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456 13. Transient Scattering

13.1 Introduction

In this chapter, the transient scattering of electromagnetic waves
by an obstacle of finite extent is investigated with the aid of the time-
domain integral-equation technique. The numerical solution of tran-
sient scattering problems is possible using a variety of techniques, in-
cluding finite-difference and finite-element methods. However, there are
two distinct advantages in using integral equations. In the first place,
the only spatial domain relevant in their solution is the interior or the
boundary of the scattering object. Hence, we can restrict the com-
putation to that domain. In the second place, radiation and causality
conditions are inherently satisfied in any integral-equation formulation.

Historically, time-domain integral equations have first been solved
with the aid of the marching-on-in-time method. In this method, one
uses the common property of such equations, that the scattered field
at each space-time point is expressed in terms of one or more integrals
of field values at previous instants. Discretizing these integrals in space
and time leads to a step-by-step updating procedure involving only a
repeated linear combination of known field values.

The first application of the marching-on-in-time method per-
tained to transient scattering problems that can be formulated in terms
of boundary integral equations. As far as acoustic scattering problems
are concerned, the method was applied to two-and three-dimensional
impenetrable obstacles with a variety of boundary conditions [1-8].
In electromagnetics, two- and three-dimensional perfectly conducting
targets were analyzed during the same period as their acoustic coun-
terparts [9-13]. For this class of problems, the development of the
marching-on-in-time method has also been summarized in a number
of review papers [14-17]. The second category of electromagnetic scat-
tering problems that was solved is the transient scattering by homoge-
neous, lossless dielectric targets [18, 19].

When the scatterer is inhomogeneous, domain integral equations
have to be resolved. For a number of three-dimensional acoustic and
elastodynamic scattering problems, this was carried out in [20-22].
The two-dimensional acoustic case was dealt with in [23]. As far as
electromagnetic scattering problems are concerned, to the best of the
author’s knowledge, only the dielectric slab [24-26] and the inhomoge-
neous, lossy dielectric cylinder [12, 13] have been investigated.

The most important difficulty in the application of the marching-
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on-in-time method is the occurrence of exponentially increasing insta-
bilities in the solutions obtained. These instabilities can be explained
from the accumulation of the discretization errors in the time-recursive
solution procedure. It is this problem that, in recent years, has dimin-
ished the interest in applying the method. One of the few exceptions is
[27]. A number of researchers has attempted to control the error in the
solutions obtained by either modifying the discretization or the formu-
lation of the problem [12, 26, 28-30]. The success of such attempts has
been limited, and appears to depend strongly on the structure of the
integral equation at hand.

A more fundamental approach is to use a different method of
solution. To this end, the numerical solution is redefined as the set of
approximate field values that minimizes a squared error in the equality
sign of the discretized integral equation. This solution is then obtained
by applying a gradient method (21, 31], a conjugate-gradient method
[32-36] or a relazation method [37, Chapter 3].

The essential difference between a conjugate-gradient method and
the relaxation method is that, in each iteration step, the former to-
tally improves the component of the iterate along a single direction
in the relevant solution space, while the latter partially improves the
values along all wel-behaved eigenvectors of the system matrix of the
discretized integral equation. This makes the relaxation method more
suitable for determining a large solution vector corresponding to a fine
space-time sampling of the unknown electromagnetic field.

In the present chapter, we give a tutorial review the state of af-
fairs as it stands now. In Section 13.2, we present one way of deriving
the relevant integral equations in a systematic manner. We end up
with a general operator form that is representative of the entire class
of equations, and that contains sufficient information to allow a dis-
cussion of the various computational procedures. In Section 13.3, we
formulate and analyze the marching-on-in-time method. In particular,
we propose a matrix interpretation of the discretized integral equation
that explains the stability behavior of all time-marching results known
to the author. The same interpretation is also used in Sections 13.4
and 13.5, where the conjugate-gradient method and the relaxation
method are discussed. Finally, the conclusions are stated in Section
13.6. Throughout the chapter, the discussion is illustrated with the aid
of representative numerical results. To preserve the tutorial character
of the discussion, the examples were chosen as simple as possible.
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Like any tutorial discussion, this chapter contains some material
that has previously been published elsewhere. In particular, much of
the information contained in Section 13.3 and 13.5 can also be found
in [37]. Compared with that reference, the text has been completely
rewritten. Additional results by this and other authors have been in-
cluded, while, at a few places, it has been possible to come up with
a better established or a more explicit analysis. Most of the material
presented in Section 13.2 and 13.4 is new or has, until now, remained
unpublished.

Much effort has been spent to arrive at a coherent account, from
which a reader interested in time-domain integral equations can select
the most appropriate approach for his or her problem. In this context,
all programs have been (re)written in Fortran 77, and all computations
were carried out on the same computer, a VAXstation 2000 running
under version V5.0-2 of the VAX/VMS operating system.

13.2 Basic Equations

Although time-domain integral equations have been the subject
of investigation for at least two decades, relatively little attention has
been devoted in the open literature to their formulation. The most
complete accounts were given by Poggio an Miller [14], and by Mittra
[15]. In this section, we present one way of systematically obtaining
such integral equations. The original idea emanates from De Hoop,
who proposed it for the formulation of integral equations for three-
dimensional frequency-domain problems [38]. In what follows, we carry
his derivation over to time-domain problems in one, two and three
dimensions.

13.2.1 Source Representations for Electromagnetic Fields

The basic tool in the formulation is a system of integral relations
that, for points of observation in a given domain in space, leads to a
source-type integral representation for the electromagnetic-field quan-
tities.

We start with the situation where the electromagnetic-field quan-
tities are defined in a bounded subdomain D, of R™, with n =1,2,3.
The boundary of D, is the closed surface 8D (Fig. 13.2.1). 8D is as-
sumed to be sufficiently regular, i.e. the unit vector n along its outward
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normal is a piecewise-continous vector of position. The unbounded do-
main exterior to JD is called D;. In D,, we assume an electric-
current density J p(r,¢) and a magnetic-current density J J(r,t)
to be present in a homogeneous, lossless medium with constant per-
mittivity ¢ and constant permeability u. The current densities appear
as source terms in the electromagnetic-field equations, which are writ-
ten as

V x H(r,t) — €6,E(r,t) = Tp(r,t)
V x &(r,t) + pdH(r,t) = ~TP(x,t) (13.2.1)
The current densities J 7, and J T as well as the field quantities &

and H are three-dimensional vectors, while the Cartesian position
vector r and the corresponding gradient operator V are defined by

1.2 forn=1
r &t iz + iy forn =2 (13.2.2)
i;z+iyy+i,z forn=3
and
1.0, forn=1
V":‘f{ 1.0 +1,0, for n = 2 (13.2.3)
i;0, +1,0,+1,8, forn=3

The time coordinate t is chosen such that the current densities
Jp (r,t) and JG(r,t) as well as the field quantities & (r,t) and
H (r,t) vanish for t < 0.

Next, we transform the system of equations (13.2.1) into an equiv-
alent system of algebraic equations. First, we introduce a temporal
Laplace transform according to

E(r,s)%—e_f/;w dt € (r,t) exp(—st) (13.2.4)

which is regular for Re(s) > 0. This transformation reduces (13.2.1)
to

V x H(r,s) — seE(r, s) = IH(r, s)
V x E(r,s) + suH(r,s) = —J3(r, s) (13.2.5)
Second, we define the spatial Fourier transform V(k) of a vector field

V(r) as

V(k) /D 4V (r) exp(—ik - r) V(x) (13.2.6)
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Figure 13.2.1 Scattering of a pulsed electromagnetic wave by an obstacle
of finite extent.

where
kel forn=1
k= ¢ kzi, + ki, for n =2 (13.2.7)
ki + kyiy + ki, forn=3

In order to é,pply this transformation to (13.2.5), we further need the

corresponding transform of V x V(r). With the aid of Gauss’ theorem,
we find

(VXV)(K) = ik x V(k) + ]{, _dA(r) exp(-ik - x) n(x) x V(r)

(13.2.8)
The second term on the right-hand side of (13.2.8) is just the spatial
Fourier transform of the vector function n(r) x V(r) over its domain

of definition 9D . Combining (13.2.5)(13.2.8), we obtain the following
equations for H(k,s) and E(k, s):

ik x H(k, s) — seB(k,s) = JD(k s) +J3g (k s)
ik x E(k,s) + spH(k,s) = — IB(k,s) - iT(k,s) (13.2.9)



13.2 Basic Equations ' 461

in which J§(k,s) and J2(k,s) are the spatial transforms over the
boundary 3D of the quantities

J3(r,s) - n(r) x H(r,s) whenr € 8D (13.2.10)
and )
2(r,3) ¥ n(r) x E(r,s) whenr € 8D (13.2.11)

respectively. Note that in the right-hand sides of (13.2.10) and (13.2.11)
the limiting values of the quantities upon approaching 8D via D, are
to be taken. The structure of (13.2.9) leads to the interpretation that
J%(r,s) and JB(r,s) are the Laplace-transformed source densities of
the electric and magnetic surface currents.

The system of equations (13.2.9) is now in the desired algebraic
form. Solving these equations yields

B = (k4 steu) {~op (35 + 3
+ (297 ik [ik- (5 +35)| - ik x (35 +33) }
(13.2.12)
and
H =K+ sep)? {—se (h'f)‘ + 375)
+ (su)~tik [ik- (“’3 + jg)] + ik X (Ai) + 3’3) }
(13.2.13)

where we have employed the usual notation kdéf|k| = (k-k)3.
In Subsection (13.2.2), it will be shown that the factor

Gk, 8)% (k2 + 52/c2) (13.2.14)

with ¢ ¥ (ey)‘% being the wave speed in the homogeneous medium,
corresponds to a causal, n-dimensional space-time Green’s function
G(r,t), with G(r,t) = 0 for ¢t < r/c. This correspondence allows us
to identify the right-hand sides of (13.2.12) and (13.2.13) in terms of
space-time convolution integrals. In the case of the space integrals,
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we have to account for the domain over which the relevant forward
transformations are defined. We end up with

{1, % 0} E(ryt) = —pdy [ (r,t) + M5 (x, 1)

et [ w99 (e + M (e, )]}

— V x [IE(r,t) + O2(r, 1)] (13.2.15)

and
1 m
{1, 5 o} H(r,t) = —ed; I3 (r,t) + MF(r,t)]
+p? /_t dt'v {V - [Op(r,t') + Mg (r,t)]}
+V x [[(x, t) + Wy(r, t)] (13.2.16)

for r € {D2,0D,D,}. In (13.2.15) and (13.2.16), we have introduced
the potentials

def t—R/c
5™ (r, ) / v (r') / dt' G(R, ¢ — ) TS (x', ')
D3 0
(13.2.17)
def t=R/e
5™ (r, 1) f dA(r) / dt' G(R,t — )T (x', ')
' 8D 0
(13.2.18)

with R‘i—ifh' -r.

It should be pointed out that, in writing down (13.2.15) and
(13.2.16), we have systematically translated the factors ik and s oc-
curring in (13.2.12) and (13.2.13) into space and time differentiations
acting on the complete space-time integrals. For the time differenti-
ations and integrations, an alternative translation is obtained by at-
tributing the factors of s in (13.2.12) and (13.2.13) to the correspond-
ing operations acting on J 33(r',t').

For the space differentiations, such an ambiguity is not available
because of the finite extent of the domains of definition of the spa-
tial Fourier transforms. Nevertheless, we still have some freedom. For
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two-dimensional problems, for example, it may be convenient to in-
corporate the elaboration of one or more space differentations in the
Fourier inversion procedure for the Green’s function discussed in Sub-
section (13.2.2). Then, each space differentation produces a factor of
s . These factors, too, can be attributed to time differentiations acting
on either the complete space-time integrals or the current distribitions
J 3 p(r',t).

With (13.2.15) and (13.2.16), we now have at our disposal the
basic integral relations for the integral-equation formulation of time-

domain electromagnetic scattering problems in one, two or three di-
mensions.

