF U} F (R} (53)

and [A¥R;] can be computed using,
[A%R,) = F7' {F {(BF (1))} F {[Relo}
+ PBXIL}F (R} (54)

where the superscript * denotes conjugate. In (53) and (54) use has
been made of the fact that E.(J) and E,(J,) are both symmetric
matrices, and their Hermitian is simply the conjugate of the matrices.

Using CGFFT, for N X N measured field points, six matrices
of size (2N — 1) X (2N — 1), namely E,(J;), Ez(J;), E:(Jz), E:(J:),
EX(J,) and EH(J,) need to be stored. If a matrix method in modal
expansions is used, 2N2 X 2N? elements need to be stored.

The required computation for the two dimensional FFTs is (2N —
1)*log,(2N — 1) and each iteration requires six such operations. For
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Figure 11.5 Planar measurements geometry.

the purpose of comparison of computation with the modal expansion
method, assume a sample spacing of 0.5\ and a square planar surface
for the currents of dimension 2a where a is the smallest radius cir-
cumscribing the antenna aperture. (This may be a much larger area
than what is actually required.) Then 5;“1 or 3,’%‘-‘- current patches are
required and the order of computation under these conditions using
CGFFT is (ka)?log,(%k2). The order of computation would differ if
the size of the plane or the sample spacing are varied. This is compa-
rable to the (ka)?log,(ka) order of computation required to compute
the entire far-fields using planar or cylindrical modal expansions.

11.5 Numerical Investigation

Far-field results for several planar antenna configurations are pre-
sented in this section. In all examples where planar near-fields are
used, CGFFT has been employed. For planar measurements, the per-
tinent parameters which are referred to are shown in Fig. 11.5. Similar
definitions apply for cylindrical measurements with NPHIF being the
number of points measured in the ¢ direction.

In sections A and B, synthetic near-field data is used, and a com-
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parison is made with analytic far-fields. Section C utilizes experimental
results for a microstrip array, and results are compared with far-fields
obtained using modal expansions.

A. Uniform Arrays

A uniform array in the x-z plane has a far-field pattern,

. [Ny, s [NLY,
F(6, ¢) = sinBM sinﬁw (55)
sin (%) sin (%)
where,
. ¥, ="kAzsinfcosd + §, (56a)
¥, = kAzcosd + 4, (56b)

where Az and Az are the spacing between the dipoles in the x and
z directions, N, and N, are the number of dipoles in the x and z
directions and 6, and 4§, are the progressive phase shifts of the currents
in the x and z directions.

Example 1
Az = Az =4
N,=N,=2
0, =6,=0

Planar measurements:

XD,=2D,=XDy=27ZDys =45
d= 30\
NXS=NZS=NXF=NZF =15

It should be noted that for this example when modal expansions
are used, the cutoff angle 6. beyond which the far-fields cannot be
determined is 0.5°. The cutoff angle is approximated by [16],

(57)

o~ o [2D -
€ 2d
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In the equivalent current approach, the angle # over which the near-
field is sampled is varied between 85.7° and 94.3° for ¢ = 90°. Figure
11.6 shows |Eg| versus @ in dB for ¢ = 90°. Far fields are very accu-
rate up to +40° of § = 90° and to within approximately 5 dB over
the entire elevation range. A good extrapolation of the far-fields is ob-
tained. Figures 11.7 and 11.8 show the normalized z and x directed
current densities, respectively. The equivalent currents very accurately
represent the actual currents. J, is negligible and J, reflects the delta
function distribution.

Example 2
Az = Az =4\
Ny=N,=2
b.=6,=0

Parabolic surface:

XD,=ZD, = ZD; = 4.5)
NXS=NZS=NPHIF=NZF =15

The equation of the parabola is,
y = ~0.0167z2 + 30 (58)

This example demonstrates that accurate far-fields are obtained
when a measurement surface other than planar, cylindrical or spherical
is used. The near-fields are sampled over a surface which is parabolic in
the z—y plane and constant in the y—2z plane. Figure 11.9 shows |Ey|
versus 6 in dB for ¢ = 90°. Results with about the same accuracy as
the planar measurement case are obtained.