18.2.2 Green’s Functions

The remaining issue from the analysis of Subsection 13.2.1 is the
determination of the n-dimensional space-time domain Green’s func-

tion G(r,t). Conventionally, G(r,t) is defined as the causal solution
of the second-order differential equation

[V2 - 82/ G(r,t) = —6(r)5(t) (13.2.19)

where ¢ is the wave speed in some homogeneous background medium,
and where V is the n-dimensional gradient operator specified in
(13.2.3) Subjecting (13.2.19) to the temporal Laplace transformation
(13.2.4) and to a spatial Fourier transformation over R™ results in

G(k,s) = (k* + s?/c?) ™ (13.2.20)

which is in agreement with the definition given in (13.2.14). Hence,
G(r,t) can be obtained by carrying out the relevant inverse Laplace
and Fourier inversion integrals for n = 1,2,3.

In all three cases, this is carried out in globally the same manner.
First, s is taken to be real and positive. This restriction facilitates the
evaluation of one or more of the inversion integrals in

G(r,s) = (2—;;F /Rn dv(k)G(k,s) exp(ik - r) (13.2.21)

with the aid of Cauchy’s residue theorem and Jordan’s lemma. Second,
the result obtained is recognized as or reduced to a forward Laplace
transform of the form (13.2.4). This allows us to invoke Lerch’s theorem
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[39], which states that a causal time signal F(t) is uniquely determined
by its Laplace transform F(s) for s = so + nAs, with so and As
being real and positive, and with n = 0,1,2,...,00. Third, the desired
time-domain expression G(r,t) is then obtained by inspection. In what
follows, we will carry out this procedure for each case individually.

Three Dimensions

For n = 3, the easiest way is to introduce spherical coordinates
in the k-domain with the “vertical” axis in the direction of r. The
inversion integral (13.2.21) can then be written as

G(r,s) = / dk / df / e k* sin 0 exp(ikr cos 0)

s2/c2

(13.2.22)

Carrying out the integrations over the angular coordinates ¢ and 6
results in

1 hat k . X
G(r,s) = m/{; dk ey [exp(ikr) — exp(—ikr)]

1 bl k
= dk ——— ik o
42y [oo k2 + s2/c? exp(ikr) (13.2.23)

In (13.2.23), the integral over k is evaluated by decomposing the frac-
tion of the integrand, closing the contour in the upper half of the com-

plex k-plane, and applying Jordan’s lemma and Cauchy’s theorem.
This leads to

G(r,s) = G(r,s) = exp(—sr/c)/4nr (13.2.24)

Now, it is well known that the corresponding time signal is given by
G(r,t) = 8(t —r/c)/4nr (13.2.25)
The difficulty, however, is to obtain G(r,t) constructively. Convention-
ally, this is achieved by realizing that (13.2.22)(13.2.24) hold for any

complex s with Re(s) > 0, and by evaluating the Bromwich inversion
integral in

t 1 B+ico 1
/ g(r,t')dt' = 70 / Ters P [s(t —r/c)]ds (13.2.26)

—ic0
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with 8 > 0, by contour deformation in the complex s-plane. This
results in

/t G(r,t")dt' =U(t —r/c)/4mr (13.2.27)

where U(t) denotes the unit time-step function. The differentiation of
(13.2.27) with respect to ¢t in the sense of generalized functions then
yields (13.2.25).

Compared with this derivation, Lerch’s theorem provides a more
natural inversion of (13.2.24). (13.2.24) is rewritten as

G(r,s) = /0  dt[6(t - r/c)/amr]exp(—st) (13.2.28)

from which G(r,t) is identified directly.
Two Dimensions

For n = 2, it is more convenient to describe k-space by the
original Cartesian coordinates. Again, we start by carrying out the
spatial Fourier inversion

1 had o exp(ikzz + ikyy)
G(p,s) = 47—2/_0‘, dk, /_w dk. R 1:3 - 32/yc2 (13.2.29)

In (13.2.29), the k, -integral is evaluated by decomposing the fraction
in the integrand, closing the contour in the upper or lower half of the
complex k. -plane for # < 0 and = > 0, respectively, and applying
Jordan’s lemma and Cauchy’s theorem. This yields

1 [ exp (ikyy — |z| y/ k2 + s2/c?
G(p,s) = — / dk (13.2.30)

ar J_ Y /k§+32/c2

where Re,/k2 4 s2/c? > 0. The integral in (13.2.30) is now in a form
amenable to the Cagniard-De Hoop method [40,41]. In this method,
we utilize the fact that s was taken real and positive to introduce

the substitution k, = sA/c, with A being a real-valued, dimensionless
parameter. We find

oo /\exp [s (i)\‘y - |=| \/m) /c]

1
G(prs) = 1= /_wd e (13.2.31)
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Next, the contour is shifted in the complex \-plane to the Cagniard-

De Hoop contour. This contour is chosen such that the argument of
the exponent in (13.2.31) is real-valued and nonnegative, i.e.

Ay + |2|VA2+1=cr (13.2.32)

with 7> 0. Solving A from (13.2.32) results in

A= (icry + |z| /22 — pz) /p% ple< T < 0 (13.2.33)
which, in turn, is a parameterization of one of the hyperbolas given by

Im(A)2 Re(\)? 1
T = (13.2.34)

As an illustration, the locations of the integration contours given in

(13.2.31) and (13.2.33) and of the branch cuts of the square root in

(13.2.31)(13.2.32) in complex ) -plane are displayed in Fig. 13.2.2.
For X\ on the Cagniard-De Hoop contour, we have

@Dy (13.2.35)

VATE1 T ez p?/c?

where the + signs correspond to the ones in (13.2.33). The contri-
butions from the connecting segments at infinity vanish by Jordan’s
lemma. Taking into account the direction of the integration, we then
arrive at

G(p,s) = G(p,s) = 51-/& ar—X(=eT) (13.2.36)

for s real and positive. With Lerch’s theorem, we finally obtain by
inspection

Ut — p/c)
274 /t2 — p2/c?

in which U(t) is the unit time-step function.
As remarked in Subsection 13.2.1, the space-time functions corre-
sponding to products of G(k,s) and factors of ik can be obtained in

G(p,t) = (13.2.37)
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Figure 13.2.2 Original integration contour as used in Equation (13.2.31)
and Cagniard-De Hoop contour as specified in Equation (18.2.88), plot-
ted in the complex A-plane for y > 0.

a similar way. For example, the integrals in the inverse Fourier trans-
formation

1 f*= hat iky exp(ik 2 + tkyy)
0,G(pr5) = 33 | _dk, [ ke TR (132,39

reduce to

is [ Aexp [s (i)\y—|:c|\/)\2+1) /c]
0,6(pr9) = 1 / dx (13.2.39)

- VA2 41
Shifting the path of integration to the Cagniard-De Hoop contour spec-

ified in (13.2.33), and substituting the intermediate results (13.2.33)
and (13.2.35) yields

=8y [ T exp(—sT)
0,G(pre) = 7% /,, e (13.2.40)
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The factor of s on the right-hand side can be translated into a time dif-
ferentiation acting on the current distribution with which the Green’s
function is convolved. The remaining integral can again be converted
to the time domain with the aid of Lerch’s theorem. Moreover, the
corresponding derivative with respect to z is found immediately by
interchanging z and y in the result. Hence, we have

%é(k,s)ﬁ j, UG- plc) (13.2.41)

_..lp
27py/t2 — p?/c?
where i,,d=°fp /p . Similar expressions can also be obtained for products
involving two or more factors of ik.
One Dimension
For n =1, we evaluate the Fourier inversion integral

1 [~ exp(ikqz)
G(m,s) = 2—7r' [oo dka m (13.2.42)

by exactly the same procedure that was used for the k,-integral in
(13.2.29). Decomposing the fraction in the integrand, closing the con-
tour in the upper or lower half of the complex k,-plane for z < 0

and z > 0, respectively, and applying Jordan’s lemma and Cauchy’s
theorem result in

G(z,s) = hd exp(—s|z|/c) = E/ dt exp(—st) (13.2.43)
23 2 jel/e
With the aid of Lerch’s theorem, we therefore have
G(z,t) = -;-u(t — |z|/c) (13.2.44)

where 1/(t) again denotes the unit time-step function.

Discussion

The procedure followed in this subsection may, at a first glance,
seem somewhat artificial. As indicated above, the use of Lerch’s theo-
rem for n = 3 and n = 1 can be avoided by imposing a less severe
restriction on s, so that G(r,t) is expressed as a Bromwich inversion



13.2 Basic Equations 469

integral that, in turn, is amenable to contour deformation in the com-
plex s-plane. However, the present derivation has the advantage of
offering one and the same approach for both n = 1,2,3. In addition,
the ambiguity problems inherent in second-order space-time differential
equations of the type (13.2.19) are resolved automatically, by aiming
for a causal solution right from the start. Finally, the procedure is
capable of being generalized to configurations where the background
medium is layered instead of homogeneous (for a description of the
relevant techniques, see e.g. [42,43]).

13.2.8 Integral Equations for Scattering by Electrically Impene-
trable Objects

The theory developed in Subsections 13.2.1 and 13.2.2 will now
be employed to derive integral equations suitable for the description
of the transient scattering of pulsed electromagnetic waves by scatter-
ing objects embedded in a homogeneous, lossless medium. We restrict
ourselves to the two cases that are most interesting from a practical
point of view, i.e. those of electrically impenetrable (perfectly conduct-
ing) and inhomogeneous, lossy dielectric targets. In this subsection, we
consider the impenetrable case.

Let us first consider the scattered field in the ezterior domain D, .
The field intensities € *(r,t) and M °(r,t) satisfy the electromagnetic-
field equations

V x H'(r,t) — €,0:£°(x,t) = 0,
V x &(r,t) + 16, H*(r,t) = 0 (13.2.45)

when r € D;. On account of this equation, (13.2.16) leads to

{_1’ —%,O}H‘(r’ t) =V X Hg'(r,t) - €13tn'£'.(l‘, t)

t
+ gt / V[V I (x, )] (13.2.46)

for r € {D1,0D,D,}. In (13.2.46), the potentials II are the ones
defined in (13.2.18), while the additional superscript s reflects the fact
that these potentials now pertain to the scattered field. Obviously, the
wave speed ¢ should be taken equal to cld-—ff(elm)_% . Finally, the

minus sign in (13.2.46) originates from the fact that n(r) points into
D .
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In writing down (13.2.46), we have applied the integral relation
(13.2.16) to an infinite domain. Strictly speaking, this is not allowed,
since this relation was derived for a finite domain only. However, we
can also arrive at (13.2.46) by considering the domain between D and
a second boundary at r = r.,. Using the property that the scattered
field vanishes when t < 0, we can then make the contribution from
this extra boundary vanish by choosing a sufficently large radius ro, .

Second, we consider the incident field in the interior domain D,.
Since, by definition, the incident field is the field that would be present
in absence of the scatterer, we have

V x Hi(r,t) — €,8,E(x,t) = 0
V x E(r,t) + p1 8;H(r,t) = 0 (13.2.47)
when r € D;. In (13.2.47), the right-hand sides contain no source

terms since the sources of the incident field are located in D; . Equation
(13.2.16) then leads to

{0, —;—, 1} Mi(r,t) =V x Hg‘(r, t) - €0, Ip" (r,t)
t .
+ut / V[V - ()] (13.2.48)

for r € {D1,6D,D,}. In (13.2.48), the potentials refer to the incident
field.

Third, we make use of the fact that the scatterer is electrically
impenetrable. This provides us with the boundary condition

Jg’i(r, t)+ I g*(r,t) = TB(r,t) =n(r)x E(r,t) =0 (13.2.49)
when r € 0D . This condition shows that we can obtain an integral

equation involving only the magnetic-field strength H (r,t) by adding
up (13.2.46) and (13.2.48). We end up with

{1,%,0} H(r,t) = Hi(r,t) - V x I5(r,1) (13.2.50)

for r € {D,,0D,D;}. For r € 8D and 0 < t < o0, the rela-
tion (13.2.50) constitutes an integral equation of the second kind for
the tangential components of the unknown magnetic field H(r,t).
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Once this field is known, the normal components on 8D and the field
in D, are obtained directly by evaluating the term V x I §(r,t) in
(13.2.50). In principle, the formulation of the problem has therefore
been completed.

In the literature [14], (13.2.50) is known as the magnetic-field
integral equation (MFIE). Since it pertains to field values on 9D, it is
of the boundary type. A similar integral equation can be obtained by
considering the electric-field strength £(r,t) for r € 8D. However,
this so-called electric-field integral equation (EFIE) is of the first kind,
which makes it less suitable for a numerical solution. Therefore, we
leave it out of consideration.

Finally, we are faced with the task of breaking down (13.2.50) to
a form that is more appropriate for the application of the various nu-
merical procedures. In particular, we still have to select the tangential
field components on 8D, and we must evaluate the curl operation. In
doing so, we distinguish between three- and two-dimensional scattering
problems.

Three Dimensions

For n = 3, it is most common to take the cross-product with
n(r), and to solve the integral equation for source density of electric
surface current

T 5(r,)= — n(r) x H(r,1)

introduced in (13.2.10). With this definition and with (13.2.25),
(13.2.50) can be rewritten as

l", t— R/C1)
R
(13.2.51)

J B(r,t) = 2Jg‘(r,t) - 2Ln(r) x V x f dA(x') J 5(
T 8D
for r € 8D . In (13.2.51),

T4 @, 0)% —n(r) x Hi(r,t)

denotes the source density of electric surface current that corresponds
to the incident field. Carrying out the curl operation results in

To(r,t) = 275 (x0) - 5- }g _dA()n(z)

1 1 N s
X [(—.—RE + CI—R&:) Ji;(r',t ) X IR] (13.2.52)
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where /%t — R/c; and iRd=°f(r —r')/R. When n(r) is piecewise
differentiable with respect to the transverse coordinates on 8D, it
is not necessary to consider the integral involved in (13.2.52) in the
principal-value sense. From the definition (13.2.10), we have

n(r)x [T3(r',¢t') x ir] =

(ir - H(r',t')) [n(r) x n(x')] — (ir - n(r")) [n(r) x H(',¢")]
(13.2.53)
In the right-hand side, both [n(r) xn(r’)] and (ig-n(r’)) are of O(R)
as R — 0, while the remaining factors are O(1). Consequently, we
have

n(r) x [T B(r',t') x ir] = O(R) (13.2.54)

The numerical aspects of the integral equation (13.2.52) have been
investigated by several authors [9, 17, 30, 44, 45). A brief review of the
results will be given in Subsection 13.3.5.

Two Dimensions

For n = 2, it is most convenient to evaluate the curl operation
by using the equivalence between the integral relations (13.2.13) and
(13.2.16). With the aid of the correspondence (13.2.41), we immedi-
ately find

_V x My(p,t) = l?{ ds( ')i—Rx/t—R/th'
) B P’ - 27r oD p R 0
t—t
N T

8uT5(p,t')  (13.2.55)

with iRdéf( p — p')/R. Substitution of (13.2.55) and use of the defini-
tion of J 5(p,t) in (13.2.50) then results in two scalar equations for
the tangential field components of H(p,t):

R
Holo,t) = 2(pt) + = §_as(p) B2 7 (1,1 )
(13.2.56)

Halprt) = M)+ 2 f as(p) SR 2ED 7 (s gy
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with

hy pdef R/ t—t '
T, .(p'st, R) /0 s O n(1)
(13.2.57)
which hold when p € 0D. In (13.2.56) and (13.2.57), H,(p,t) de-
notes the component along the tangential unit vector 7(p). 7(p)
is chosen such that the three unit vectors {n(p), T(p),i;} form a
right-handed system.

A straightforward geometrical argument shows that, as R —
0, the integrands of the p’-integrals involved in (13.2.56) approach
the values —H.(p,t)/2a(p) and H,(p,t)/2a(p), respectively, with
a(p) being the local radius of curvature. Therefore, as in the three-
dimensional case, we need not take a principal value.

The special form of the integral equations (13.2.56) was first pro-
posed in [12]. Previously, a different form had been used to resolve the
present problem [9-10], and similar acoustic scattering problems [1-4].
This “original” form is obtained by substituting (13.2.37) in (13.2.50),
and by carrying out the curl operation directly. The main advantages

of (13.2.56) lie in the numerical implementation. Details can be found
in [37, Subsection 3.4.1].

13.2.4 Integral Equations for Scattering by Inhomogeneous,
Lossy Dielectric Objects

To illustrate how the theory developed in Subsections 13.2.1 and
13.2.2 can be employed to derive domain integral equations, we now
turn our attention to the transient scattering of pulsed electromagnetic
waves by inhomogeneous, lossy dielectric objects.

In particular, we consider the case where, in D;, we have a ho-
mogeneous, lossless dielectric with permeability u(r) = po, permit-
tivity €(r) = €, and conductivity o(r) = 0, and, in D;, an inho-
mogeneous, lossy dielectric with u(r) = po, €(r) = €(r) > €, and
o(r) = ga(r) > 0. As usual, po and ¢ denote the permeability and
the permittivity of vacuum, respectively. The restriction to u(r) = po
is not essential. The main motivation for this choice is that it leads
to relatively simple expressions. Further, it applies to most practical
dielectric materials.

For this configuration, Maxwell’s equations reduce to

V x H(r,t) — €(r)d:€(r,t) = o(r)€&(r,t)
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V X E(r,t) + podeM(r,t) = 0 (13.2.58)

for all r € R™. For the incident field, i.e. the field that would be present
in absence of the scatterer, we have

V x H(x,t) — € 8,E(r,t) = 0
V x Ef(r,t) 4+ pod;H(x,t) = 0 (13.2.59)

for r € R™. The electromagnetic-field equations for the scattered field
are obtained directly by substracting (13.2.59) from (13.2.58). This
yields

V X H*(r,t) — 6,E°(r,t) = Tp(r,t),
V x E'(r,t) + pobH’(r,t) = 0 (13.2.60)

with
T 5(r, )= {(e(r) — 1] 8 + o(r)} £ (r,2) (13.2.61)

being a contrast-source polarization current density. From the specifi-
cation of the medium parameters given above it is observed immedi-
ately that J 3(r,t) is localized in D,.

Now, we can use the fact that the time coordinate ¢ is chosen
such that the incident field does not reach the scatterer before ¢t = 0.
Therefore, causality ensures that the scattered field in D; and D, as
well as the total field in D, vanishes in the time interval —0o < ¢ < 0.
By virtue of the same argument that we used in writing down (13.2.46),
we can then apply the relation (13.2.15) to the scattered field in the
entire space R™. This results in

t

dt'V [V - I§(r,t')]
[~

(13.2.62)
with IIH(r,t) as defined in (13.2.17), in which the wave speed ¢ is
taken equal to cldéf(elpo)'% .

For r € D; and 0 < t < oo, the relation (13.2.62) constitutes
an integral equation of the second kind for the unknown electric field
£ (r,t). Once this field is known, the field in D, can be obtained
directly by evaluating the terms involving II%(r,t) in the right-hand
side of (13.2.62).

£ (r,t) = £%(r,t) - Bl LG (r,t) + €t /
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To the best of the author’s knowledge, the full three-dimensional
version of (13.2.62) has never been tackled numerically. Related prob-
lems from elastodynamics and acoustics have been investigated by
Herman [20-22]. Electromagnetic applications have, until now, been
reported only for the transient scattering of an electrically polarized,
pulsed wave by an inhomogeneous, lossy dielectric slab, and by an in-
homogeneous, lossy dielectric cylinder. In both these cases, (13.2.62)
simplifies to a scalar integral equation of the form

E:(r,t) = Ei(r,t) — pod Iy ,(r,t) (13.2.63)

where II%, (r,t) denotes the z-component of the vector potential
5 (r,t) figuring in (13.2.62). With (13.2.62) and (13.2.63), the for-
mulation of the problem has been completed. What is left is the elab-
oration of the contrast term in (13.2.63). Since the explicit forms will
be needed in subsequent discussions, we include them here for both
n=12.

Two Dimensions

For n = 2, we substitute (13.2.37) and (13.2.17) in (13.2.63).
Using the ambiguity with respect to placing time differentiations sig-
nalized towards the end of Subsection 13.2.1, we end up with

. t—R/ey o ,Je (P’ t')
Ho / ' 'Y D 2\F>
" no 2 v ’ vie=ey (Ilz;/zc%d

where JF .(p',t') denotes the z-component of the contrast-source
polarization current density introduced in (13.2.61).

The integrand of the space integration in (13.2.64) has a logarith-
mic singularity as R — 0. In fact, we have the estimate

/e—R/q & f(tl) f ) In(R/
t =—f(t a
0 V(t—t)2-R2/c? (t) In(R/a)
+ constant + O[R? In(R/a))

(13.2.65)
where a is a characteristic length, and where f(t) denotes a suf-
ficiently differentiable real-valued time signal. This estimate can be
obtained by either transforming the left-hand side of (13.2.65) to the
time-Laplace domain, or carrying out a repeated partial integration
with respect to t’.
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The numerical solution of the integral equation (13.2.64) and of
a related form for a two-dimensional acoustic scattering problem has
been investigated independently by a number of authors ([12, 13, 23]
and [37, Section 3.5]). Representative results will be presented and
discussed in Subsections 13.3.5 and 13.5.3.

One Dimension

For n = 1, the domain D, is nothing but an interval of finite
length d, which we will locate at 0 < z < d. Substituting the one-
dimensional space time Green’s function given in (13.2.44) in (13.2.17)
then results in

d t—|e—='|/c1
HodlIly,,(2,) = 2L, /o dz’ /0 at' 75 (=, ¢)

z d
= 7‘/ dz' Jg (2',t — |z — 2'|/c))  (13.2.66)
0

with Zld=ef(po / el)% . With the definition of the contrast-source polar-
ization current density introduced in (13.2.61), we finally arrive at the
well-known integral equation for transient scattering by a slab:

. d
£n:t) = Eifent) = 2 [ de! A=)+ oa(@] 't = o - #1/c)
0
(13.2.67)
where Ae(z’) e €2(z') — €1. This equation has received wide atten-

tion in the literature. We mention in particular [24-26, 37]. Numerical
results will be reviewed in Subsections 13.3.5, 13.4.4 and 13.5.3.

13.2.5 Operator Formulation

Integral equations of the type derived in Subsections 13.2.3 and
13.2.4 have a number of common features that can be exploited to de-
vise computational schemes for their solution. To conclude this section,
we highlight these features by introducing a general operator form.
This form is not only representative of transient electromagnetic scat-
tering problems, but it also describes a wide range of elastodynamic
and acoustic problems. It will be used throughout this chapter in the
formulation of the various computational schemes.

Not all information about the detailed structure of the operator
equation will be needed at all times. To keep the discussion tractable,
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therefore, we specify the form of the operator equation to a varying
degree of abstraction. We start off with the most abstract form, and
we account for more of the physical properties of transient scattering
problems as we go along.
The most striking aspects of the theory developed in the previous
subsections are:
e The resulting integral equations pertain to linear problems. This
restriction originates from the definition of the source densities
of electric and/or magnetic current given in (13.2.10, 13.2.11,
13.2.61). In principle, the formulation for dielectric obstacles pre-
sented in Subsection 13.2.4 includes nonlinear problems. However,
the numerical solution of such problems lies outside the scope of
the present chapter.

o The desired solution is a causal, space-time electromagnetic-field
quantity. It may vary from a single component of an electric or
magnetic field strength (or of a related surface current) to a com-
bination of the full three-dimensional field vectors.

e The unknown field is excited by a forcing function that corre-
sponds to a pulsed wave, incident from a homogeneous, lossless
domain surrounding the scatterer.

To some extent, all of these properties are already reflected in the
general form

Lu=f (13.2.68)

where L is a linear operator acting on the unknown field quantity
u(r,t), and where f(r,t) is a known forcing function.

The second important property is of a more mathematical na-
ture. By comparing the integral equations (13.2.52, 13.2.56, 13.2.64,
13.2.67), we observe the following:

o All integral equations to be considered are of the second kind.
As remarked in Subsection 13.2.3, alternative equations of the
first kind are available for some configurations. These equations,
however, are less desirable from a numerical point of view, and
need not be considered in the present context.