Example 3
Az = Az =6\
N.=N,=2
6::: =0

Cylindrical measurements:

XD,=2D, = 6.5\
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Figure 11.6 Comparison of exact and computed far-fields for ¢ = 90 cut
for 2 x 2 dipoles on a 4\ X 4\ surface using planar scanning.

0< ¢y <7, ZDy is varied
po =12\
NXS=NZS=25
NPHIF =23,NZF =64

In this example, the required sampling rate when the equivalent
current approach is used is investigated. The discretization in the ¢
direction is approximately 0.59\, which is greater than A\/2p(0.12)\)
where p is the radius of the smallest cylinder circumscribing the array
centered at the origin. The discretization in the z direction is varied
as 1), 1.5X and 2.5). Figure 11.10 shows |Ej| versus 6 in dB for
¢ = 90°. In all three cases, the far-fields obtained by the equivalent

current approach agree well with the exact far-field.
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Figure 11.7 Equivalent current J, for 2x2 dipoles on a 4\ X 4\ surface
using planar scaning.
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Figure 11.8 Equivalent current J, for 2x2 dipoles on a 4\ x 4\ surface
using planar scaning.
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Figure 11.9 Comparison of exact and computed far-flelds for ¢ = 90 cut
for 2 x 2 dipoles on a 4} x 4\ surface using parabolic scanning.

B. Sinusoidal Current Distribution

Consider a current distribution which is sinusoidal in the z-direc-
tion and constant in the x-direction, of the form

Jz(zyz)_{sin(k(H.*.z)) ~-H<z<0, =<

If H is an odd multiple of 2 then,

i - =Zo
sin(k(H - 2)) 0<z<H, E (59)

J:(z,z) = tcos(kz) - H<:z<H, _T""O <z< % (60)

To compute near-fields from this distribution, a closed form expres-
sion may be found for the 2 integration [17], and the z integration is
performed using Gaussian quadrature [18]. For the distribution in (60)
the far-field pattern is

cos [kH cos ] sin %22 sin 6 cos ¢

F(6,9) = sin 4 sin @ cos ¢

(61)
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Figure 11.10 Comparison of exact and computed far-flelds for ¢ = 90 cut
with varying discretizations for 2 x 2 dipoles on a 6\ X 6) surface using
cylindrical scanning.

In the next few samples large antennas with a sinusoidal current
distribution are studied.

Example 4
H = 2%/\, zo = 0.5
Planar measurements:
XD,=XDy=A, ZD, = ZDg =10
NXS=NXF=21, NZS=NZF =189
d=3)\

Figure 11.11 shows |E4| versus 6 in dB for ¢ = 90°. The results
show excellent agreement between the computed and analytic results.
Example 5

H = 5%)\, zo = 0.5\
Planar measurements:

XD,=XDs=A, ZD,=ZDy = 20X\
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Figure 11.11 Comparison of exact and computed far-fields for ¢ = 90

cut for 4.5\ x A/2 surface with a sinusoidal current distribution.
NXS=NXF=21, NZ§5=NZF =189
d=3X
Figure 11.12 shows |Ey| versus 6 in dB for ¢ = 90°. The results
show good agreement between the computed and analytic results, with
slight discrepancies between 0 and 20° and 160° and 180°.
Example 6
H= 10-})\, zo = 0.5\
Planar measurements:
XD,=XDs=X, ZD,=ZDy =40
NXS=NXF=21, NZS=NZF =189
d=23\
Figure 11.13 shows |Ey| versus & in dB for ¢ = 90°. The results

show good agreement between the computed and analytic results, with
discrepancies between 0 and 40° and 140° and 180°.