To incorporate this property, we write the linear operator L as

L¥r-k (13.2.69)

where I is the identity operator, and where K is an operator acting
on the unknown field in the scattering domain only.



478 13. Transient Scattering

Third, we make explicit some of the properties of the source-type
integrals that occur on the right-hand sides of (13.2.52,13.2.56, 13.2.64,
13.2.67):

o The space integration runs over some finite domain D, which

may be either the interior of the scatterer D, or its boundary
dD.

o The time integration runs from t' = 0, when the incident pulse
first hits the object, to t' =t — R/c, with t being the instant of
observation, and R being the distance from the point of obser-
vation r to some point r’ € D. The wave-speed parameter ¢ is

typically chosen equal to the velocity of electromagnetic waves in
D.

o The operators acting on u(r’,t') depend on the time difference ¢t—
t' only. This reflects the feature that the scattering configuration
does not vary in time.
With these properties, the operator K introduced in (13.2.69)
can be elaborated into

t-R/c
Ku(r,t)déf/ dr'/ dt' k(r,r';t — t') u(r',t') (13.2.70)
D 0

where k(r,r';¢ —t') denotes a linear, local, instantaneous operator
acting on u(r',t'). Typically, k(r,r';t —¢') is singular as R — 0, and
involves one or more time differentations.

Finally, we must do justice to the special role of the time coordi-
nate. From the expressions in (13.2.15-13.2.18), it is noticed directly
that the operator k(r,r’;t —t') is always of the form

P
k(r,x';t — t')u(r’, t')d=°fz Cp(r') gp(R,t — t') (8p )P u(r',t) (13.2.71)
p=0

In (13.2.71), Cp(r) denotes a scalar or tensorial contrast or curvature
parameter; g,(r,t) represents a scalar function derived from one of
the Green’s functions obtained in (13.2.25, 13.2.37, 13.2.44). From the
explicit integral equations (13.2.52, 13.2.56, 13.2.64, 13.2.67), finally,
it is observed that g,(r,t) may be singular as r — 0.

With the equations given in this subsection, we now have available
both an abstract and an explicit formulation of the integral equations
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governing electromagnetic transient-scattering problems. Therefore, we
pass on to their numerical solution.

13.3 The Marching-on-in-Time Method

The most straightforward way to solve time-domain integral equa-
tions of the type derived in Section 13.2 is to utilize the property that
the scattered field at each space-time point is expressed in terms of one
or more integrals over the scattering domain D of field values at pre-
vious instants. This is the basis of the so-called marching-on-in-time
method, which, at first glance, provides an efficient direct procedure
for solving time-domain integral equations. Having such a procedure
available would obviate the application of any iterative technique, and,
hence, the existence of this chapter. However, difficulties can usually
be expected due to the discretization of the multiple integral of the
induced source densities of electric and/or magnetic current. The ac-
cumulation of the errors caused in this manner may even give rise to
instabilities in the numerical results obtained.

In this section, we formulate the method, and we review the mech-
anisms governing the error accumulation. By doing so, we hope to
supply the reader with the insights needed to understand the iterative
techniques that will be described in Sections 13.4 and 13.5.

13.3.1 Formulation of the Method

To formulate the marching-on-in-time method, it suffices to con-
sider the integral equations up to the level of abstraction of (13.2.70).
Combining (13.2.68-13.2.70) leads to the general form

t—R/c
u(r,t) = f(r,t) + /1; dr'/o dt' k(r,r';t — t')u(r’,t') (13.3.1)

We subsequently discretize this integral equation in space and time.
First, we introduce a uniform spatial grid {r,} with mesh size h, and
approximate the space integral in (13.3.1) with the aid of a suitable
combination of quadrature rules. This involves dealing with the singu-
lar behavior of the operator k as R — 0. Second, we take t = nAt,

where n = 0,1,...,00, and where the time step At is chosen such

that
At min {Roa'} /e (13.3.2)
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This implies approximating all time differentiations and integrations in
the integral equation (13.3.1). We then end up with algebraic equations
of the type

#(a,n) = f(a,n) + 2 Z k(e a';n — n')i(a!,n') (13.3.3)

a' n'=0

where n = 0,1,...,00, and where f(a,n) &ef f(xq,nAt). Owing to
the choice of At, the discretization (13.3.3) can usually be organized
such that k(a,a’;0) =0 if a # o' . In that case, the integral equation
(13.3.3) is already lower-triangular with respect to the time index n.
In any case, it can be reduced to lower-triangular form by inverting
the diagonally dominant weighting matrix

) def

w(e,a’) F 8u0 — k(a,a’;0) (13.3.4)

(see also [37, Subsection 3.2.1]). This results in

(a,n) = Zw Ya, a'){f(a n)+z Z

all nl _o

k(e/,a";n — n')i(a", n’)} (13.3.5)

In this equation, the field values {@(a,n)} are, for each fixed instant
n, expressed in terms of the known forcing function f(r,t) at the
instant ¢ = nAt and the field values {@(a,n') | n' < n}, i.e. the nu-
merical solution at previous instants. Hence, (13.3.5) can be solved by a
step-by-step updating procedure involving only the linear combination,
at each space point, of known field values.

In terms of matrix calculus, the system of equations (13.3.3) can
be envisaged as a matrix equation of infinite dimension for the unknown
vector {i(a,n)}. In that perspective, (13.3.5) can be understood as
being the result of reducing (13.3.3) to lower-triangular form. More-
over, the inversion of the weighting matrix w(a,a'), which effectuates
this triangularization, need only be carried out once, at the beginning
of the time-stepping procedure.

As remarked above, difficulties can be expected due to the dis-
cretization of the multiple integral in (13.3.1). Because of the error
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made in this discretization, %(a,n) is only approximately equal to the
actual sampled field value u(r,,nAt). Since, in (13.3.5), each field
value is computed from field values #(a’,n') at previous instants, the
computational errors caused in this manner will accumulate. As a con-
sequence, the solution obtained may even become unstable. In the up-
coming two subsections, we will analyze this error accumulation.

13.8.2 Error Accumulation

To gain insight into the process of error accumulation, we consider
two types of deviations. In the first place, we define the discretization
error D(a,n) as the error resulting from approximating the integral
in (13.3.1) for r = r, and t = nAt by the discrete sum in (13.3.3) for
the ezact field u(r,t), i.e.

def / nAt-ira=rilfe / ! Y Yy
D(a,n) = pdr A dt' k(rq,r’;nAt — t')u(r',t')

=Y ka,o'sn - ') ulre, n'At) (13.3.6)

a' n'=0

This error is not known in full detail, since u(r,t) is unknown. Nev-
ertheless, its magnitude can be estimated from the continuity and/or
differentiability properties of u(r,t), which are known.

In the second place, we define the marching-on-in-time error
Au(a,n) as the deviation between the sampled actual field value and
the corresponding marching-on-in-time result, i.e.

Au(a, n)q-i-fu(ra, nlAt) — (o, n) (13.3.7)

In addition to these errors, we define the so-called error growth as
the difference between the marching-on-in-time errors at two consecu-
tive instants at the same space point, i.e. as Au(a,n) - Au(a,n —1).
By taking a suitable linear combination of (13.3.1, 13.3.3, 13.3.6), we
find that this error growth is governed by the equation

Au(a,n) — Au(a,n — 1) = D(a,n) — D(a,n — 1)
+3° ) k(e a'sn - n)[Au(e,n') - Au(a!,n’ - 1)]

a' n'=0

(13.3.8)
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which is of the same form as the original time-marching equation
(13.3.3). In (13.3.8), the role of the incident field is played by the
discretization-error difference D(a,n) — D(a,n —1).

In general, the discretization error D(a,n) consists entirely of in-
terpolation errors. Each of these errors is proportional to some power
of the mesh size h and to some higher-order space or time derivative
at a space-time point that lies within a specified space or time inter-
val of length O(h). For a smoothly varying u(r,t) and a sufficiently
small h, these errors will contain a systematic part corresponding to
the average values of these derivatives, and a randomly varying part
due to the arbitrariness of the exact location of the space-time points
within the intervals. By considering the discretization-error difference,
we have eliminated most of the systematic part. Hence we may regard
D(a,n)—D(a,n—1) as an almost randomly varying variable. Since the
systematic part of D(a,n) may be absent, we estimate the magnitude
of this difference as

D(a,n) - D(a,n — 1) = O[D(a,n)] (13.3.9)

In terms of the matrix interpretation given towards the end of Sub-
section 13.3.1, this observation implies that D(a,n) — D(a,n — 1)
has components of equal order of magnitude along each of the basis
vectors that span the space of possible marching-on-in-time solutions
{u(a,n)}. This provides us with the key to the error analysis for the
discretized equation (13.3.3).

Global Error Accumulation

Since (13.3.3) is a, presumably accurate, discretization of the well-
posed integral equation (13.3.1), almost all of the eigenvectors of its sys-
tem matrix will be of O(1). Therefore, the components of the “known
vector” D(a,n) — D(a,n — 1) along the corresponding eigenvectors
will not be amplified in the solution vector Au(a,n) — Au(a,n —1).
In the subspace spanned by these “well-behaved” eigenvectors, we then
have, by induction, the worst-case estimate:

Au(a,n) < O [nmax {D(a,n’) |0 < n’ < n}] (13.3.10)

Now we should realize that, for scattering by passive obstacles, we are
ususally only interested in the field values in some finite time interval
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0 < t < Trnaz - Moreover, the interpolation errors constituting D(a,n)
will generally add up to an estimate of the type

D(a,n) = O(K™) (13.3.11)

with m a positive integer. With these two observations in mind, we
conclude directly that the error in the subspace spanned by the “well-
behaved” eigenvectors is at most proportional to

(Trmaz/h) h™ = Tinaz K™ (13.3.12)

Hence, it can be controlled by organizing the discretization such that
m > 1, and by choosing A sufficiently small. Since this “well-behaved”
subspace covers almost the entire space of possible solutions, we will
designate the behavior found in (13.3.12) as global error accumulation.

In all probability, the worst-case estimate (13.3.12) it too pes-
simistic. In practice, we will usually have some averaging, which would
be more compatible with the “statistical” estimate

Au(a,n) < O [n%max {D(ayn')|0<n' < n}] (13.3.13)

which, in turn, predicts that the error towards the end of the time
interval 0 < t < Tjnq, Wwill be proportional to

(Tmaz/h)% h™ = (Tmaz)% hm_% (13.3.14)

This indicates that even for m =1, i.e. for D(a,n) = O(h), refining
the discretization may reduce the global error in time-marching results.

Local Error Accumulation

For certain scattering configurations, the system matrix of
(13.3.3) and (13.3.8) may also have a few “problematic” eigenvectors
with small eigenvalues. In the numerical solution of (13.3.3), the com-
ponents of the “random” vector D(a,n) — D(a,n — 1) along these
eigenvectors will be amplified, and the result obtained will be unstable.
Since this effect will be localized within the small subspace spanned by
these eigenvectors, an error of this type is called a local error. This qual-
ification does not imply a local behavior of the error in the space-time
domain. Rather, it refers to an error behavior of a special, unwanted
character.
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Greater comprehension of these local errors can only be obtained
when the integral equation (13.3.1) is specified in more detail. This
will be carried out in the next subsection.

13.3.3 Stability Analysis

To understand the stability behavior of marching-on-in-time re-
sults, we need to recall the structure of the kernel k(r,r';t —t') sum-
marized in (13.2.71). In general, this kernel involves one or two time
differentiations acting directly on u(r/,#'). In the discretization, the
resulting derivatives have to be approximated by suitable difference
formulas. For example, aiming at a second-order accuracy (m=2in
(13.3.11)), we can approximate 8y u(x’,t') by a three-term backward
difference rule based on quadratic time interpolation:

Opu(r',t') = [g u(r’,t'y — 2u(r',t' — At) + %u(r', t' — 2At)] / At

(13.3.15)
which holds up to O(At?) [46]. Moreover, the scalar functions g,(r,t)
are singular at » = 0 for most multi-dimensional scattering problems.
For convenience, let us restrict ourselves to the case where u(r,t)
is scalar, and where k(r,r';t—t') contains only first-order time deriva-
tives, i.e. P = 1 in (13.2.71). These choices cover two of the spe-
cific integral equations derived in Section 13.2. In that case, we can
come up with the following simplified model of the discretized integral
equation in (13.3.3). Let v[n] and g[n], with n € Z, be real-valued
time-sequences that vanish for n < 0 and that satisfy the difference
equation

v[n] +woC{g-v‘[n] ~2v[n—1]+ %v[n— 2]}

+w10{gv[n— 1] - 20[n—2] + %v[n—3]} = g[n]

(13.3.16)

In (13.3.16), wo and w, are real-valued, positive weighting factors
with w; > wo, and C is a positive configuration parameter that
corresponds to the coefficient Ci(r) in (13.2.71). As remarked in Sub-
section 13.2.5, this parameter represents either the local contrast (for
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Term in (13.3.16) | Corresponding terms in (13.3.3)

vin] Field at the point of observation (a,n).

Term with wy “Self term” in discretized integral.

Term with w, Contribution from “neighboring” space-time points.

gin] Forcing function f(a,n) plus contribution from
remaining space-time points.

Table 13.3.1 Interpretation of terms in difference equation for g,(r,1)
being singular as r — 0.

Term in (13.3.16) | Corresponding terms in (13.3.3)

vin] Field at the point of observation #(a,n).

Term with wg Systematic contribution from points with “even”
time delay.

Term with w, Systematic contribution from points with “odd”
time delay.

gin] Forcing function f(a,n) plus remaining contribution
from “previous” space-time points.

Table 13.3.2 Interpretation of terms in difference equation for g;(r,1)
being bounded as r — 0.

penetrable obstacles) or the local curvature (for impenetrable obsta-
cles). The terms in (13.3.16) may be viewed in two complementary
ways, according to the behavior of gy(r,t) as r — 0.

The interpretation of Table 13.3.1 holds when g¢;(r,t) is singular.
The “self term” is the part of the discretized integral containing the
time-derivative at the space-time point of observation, i.e. at r =r,,
t = nAt. Owing to the choice of At in (13.3.2), the “neighboring”
space-time points are the point r = r, and its nearest neighbors on
the spatial grid {r,} at ¢t = (n — 1)At. Since there is always more
than one neighbor, it seems fair to assume that the contribution from
these neighbors is larger than the “self term” i.e. w; > wyp.

The interpretation of Table 13.3.2 holds in the absence of a singu-
larity in g,(r,t), and applies only when u(r,t) exhibits some “system-
atic” behavior. In that case, we may have “systematic” contributions
of approximately the same magnitude from the points with an “even”
and an “odd” time delay. Hence, we may still have w; > wq. This
type of behavior is best illustrated with the help of specific examples.
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Therefore, further discussion is postponed until Subsection 13.3.5.

In both interpretations, it is assumed that the sequence g[n]
varies gradually with n, and that g[n] remains bounded as n — .

The model proposed above may be an oversimplification in two
respects. In the first place, it presupposes a fixed relation between the
field values represented by the left-hand side of (13.3.16). In the second
place, assuming g[n] to be smoothly varying and bounded restricts
the stability analysis to the interaction between a few selected space-
time points. However, the only consequence of these simplifications is
that certain types of instabilities may be excluded from the analysis.
This implies that at least the instabilities predicted by our model can
be regarded as being realistic. Furthermore, we can take example of
the so-called Von Neumann stability analysis for time-domain partial
differential equations [47]. That analysis, which has proven to produce
even quantitatively correct results, involves a similar restriction to the
local structure of the discretized equations.

To obtain an impression of the instabilities associated with the
difference equation (13.3.16), we introduce the two-sided z-transform
of the time sequence v[n] as

oo

V(2) &of Z v[n]z™" (13.3.17)

n=--00

Since v[n] is a causal sequence, it is always possible to find a region
of convergence |z| > zo where this transform exists. Taking the z-
transform of (13.3.16) and defining G(z) as the z-transform of the
input sequence g[n], we arrive at

V(z) = 2°G(z)/P(z), with
P(z)= z +woC( 22 -2 4 - )

+w,C (§z -2z + 2) (13.3.18)

The unknown sequence v[n] is causal as well. Hence, it can formally
be obtained by evaluating the inversion integral

v[n] = % f; dzV(z)z"! = % dz ggg n+2 (13.3.19)
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with C being a circular contour of a sufficiently large radius in the
complex z-plane. Evaluating the integral with the aid of Cauchy’s
theorem results in residual contributions corresponding to the poles
of G(z) and to the zeros of P(z). Since g[n] remains bounded as
n — 00, it follows directly from the definition (13.3.17) that G(z) is
analytic for |z| > 1. Consequently, all its poles lie inside the unit circle
|z] = 1.

In the present stability analysis, we are only interested in the
poles outside the unit circle. Hence, we need only investigate the zeros
of P(z).Each of these zeros corresponds to a residual contribution of

the form
G(zm)
P'(z,)

where n € Z, and where the prime denotes differentation with respect
to the argument. This implies that the difference equation (13.3.16)
has exponentially increasing solutions if and only if one of the zeros
{#zm |m =1,2,3} of P(z) has a magnitude larger than one.

For the cubic polynomial P(z) introduced in (13.3.18), the con-
ditions for having a zero with |z,| > 1 can be obtained in closed
form. Analyzing P(z) and its derivatives shows that P(z) always has
a single zero on the negative real z-axis. This zero is located in the
subinterval —oo < z < —1 when P(~1) > 0, i.e. when w; > wo and

vm[n] = (zm)"*? (13.3.20)

C > (4w ~ 4wp) ™} (13.3.21)

Moreover, from the sign distribution of P(z) on the positive real z-
axis, it is observed that, for the two remaining zeros {z;, z3}, we have
either of the following situations.

o For a sufficiently large C', both z; and 23 are located on the
real z-interval 1 < z < 1, where the term proportional to C in
P(z) is negative.

o Otherwise, 2, and z3 form a complex-conjugate pair off the real
z -axis.

In the former case, z; and z3 are obviously located inside the

unit circle. In the latter case, their magnitudes can be estimated with
the aid of the identity

|22 = |23]? = 2223 = ~w1C/22, [1 + gwoC] (13.3.22)
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(see [48, formula 3.8.2]). By direct substitution, it follows that
3
P (—w10/2 [1 + §w°CD >0 (13.3.23)
Since P(z) becomes negative as z — —oo , we then have
3
21 < —‘UJ1C/2 [1 + EwOC] (13.3.24)

which, in combination with (13.3.22), implies that |23| = |z3] < 1.
Combining the results derived above, we arrive at the following
conclusions.

¢ Under the assumption that the kernel k(r,r’;¢—¢') contains only
a single time derivative, numerically solving (13.3.3) will resemble
solving the simplified equation (13.3.16).

e Consequently, a stable result will only be produced for a finite
range of the configuration parameter C . When C lies inside that
range, the discretization error D(a,n) defined in (13.3.6) only
excites exponentially decaying terms. In that case, we have only
global error accumulation in the marching-on-in-time method, in
accordance with one of the estimates (13.3.10) or (13.3.13). Hence,
we can control the error by refining the discretization.

¢ When C lies outside the stability range, the numerically obtained
solution will contain an exponentially exploding, unstable compo-
nent that alternates with n (see also (13.3.20)).

Finally, it should be pointed out that the instability result de-
rived above can be generalized to the case where k(r,r’;t—t') involves
second-order time derivatives. Such derivatives can be modeled by in-
cluding a four-point backward difference formula based on cubic time
interpolation in (13.3.16). Repeating the analysis for the thus extended
difference equation leads to a quartic characteristic polynomial similar
to P(z) with a similar zero 2; on the negative real z-axis, and a zero
z2 on the interval 0 < z < % Whether the remaining two zeros {z3,
24} are located inside the unit circle remains to be decided, however.

Avoiding the Instabilities

The conclusions formulated in the preceding paragraph raise the
question how the instabilities can be avoided.
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The first method that comes to mind is to modify the discretiza-
tion of the integral in (13.3.3) such that the weighting factors wo and
w; are reduced. If this can be achieved, it follows from the instability
condition (13.3.21) that the allowed range for the configuration param-
eter C' will be enlarged. Obviously, the modification should be such
that the global error behavior described in Subsection 13.3.2 is not
affected significantly.

Within that restriction, we have two possibilities. When wq and
w; are both of o(1) as h — 0, reducing the mesh size h will elim-
inate the instability. Whether this approach takes effect depends on
the structure of the integral equation at hand. In Subsection 13.3.5,
we will discuss cases where reducing h removes instabilities, as well as
a case where it actually causes an instability.

Alternatively, wo and w; can be reduced by replacing the ap-
proximations to the first- and second-order time derivatives with differ-
ence formulas having a double time step (e.g. by taking 2At instead of
At in (13.3.15)). At the cost of a minor increase in the discretization
error, this extends the stability range of the relevant parameters by a
factor of two and four, respectively. Moreover, doubling the time step
shifts the stability problem to the combination of the “self term” and
the contributions from the “next-nearest neighbors”, which may have
a smaller weighting factor. One consequence of doubling the time step
is that the instabilities observed no longer behave as given in (13.3.20).
Instead, the interplay of two exponentially increasing time sequences
that alternate with the double time step is observed. Examples of the

effectivenes of doubling the time step will be given in Subsection 13.3.5
as well.

A disadvantage of modifying the discretization of the integral
might be that it still leaves us with a finite range of applicability.
For the doubling of the time step in the difference formulas, this lim-
itation is obvious. Reducing the mesh size results in a sharp increase
in computation time.

A second method to avoid instabilities in marching-on-in-time re-
sults may be of use when the interpretation of Table 13.3.2 applies.
In that case, the integral equation (13.3.1) and/or the forcing function
f(r,t) can sometimes be changed such that the unwanted “system-
atic” behavior in the solution u(r,t) is avoided. Like the “systematic”
behavior itself, this possibility is best explained in the context of the
specific examples. Here, we mention it for completeness.
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13.3.4 Choice of the Reference Medium

An important issue associated with the marching-on-in-time
method that is often overlooked is the choice of the background medium
in contrast-source integral equations of the type (13.2.62).

In (13.2.62), (13.2.64) and (13.2.67), this background medium
was tacitly taken as a homogeneous, lossless medium with permittivity
€(z) = €1 . We should realize, however, that this amounts to expanding
the unknown solution £ (r,t) solely in terms of waves that propagate
with velocity ¢;. Doing so may violate the principle of causality: it
is possible to have destructive interference of waves traveling with a

velocity larger than the local wave speed cz(r)?—ff[ez(r)yo]'é , but we
cannot produce a wave with velocity c,(r) by constructive interference
of waves propagating with a speed smaller than c,(r).

This means that, for a successful application of the marching-on-
in-time method, we must have ¢; > ¢3(r) for all r € D,. In that
case, we have €;(r) — ¢, > 0, which is commonly referred to as a
“positive” velocity contrast. For “negative” velocity contrasts, i.e. for
€2(r)— €1 < 0, numerical experimentation has produced unstable time-
marching results that appear to increase faster than exponentially with
increasing n.

The simplest example where this problem arises is the integral
equation for scattering by a slab given in (13.2.67) with €(z) =
constant and o3(z) = 0 [37, Section 3.3]. The incident field is the
pulsed plane wave

Ei(z,t) = F(t - z/c1) (13.3.25)

where F(t) vanishes outside a finite interval 0 < ¢ < 7. For this
configuration, direct substitution shows that, in the space-time region
0<z<dandt<z/c, (z,t) = 0 solves (13.2.67). It is this
solution that is “picked up” by the marching-on-in-time method, ir-
respective of the accuracy of the discretization. The actual arrival of
the directly transmitted pulse occurs at ¢t = z/c;. When ¢; > ¢;,
this instant lies before ¢t = z/c; , and the marching-on-in-time method
cannot be applicable.