Example 7
H= 10;1-)\, zo = 0.5\
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Figure 11.12 Comparison of exact and computed far-fields for ¢ = 90
cut for 10.5) x A/2 surface with a sinusoidal current distribution.

Planar measurements:

XD,=XDs=2X, ZD,=2ZD; =50\
NXS=NXF=21, NZ§= NZF = 1385
d=3A

In this example, the same antenna as in example 6 is used with
more points sampled in the z—direction . Figure 11.14 shows |Eg| ver-
sus 6 in dB for ¢ = 90°. The results show excellent agreement between
the computed and exact far-fields.

C. Ezperimental Results

Consider a microstrip array consisting of 32 x 32 uniformly dis-
tributed patches on a 1.5 x 1.5 m surface. The near-fields are measured
on a plane 3.24m X 3.24m at a distance of 35cm from the array. There
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Figure 11.183 Comparison of exact and computed far-fields for ¢ = 90
cut for 20.5) x A/2 surface with a sinusoidal current distribution.

are 81 x 81 points measures 4cm apart. The operating frequency is
3.3 GHz. The array is considered to be in the = — y plane.

For the equivalent current approach, a 1.64m X 1.64m surface
was used for both the source and field planes, with 41 X 41 current
patches and field points. The probe is assumed to be an ideal Hertzian
dipole.

For the planar modal expansion approach, 81 x 81 data points
are zero-padded to produce 128 x 128 far-field points. Measurements
are performed using a WR284 waveguide. For the spherical modal
expansion approach, 360 theta and 90 phi points are measured with
A0 = 1° and A¢ = 2°. The scan radius is 1.28m. There are 256 X
256 far-field points. Measurements are performed using an open ended
cylindrical waveguide fed with the T'E;; mode.

Figure 11.15 shows |Ey| versus 6 in dB for ¢ = 90° obtained us-
ing the current approach, along with results obtained using planar and
spherical modal expansions. The two agree to within +5dB for —30° <
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Figure 11.14 Comparison of exact and computed far-fields for ¢ = 90
cut for 20.5A x A/2 surface with a sinusoidal current distribution.

6 < 30°, however, beyond this the results deviate. It is clear from the
plot that the results obtained with the planar modal expansion method
diverge outside this region, since there should be nulls at +90°. The
nulls are apparent in the spherical modal expansion approach. The
equivalent current approach gives deeper nulls and lower sidelobes than
the spherical modal approach, however, the shape of the lobes is the
same. A comparison with measured far-fields is required to conclusively
determine which result is more accurate.

Probe compensation was implemented using (18) and (19). A pulse
current was assumed to exist on the aperture of the waveguide, and
the moment matrices Z,,, Z,; and Z;, were computed. Figure 11.16
shows the principle cut with and without probe compensation. The
results agree to within 3 dB. The similarity in results indicates that
for this particular antenna, the induced currents are negligible.
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Figure 11.15 Comparison of far-fields obtained with planar and spherical
modal expansions and using the equivalent current approach for ¢ = 90
cut for a microstrip array.

11.6 Conclusion

A simple, accurate method is presented for computing far-fields
from near-field data. The method can incorporate probe compensa-
tion which takes into account all induced currents and fields due to
the presence of the probe. It is amenable to any measurement config-
uration, and the far-fields outside of the solid angle subtended by the
measured region can be accurately approximated. Using this method it
is possible to find the far-fields of antennas which are not highly direc-
tive over large elevation and azimuthal ranges without using spherical
scanning. Furthermore, the far-field may be found with any desired
resolution, and interpolation is not required. The maximum allowable
sample spacing for some cases is shown to be greater than A/2. For
planar scanning using CGFFT, the equivalent current approach is com-
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Figure 11.16 Comparison of far-flelds obtained with probe compensation
and without probe compensation for ¢ = 90 cut for a microstrip array.

putationally efficient, and the order of computation is comparable to
the planar and cylindrical modal expansion method.
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