One way to overcome this problem is to construct a contrast-
source integral equation of the type (13.2.62) with respect to a compos-
ite background medium that is at least as “fast” as the actual medium
for all r € R™. For the slab problem, this can be achieved by con-
sidering a three-layer medium with €(z) = ¢o when 0 < z < d [37,
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Section 3.3]. For multi-dimensional scattering problems, such an ap-
proach seems less feasible because of the effort that would be required
to compute the space-time Green’s function of a suitable background
medium.

Recently, the above observations have been confirmed indepen-
dently by carrying out a stability analysis of the type performed in
Subsection 13.3.3 for the complete discretized version of (13.2.67). In-
terested readers are referred to [49].

13.3.5 Ezamples

In order to obtain insight into the applicability of the theory de-
veloped in Subsections 13.3.2 and 13.3.3, we now consider its conse-
quences for each of the specific integral equations (13.2.52, 13.2.56,
13.2.64, 13.2.67). The motivation for selecting these particular equa-
tions has been that each of them has been solved by more than one
author, and that, in combination, their solutions exhibit all possible
types of stability behavior.

We will not present the space-time discretizations in detail. For
the present discussion, it suffices to state that, for all results given in
this chapter, the discretization error D(a,n) = O(h?) as h — 0, i.e.
m = 2 in (13.3.11). More information about the numerical aspects can
be found in the references cited below and in Subsections 13.2.3 and
13.24.

Dielectric Slab

For the dielectric slab specified in connection with (13.2.67), insta-
bilities as described by Table 13.3.1 are ruled out, since the integrand
of the z’-integral remains bounded as z’ — z. In fact, the coeflicients
k(a,a’;n — n') consist of a factor of O(h) from the space integra-
tion, and a factor of O(h~!) from the time differentiation in the term
involving Ae(z'), and, consequently, are of O(1) as h — 0.

As far as the systematic behavior of Table 13.3.2 is concerned,
we should realize that &,(z,t) represents a pulsed plane wave which,
due to repeated reflection at the slab’s interfaces, travels backwards
and forwards across the slab. For such a field, the discretization-error
difference D(a,n) — D(a,n — 1) will tend to average out along the
domain of integration. Therefore, it seems plausible that the errors
D(a,n) will not cause an unwanted systematic behavior in the result-
ing marching-on-in-time error Au(a,n).
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Time Marching Results, M=40

1.26
100 [ EE(0.t)
." h
S Nt
X ,' J | '| E3 (d.t)
N l [
3] " N ) '
5 , | Iy
%) ' [
g .50 »! | [
oo
@ 0ol
s L I ! !
& WA\
© f " I' 1
*E 0 S 25
2
b \/»E; (0.t)
-2 |
_50 1L 4 n A 4 A 1 1 2
0 5 10

Normalized Time cqt/d

Time Marching Results, M=160

1.26
too |, E} (0.)
&
6 [
|
50 L

26

Electric Field Strength E, (x,t)

-.50 . n L . t X " 2 1
0

Normalized Time co t/d

Figure 18.3.1 Results of applying the marching-on-in-time method to
the scattering of a sine-squared incident pulse of duration coT/d =1
by a homogeneous, lossless slab with €3, = 2.25 in free space: incident,
reflected and transmitted fields at the slab’s boundaries.
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M | RM.S. Error | C.P.U. Time
10 0.272 0.16s
20 0.120 0.54s
40 0.0385 2.01s
80 0.0112 7.76s
160 0.0032 29.34s
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Table 13.8.83 Computational data of applying the marching-on-in-time
method to the scattering of a sine-squared incident pulse of duration

¢oT/d = 1 by a homogeneous, lossless dielectric slab with €3, = 2.25 in
free space.

Representative results for the case of a homogeneous, lossless di-
electric slab excited by a sine-squared incident pulse are given in Fig.
13.3.1 and Table 13.3.3. Figure 13.3.1. shows reflected and transmitted
fields at the slab’s boundaries, and Table 13.3.3 contains some com-
putational data. M is the number of subintervals in the numerical
evaluation of the z’-integral, i.e. h = d/M . The root-mean-square
error given in Table 13.3.3 is defined as ||, — &,||/||.|| , where &, is
the actual solution and &, the marching-on-in-time result. The norm
is defined as in (13.4.2).

From the results presented in Fig. 13.3.1 and Table 13.3.3, it is
observed that the accuracy of the results indeed improves as h — 0.
From Fig. 13.3.1, we see that most of the error is contained in an over-
shoot at the “tail” of the successive pulses. This can be explained from
the feature that, precisely at those space-time points, the approxima-
tion (13.3.15) is only accurate up to O(h).

In addition, Table 13.3.3 indicates that the error accumulation is
of the “statistical” type resulting in (13.3.14). The computation time
consumed is proportional to M?2, i.e. the number of unknown field
values in the space-time domain under consideration. This efficiency
originates from the feature in the numerical implementation that the

z'-integrals on the right-hand side of (13.2.67) are evaluated recur-
sively.

Impenetrable Cylinder

Scattering by an impenetrable (perfectly conducting) cylinder is
described by the integral equations (13.2.56), in combination with the
time integrals defined in (13.2.57). From (13.2.56) and (13.2.57), it is
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observed that the integrand of the p’-integration is regular as p’ —
p - This leaves us with the second interpretation of (13.3.16), in which
a number of errors in the marching-on-in-time solution obtained add
up systematically.

A special property of the integral equation (13.2.56) is that all
the weighting factors k(a,a;n — n') in the discretized version are of
o(1) as h — 0. This can be seen as follows. The time differentiation
in (13.2.57) provides a factor of O(h~!), and the space integration in
(13.2.56) a factor of O(h). Since the resulting product is of (1), the
factors k(a,a’;n —n') will be of the same order of magnitude as the
integral of the function

t—t
Je—0r -

in (13.2.57) over an interval of length At. This leads to two different
estimates. Near the end of the integration interval, we find

k(a,a'sn —n') =0 (h%) o (Réa,)

because of the root-like singularity at ¢’ = ¢t — R/c,. In the remain-
der of the integral, we have k(a,a;n — n’) = O(h). For space-time
points near the point of observation, both estimates coincide, since for
those points Rao = O(h). In view of these estimates, it seems plau-
sible that, even for a systematic error, the parameters wo and w; in
(13.3.16) decrease when the mesh size h is reduced. As discussed to-
wards the end of Subsection 13.3.3, this makes it possible to eliminate
the instability by refining the discretization.

To illustrate how these considerations work out in a practical
scattering problem, we have applied the marching-on-in-time method
to the transient scattering by a perfectly conducting, circular cylinder
of radius a. In Figure 13.3.2, results are presented for illumination
by a magnetically polarized, sine-squared incident pulse. M is the
number of space points on the integration contour. Apparently, the field
H.(p,t) on the cylinder boundary exhibits no systematic behavior,
and, consequently, an accurate, stable solution is obtained when the
mesh size h is fine enough.

Results for excitation by an electrically polarized incident pulse of
the same duration are shown in Fig. 13.3.3. Now, the tangential mag-
netic field M. (p,t) does show a systematic behavior since, for large
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Figure 13.3.2 7, as a function of normalized time for a perfectly con-
ducting, circular cylinder of radius ¢ illuminated by an H-polarized sine-
squared incident pulse of duration ¢;T/a = 2. Discretization as indicated.
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ducting, circular cylinder of radius ¢ illuminated by an F-polarized sine-
squared incident pulse of duration ¢, T/a = 2. Discretization as indicated.
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t, it turns out to be constant around the contour, and almost constant
in time. Mathematically, this behavior can be explained by analyzing
the scattering problem at hand with the aid of the Singularity Ex-
pansion Method [50]. The late-time behavior observed in Fig. 13.3.3
corresponds with the contribution from a branch-cut in the complex-
frequency plane ending at s = 0. From a physical point of view,
the incident field excites a “stationary” current propagating in the
z-direction, and a corresponding “stationary” magnetic field around
the cylinder. Both from mathematical (Riemann-Lebesgue) and from
physical (energy) arguments, it follows that this contribution vanishes
gradually as £t — oo.

Because of this systematic behavior, the marching-on-in-time so-
lution shown in Fig. 13.3.3 exhibits a systematic instability, whose start
coincides with the onset of the “stationary” field. Comparing the re-
sults for M = 32 and M = 64 confirms the conjecture made above
that even systematic instabilities may be controllable via the mesh
size h. Additional confirmation is obtained from the fact that a simi-
lar computation with M = 128 produced completely stable results.

A more elegant solution to the special instability problem ob-
served in Fig. 13.3.3 is to adapt the problem formulation such that
the quantity to be computed does not exhibit the systematic behavior.
This is achieved by computing 8;H.(p,t) rather than H,(p,t) itself.
The relevant integral equation is obtained from (13.2.56) when both
the incident field Hi(p.t) and the total field M, (p,t) are replaced
by their time derivatives. The field H.(p,t) is then obtained by nu-
merically integrating with respect to t. This scheme produces results
with a similar stability behavior as observed in Fig. 13.3.2.

A possible disadvantage of the marching-on-in-time method is the
sharp increase in computation time upon reduction of h. In a single
computation, we must evaluate, at O(M) instants,at M space points,
O(M) different time integrals, each of which requires a weighted sum-
mation of O(M) field values. As a result, the number of operations
is approximately proportional to M* as M becomes large. For the
fields shown in Fig. 13.3.2 and 13.3.3, the computation times were 54,
690 and 9900 seconds for M = 32, 64 and 128, respectively.

Impenetrable Three-Dimensional Objects

The situation for the magnetic-field integral equation for scatter-
ing by a three-dimensional, electrically impenetrable obstacle (13.2.52)
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resembles the one described above. With the estimate (13.2.54), it fol-
lows directly that the coefficients k(a,a’,n — n' ) consist of a factor
of O(h?) from the two-dimensional space integration, and at worst
at factor of O(h~!) from either the time differentiation or the extra
factor of R~!. This means that k(a,a/,n —n') = O(h) as h — 0.
As in the case of the impenetrable cylinder, therefore, we expect only
“systematic” instabilities that can be controlled by reducing the mesh
size h.

To understand the nature of the “systematic” instabilities, we
must be aware that the integral equation (13.2.52) has homogeneous
solutions corresponding to the so-called “interior resonances” of the ob-
stacle [51]. The corresponding resonant frequencies are located on the
imaginary s-axis. Consequently, any homogeneous solution to
(13.2.52) extends over the entire t-axis. From an analytical point
of view, such solutions are eliminated by the initial condition that
M(r,t) = 0 for r € 3D and —o0 < t < 0. From a computational
point of view, however, such solutions may cause problems when the
space-time discretization leading to (13.3.3) shifts one or more of the
resonant frequencies into the right half of the complex s-plane or,
equivalently, outside the unit circle in the complex z-plane. In that
case, the discretization introduces an instability with an unwanted
“systematic” behavior.

Confirmation of these observations is readily available in the liter-
ature. The first numerical results for scattering by three-dimensional,
electrically impenetrable targets were obtained by Bennett [9]. Rynne
[30] verified for the case of a perfectly conducting sphere that reducing
the mesh size removes the instabilities. In the same paper, he estab-
lished the effectiveness of doubling the time step in the discretized time
derivative. In a subsequent paper [44], Rynne actually reported the oc-
currence of oscillatory instabilities with the correct resonant frequen-
cies. Recently, Smith [52,53] even recovered the spatial distribution of
interior solutions to (13.2.52) from the exponentially increasing parts
of unstable time-marching results.

These observations indicate that it should be possible, as in the
case of the impenetrable cylinder, to adapt the problem formulation
such that the “systematic” instabilities are avoided. In particular, it
would be interesting to combine the magnetic-field integral equation
(13.2.52) with the electric-field integral equation mentioned in Subsec-
tion 13.2.3. For the corresponding frequency-domain problem, such a
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combined equation has no interior resonances [51]. The author is not
aware of any pertinent time-domain results.

As in the previous two cases, we estimate the number of operations
involved in applying the marching-on-in time method. Let M be the
number of space steps across a characteristic dimension of the obstacle.
Then, we need to carry out, for O(M) instants, space integrations for
O(M?) space points, each of which requires a weighted summation of
O(M?) field values. In total, this adds up to O(M?®) operations.

Dzelectric Cylinder

Next, let us consider the dielectric cylinder specified in connec-
tion with (13.2.64). For simplicity, we restrict ourselves to the case
where the cylinder is embedded in free space, i.e. €, = €. For this
configuration, we distinguish between two situations. For a nonvanish-

ing susceptibility x(p) wf e2-(p) — 1, the approximate field values
obtained are multiplied by a factor of O(h~2) due to the double time
differentiation. In the singular part of the integrand, the product of
the resulting approximation and the factor of In(R/a) in (13.2.65) is
integrated over a patch with sides of length O(h). For the point of
observation and neighboring space-time points, this logarithmic term
dominates the integrand of (13.2.64). This implies that we have the
interpretation of Table 13.3.1, and that the weighting factors wo and
w; are of O[In(h)]. Hence, wo and w; will increase when h is re-
duced. In view of this estimate, we should actually expect to introduce
instabilities by refining the discretization.

A different situation arises when x(p) vanishes in D, . In that
case, we need only carry out a single time differentiation. Consequently,
the weighting factors are at most of O[hln(h)], which suggests a sta-
bility behavior similar to that observed for the impenetrable cylinder.

To illustrate these considerations, we present in Figs. 13.3.4 and
13.3.5 results for the scattering of a Gaussian pulse of duration ¢oT'/a =
10 by a homogeneous, square cylinder of width 2a, centered around
the origin. The spatial mesh is simple cubic, with A = a/M . Fig-
ure 13.3.4 pertains to the case where x(p) = 0. The value of the
dimensionless conductivity was chosen such that the marching-on-in-
time results obtained by using a single-step difference rule for the time
derivative are just unstable. This result is displayed in the upper left
corner. Note that the alternating, unstable component of the solution
that shows up for cgt/a > 15 moves in the same direction across the



500 13. Transient Scattering

Single Time Step, Z, ca=5, M=2 Double Time Step, Z, ca=35, M=2
128 | L25 .
r r
i ! .
1.00 - { ! 1.00 F . E!
e B P AT
S P i M
& e : oS 8L Do
= z I P
F R |
» 7 2 ool ‘ \
i r_- z . A )
3 = | [\ B
3 - 3 r AN
o L > L [ B /ANNERN
o 28 |; 5 28 - N RN
- = // ’ NS
- L 3 L iy \ Es Y
§ t 3 / S o
@ 13 =] b P
o} 0 -
i [
3
_ 28 L. - A
B B 10 15 20 25 ) 5 10 15 20 28
Normalized Time cot/a Normalized Time cot/a
Single Time Step, Z, ca=5, M=3 Single Time Step, Z, ca=6, M=3
1.28 1 128 T
[P i
i 1t
r ik
- l":ll::t:
1.00 - 1 1.00 1 1 ity
- [ N\ B = B 3{“»:{
- - o 3 [ 3l
> j o\ 31 J o i'ﬁ:'::'
= [ Py = L o e
G W ’ o 7 i
= r [ = oA ity
) Y \ » |5n||Il'
N I E Pl i
5 sol | S S0 i \ H'!H'l
71 L 2 it
T Y B 3 P
3t o 2 :
tn - AN [ S i
s 25 F Ay s \ g BF y
s r ‘. Eo N\, £ [
3 .: \\\L/\_,'\&_‘_‘__.. 3 :
= . v = L
ot o}
. | A
. | L
: ! [
-8, s m 15 20 2 -5 25
Normalized Time cqt/a Normalized Time cot/a

Figure 13.3.4 Results of applying the marching-on-in-time method to ob-
tain the fleld excited in a homogeneous square cylinder of width 2a, with
x = 0. Point 1 = (—a,0), Point 2 = (0,0), Point 3 = (a,0). Conductivity
and discretization as indicated in the figure headings.
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entire cylinder. Moreover, the start of the unstable behavior coincides
in time with the onset of a “stationary” behavior of the actual field,
which corresponds to the excitation of an almost constant, “station-
ary” current distribution across the cylinder. The remaining results in
Fig. 13.3.4 indicate a limited success of doubling the time step and
of refining the discretization. This confirms the interpretation of the
instability as a systematic one: both measures will mainly take effect
when the discretized integral is dominated by the contributions from
a few space-time points near the point of observation.

The results of applying the marching-on-in-time method to the
problem of transient scattering by a cylinder with only a susceptibil-
ity contrast are even more discouraging. For the discretization with a
single step in the backward difference rule for the second-order time
derivative, the stability range is not worth mentioning. When the dou-
ble time step is used, and the discretization is not too fine, stable results
can be obtained until at most x = 2. As predicted above, however,
refining the discretization may stir up the instabilities again. An ex-
ample is given in Fig. 13.3.5, which shows, for the same configuration,
a stable result obtained for M = 2 and an unstable result obtained for
M = 3. In the lower part of Fig. 13.3.5, it is observed that, due to the
choice of the double time step, the unstable part of the marching-on-
in-time result no longer changes sign at each new instant. Instead, we
have an interplay of instabilities that alternate with the double time
step, as mentioned towards the end of Subsection 13.3.3.

For the dielectric cylinder, the computation of a single time-
domain result entails, at O(M) instants, the evaluation at O(M?)
space points of O(M) different time integrals, each of which requires
a weighted summation of O(M) field values. Once these time integrals
have been determined, O(M?) space integrals must be computed, each
of which, in turn, requires a weighted summation of O(M?) time in-
tegrals. Finally, the multiplication with an inverted weigthing matrix
as outlined in (13.3.5) requires O(M*) operations. As a result, the
total effort is of O(M?®). For the fields shown in Fig. 13.3.4, for ex-
ample, the computation times for M=2, 3 and 4 were 14, 78 and 278
seconds, respectively. Especially the relation between the computation
times for M=3 and M=4 is in good agreement with the estimate that
the computational effort is of O(M?).
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13.4 The Conjugate-Gradient Method

The results presented in Subsection 13.3.5 illustrate that solving
integral equations of the type (13.3.1) with the aid of the marching-
on-in-time method may not always be feasible. In particular, the sharp
increase in computation time makes it unacceptable to refine the space-
time discretization much further than required by the physics of the
problem merely for the sake of stabilizing a numerical algorithm. In
addition, we have demonstrated the existence of cases where reducing
h may be ineffective, or even counterproductive.

One way to avoid these problems is to leave the, supposedly accu-
rate, discretization as is, and to solve (13.3.3) by a different method of
solution. Short of transforming that equation to the frequency-domain,
which may actually be more efficient than it seems [49], the only option
appears to be using iterative techniques. In the remainder of this chap-
ter, we discuss two possible procedures. In Section 13.5, we propose a
relaxation method taylored to the special nature of the instabilities
derived in Subsection 13.3.3. In the present section, we consider how
the conjugate-gradient method can be employed.

13.4.1 Formulation of the Method

Let us first cast the conjugate-gradient method into the frame-
work of the operator formulation introduced in Subsection 13.2.5. Fol-
lowing the notation of Dudley [54] and Van den Berg [55], we start by
introducing the inner product of two space-time field quantities u(r,t)
and v(r,t) over the domain D figuring in (13.3.1) as

(u,v) %fL dr [: dtu(r,t)v(r,t) (13.4.1)

In (13.4.1), the product of u and v at the space-time point {r,t}
is regarded as a vector inner product when appropriate. Since we are
dealing with time-domain fields, complex conjugations are not neces-
sary. With this inner product, we associate the norm:

def 1
lull = (u,u)z (13.4.2)

Further, we define the Hermitean adjoint L* of an operator L as that
operator for which

(Lu,v) = (u, L*v) (13.4.3)
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for all u and v in the space of possible solutions of the integral equa-
tion (13.3.1).
Referring to that integral equation, let u°PP be an approximate

solution. Then, we define the corresponding residual or equation error

as def
r=Lu’PP — f (13.4.4)

and the normalized root-mean-square error ERR as

ERR ir||/|| ] (13.4.5)
Following Van den Berg [32,33], we now introduce a sequence of ex-
pansion functions {¢;(r,t) | j = 1,...,00} that belong to the same
Hilbert space as the unknown solution u(r,t). With the aid of these
expansion functions, we construct successive approximations {u;(r,t)}
to the actual solution u(r,t).Ideally, we would like to construct each
iterate u;j(r,t) such that the corresponding residual error r;(r,t) min-
imizes the root-mean-square error defined in (13.4.5) for any choice of
{¢;} . However, this would involve storing j space-time domain func-
tions in memory, as well as the results of applying the operator L to
these functions [55].
Since, for time-domain problems, such a scheme would hardly be
practical, we restrict ourselves to a scheme in which we need to store
simultaneously

* a single expansion function ¢;(r,t),
* a single correction function u$”(r,t),
o the result of applying the operator L to both these functions,
o the previous approximation u;_1(r,t) and the corresponding resi-
dual rj_y(r,t).
For a general choice of the expansion functions {¢;}, we start
the iterative procedure by choosing
Ug = 0
ro=—f
ERRo =|-fll /lIfll =1 (13.4.6)

Next, we define the “search direction” [56]. For j = 1, we choose the
correction function as

u'{w = ¢
Luf®™ = Léy (13.4.7)
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For j > 2, we take
§ = (Lu§Zy, Lé;)/ Bj

cor

u;” = ¢ — & uily
Lu;-or = L¢j - fj Luﬁ‘fl (13.4.8)

In each iteration step we then correct u in the direction of ug .
This amounts to carrying out an “exact line search” [56]. For j =
1,2,...,00, we compute

Aj = (Lu™,r5-1)
B; = ||Luj"||?
a; = —A;/B;
u; = uj-1 + a;ui”
T =7rj1+ Lu;jor

ERR; = [[r;]l/11f]] (13.4.9)

In (13.4.8) and (13.4.9), §;, A;, B; and a; are real-valued constants.

The effectiveness of the scheme outlined above depends strongly
on the possibility of generating suitable expansion functions {@;}.
Various possibilities can be found in [33,55]. In the present context, we
restrict ourselves to the choice made in the conjugate-gradient method:

6; =Ly (13.4.10)

For this choice, the expansion function ¢; is the so-called gradient

direction, and the correction function u$”" the conjugate-gradient di-

rection. Owing to a number of orthogonality properties [33], we reach,

at least theoretically, even the purpose set above of minimizing ||r;||
in each iteration step.

The same orthogonality properties also lead to a simplification of

the iterative scheme. The first step remains as specified in (13.4.6), i.e.

Ug = 0
To = —f
ERRo =1 (13.4.11)

As stated above, we choose the expansion functions in the gradient
direction

¢; = L*rj
4; = ll511? (13.4.12)
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for j =1,2,...,00. From these expansion functions, we determine the
correction functions according to

ui” = ¢ forj=1
u?” = ¢j + (Aj/Aj-]_) U;Tl forj > 2 (13‘4'13)

The update step (13.4.9) now reduces to computing, for j = 1,2,...,
oo ?

B; = || Lu§||?
a; = —4;/B;

— . . cor
U =uj1 +o;u

]
iy . Lucer
r; =7j-1 + a; Luj

= {Im3lI/11 £l (13.4.14)

&
=~}

Rt
!

Compared with the original iteration scheme given in (13.4.9), this
saves, in each iteration step, the computation of the inner products
(Lu$”y, L¢;) and (Lul,r;_1).

Most of the computational effort will be spent in evaluating L*r;
and Lu$*" . For a given discretization, each of these computations takes
at least as much effort as carrying out a complete marching-on-in-
time computation. This need not keep us from applying the method,
however: doubling the discretization to obtain a stable time-marching
result also increases the computational effort by a factor of 16 or
32, which is equivalent to performing 8 or 16 iteration steps in the
conjugate-gradient method for the original discretization.

13.4.2 The Adjoint Operator

The reason that the conjugate-gradient method does not encoun-
ter the instabilities introduced in the discretized integral equation
(13.3.3) is that this method inherently imposes the restriction that
(uj,u;) exists for each j. With (13.4.1), this implies that the suc-
cessive approximations {u;(r,t)} are square integrable in time, and,
consequently, decrease in magnitude as ¢ — co. On the other hand,
this restriction excludes cases where the unknown field approaches an
almost constant value at late times, as displayed in Figs. 13.3.3 and
13.3.4. In such cases, however, we can resort to solving for 8;u(r,t)
instead, as mentioned in connection with Fig. 13.3.3.



13.4 The Conjugate-Gradient Method 507

The above explanation can be clarified further by considering the
structure of the adjoint operator L*. With (13.2.69) and (13.4.3), we
directly have

L*=I-K* (13.4.15)

where K™ is defined on the scattering domain only. Using the addi-
tional information contained in (13.2.70) and (13.2.71), we find

P o
K*u(r,t) = 3 CT(r) / dr’ / dt' g, (R, ¢ — t) (=80 )P u(r', ')
p=0 y t+R/c

(13.4.16)
where the superscript T indicates that the transpose of Cp(r) is to
be taken when appropriate. By replacing ¢t — —t, (13.4.16) can be
rewritten as

P t—R/c
K*ur,~t) = 3 CF(x) / dr’ / dt! gy(R, t — ') (0, )P u(r'y —t')
p=0 D ~00

(13.4.17)

which, apart from the position of the configuration parameter C;;" (r),

has the same structure as the “forward” operator K specified in
(13.2.70) and (13.2.71).

Now, let the “forcing function” f(r,t) correspond to an incident

pulse of finite duration T . For r € D, we then have f(r,t) = 0 outside

a finite time interval 0 < ¢ < T,(,?.?,, . By (13.4.11), the residual ro(r,t)
is then confined to the same time interval. With either (13.4.16) or
(13.4.17) and the properties of g,(R,t) derived in Subsection 13.2.2,
this leads to the conclusion that ¢,(r,t) vanishes or becomes negligible

outside a finite time interval T,(;-)u <t< T,(,?a),, . By (13.4.14), we then

have the same time limitation for the first iterate u;(r,t). Finally, with

(13.2.70) and (13.2.71), it follows that ri(r,t) vanishes or becomes
negligible outside a finite time interval T'(nli)n <t< T,(nla)x , which brings
us back to the starting point of a time-limited residual.

Repeating the argument, therefore, we find that, for r € D, each

successive approximation u;(r,t) vanishes or becomes negligible out-
side a time interval T,(rfi)n <t< T,(;f;,,l) , with Tr(,fi)n < T,(,fi:ll) <0 and
T< T,(,fa_,,l) < T,(,fgz . This explains why the iterates can only converge
to a time-limited solution wu(r,t).

Furthermore, the analysis given above reveals that, in the im-
plementation, we need to exercise special care in selecting the time
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interval under consideration. In the marching-on-in-time method, we
simply start the computation at ¢ = 0, and terminate it at will. In the
conjugate-gradient method, we must ensure that the computation ex-
tends far enough in both the negative and the positive time directions
to accomodate the successive residuals and correction functions.

Discretization Aspects

The feature of the iterative scheme outlined in (13.4.11)—(13.4.14),
that both operators L and L* are only applied to known space-time
functions resulting from the previous iteration step, gives us more free-
dom in discretizing the time derivatives. For example, we can replace
(13.3.15) by the two-term central difference rule

Bpu(r',t') = [u(r',t' + At) —u(r',t' — At)] /2At (13.4.18)

or by the three-term forward difference rule

Apu(r',t') = [—%u(r', t') + 2u(x',t' + At) - %u(r', t' + 2At)] /At

(13.4.19)
both of which are based on quadratic time interpolation and hold up to
O(At?) [46]. Neither of these approximations is useful in the marching-
on-in-time method, where we only have the field values {@(a’,n') | n' <
n} at our disposal when #(a,n) is determined.

A possible consequence of discretizing both operators is that,
even with the choice of {¢;} made in (13.4.10), the schemes given in
(13.4.6)—(13.4.9) and (13.4.11)—(13.4.14) may not be equivalent. The
equivalence of both schemes is conserved if and only if the discretized
adjoint operator L* is matrix adjoint to the discretized operator L.
To clarify this, let us consider L. From (13.3.3), we observe that

Li(a,n) = @(a,n) - Z Z k(a,a';n — n')a(a’,n')  (13.4.20)

a! n'=—oc0
for n € Z. The discretized equivalent of the inner product (13.4.1) is
of the form

(>

(@0 Aty wa Y @(a,n)i(a,n) (13.4.21)

n=—oo
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where w, denotes a scalar weighting coefficient that originates from
the integration over D in (13.4.1).

Defining the adjoint discretized operator L* in analogy with
(13.4.3), we find

o0
=~ def . Wq! PPN | ~0 1 1
L*a(a,n)=1u(a,n) - Z, o Z k(a',a;n' — n)u(a/,n') (13.4.22)
a n=n

Among other things, (13.4.22) implies that forward differences should
be used to approximate the time differentiations occurring in L* when
backward differences are used for L, and vice versa. Alternatively, cen-
tral differences can be employed in the discretization of both operators.

Deviating from (13.4.22) means that the convergence of the con-
jugate-gradient procedure specified in (13.4.11)-(13.4.14) is no longer
guaranteed. This can be explained from the fact that the orthogonality
relations needed to reduce (13.4.6)(13.4.9) to (13.4.11)—(13.4.14) rely
on the property that L and L* are adjoint with respect to the dis-
cretized inner product (13.4.21). The original scheme (13.4.6)-(13.4.9),
which was derived for “arbitrary” expansion functions {#;}, will re-
main convergent even when (13.4.22) is violated. An illustrative exam-
ple will be presented below, in Subsection 13.4.4.

As far as the time discretization is concerned, we can automati-
cally attain the form (13.4.22) by utilizing the time-reversed expression
(13.4.17). This means that the marching-on-in-time code, which should
constitute the core of any implementation of a time-domain iterative
scheme, must be expanded by a time-reversal subroutine, and not by
one for evaluating the adjoint operator.

Finally, the above exercises with the discretization raise the ques-
tion to what extent the discretized operators determine the eventual
result if the iterative scheme converges. The answer is implied in the
definition of the errors » and ERR in (13.4.4)—(13.4.5): the final result
depends primarily on the discretized “forward” operator L. Only hav-
ing Lii— f = 0 can make the norm of the type (13.4.2) associated with
the discretized inner product (13.4.21) vanish. As long as that norm
differs from zero, the application of the adjoint operator according to
(13.4.10) will continue to generate nonvanishing expansion functions
¢i(a,n).

In particular, this observation leads to an interesting conclusion
for cases where the marching-on-in-time method does not suffer from
instabilities: applying either of the iterative schemes (13.4.6)~(13.4.9)
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or (13.4.11)-(13.4.14) with the time derivatives in L approximated by
backward differences will converge to precisely that result for which the
error in the equality sign in (13.3.3) vanishes, i.e. the time-marching
solution. This will be demonstrated in Subsection 13.4.4 as well.

13.4.4 Ezamples

To illustrate the special properties of applying the conjugate-
gradient method to transient-scattering problems, we reconsider the
“tutorial” example of plane-wave scattering by a dielectric slab as
specified in Subsection 13.2.4. Strictly speaking, we need not solve the
integral equation (13.2.67) iteratively, since the marching-on-in-time
method is capable of solving this equation up to any desired accu-
racy. However, it is convenient to consider a configuration for which
the exact solutions to both the continuous and the discretized integral
equations are available.

In Figure 13.4.1, we show the influence of the manner in which
the operators L and L* are discretized. In particular, we vary the
discretization of the time derivatives as discussed in connection with
Equations (13.3.15), (13.4.18) and (13.4.19). For the lossless, homoge-
neous slab considered in Fig. 13.3.1 and Table 13.3.3, we have applied
the conjugate-gradient method as given in (13.4.11)—(13.4.14) in four
different versions:

A: Using the backward difference rule (13.3.15) for the time deriva-
tive in L, and the forward difference rule (13.4.19) for the time
denva.tlve in L*.

B: Using the backward difference rule (13.3.15)in L, and the central
difference rule (13.4.18) in L*.

C: Using the central difference rule (13.4.18) in L, and the forward
difference rule (13.4.19) in L*.

D: Using the central difference rule (13.4.18) in both operators L
and L*.

Only for versions A and D is L* adjoint to L in the sense of
(13.4.22). From Fig. 13.4.1, it is observed that the conjugate-gradient
method converges for precisely those two versions. For Version B, the
convergence stalls, and for Version C the successive iterates even di-
verge.

The numerical experiment of Fig. 13.4.1 was repeated for the
original iterative scheme specified in (13.4.6)-(13.4.9). Now, all four
versions converged. Versions A and D converged at the same rate as in
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Fig. 13.4.1, Version B was slightly slower than Version A, and Version C
was about two times slower.

These results confirm the conclusion drawn in connection with
(13.4.22), that the convergence of the reduced scheme (13.4.11)-
(13.4.14) can only be guaranteed when the adjoint operator L* is dis-
cretized such that L* is adjoint to I with respect to the discretized
inner product (13.4.21).

This effect is not an artifact due to the choice of too coarse a
mesh: for the present discretization, the root-mean-square error intro-
duced in Table 13.3.3 was 2.01% and 1.04% for the marching-on-in-time
result and for the “final” result of Version D, respectively. Neverthe-
less, both the schemes (13.4.6)-(13.4.9) and (13.4.11)—(13.4.14) were
also tested for a finer space-time discretization, i.e. a larger M, with
similar results. The main difference was that the overall rate of conver-
gence slowed down, and that Version C started to diverge at a smaller
value of the root-mean-square error. Independently of M, the root-
mean-square error ||, — &,||/||€.|| obtained with central difference

rules was about a factor of 2 smaller than the one obtained by using
a backward rule in L.

The numerical experiments described above also give an indica-
tion for the optimal choice between the finite-difference rules (13.3.15),
(13.4.18) and (13.4.19). As far as the discretization error is concerned,
these rules seem almost interchangeable. Therefore, we can choose
whichever one is most appropriate for the numerical computation at
hand. In the marching-on-in-time method, this would be the backward
rule (13.3.15), which is the only one admissible in the “self term”. In
the conjugate-gradient method, this would be the central rule (13.4.18)
because it leads to a faster convergence.

Selecting Version D, therefore, we investigate in Figs. 13.4.2-
13.4.4 the effect of varying some of the numerical and physical parame-
ters. In Fig. 13.4.2, we show the effect of refining the space-time mesh.
In Figures 13.4.3 and 13.4.4, the influence of varying the permittivity
of the slab and the duration of the incident pulse is demonstrated.

All of these figures confirm the matrix interpretation of the dis-
cretized integral equation (13.3.3) leading to the error analysis of Sub-
sections 13.3.2 and 13.3.3 , and to the definition of the discretized
adjoint operator I* in Subsection 13.4.3. Recall that (13.3.3) can be
envisaged as an essentially lower-triangular matrix equation whose sys-
tem matrix has a large number of “well-behaved” eigenvectors corre-
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Figure 13.4.1 Convergence of four different realizations of the conjugate-
gradient method as specified in the text. The configuration is a homoge-
neous, lossless dielectric slab with €3, = 2.25 in free space, excited by a
sine-squared incident pulse of duration ¢oT'/d = 2, subdivided in M = 20
subintervals.

sponding to eigenvalues of (1), and, possibly, a few “problematic”
eigenvectors corresponding to small eigenvalues. Since each step of the
conjugate-gradient method corrects the component along a single basis
vector in the solution space of (13.3.3), the rate of convergence depends
on the size of the subspace in which such corrections are necessary. Re-
fining the space-time discretization obviously enlarges the number of
eligible basis vectors. Increasing the permittivity of the slab introduces
more “detail” in the space-time solution, in the form of repeatedly re-
flected and transmitted pulses with larger amplitudes, and necessitates
an extension of the time interval under consideration. Shortening the
pulse duration enhances the “detail” within a fixed time interval.

In view of this matrix interpretation, we cannot expect the value
of the root-mean-square error to be indicative of the actual accuracy of
the discretized solution #;(a,n) obtained. The only information con-
tained in this value is how well %;(a,n) resembles the “exact” solution
@(a,n) of the discretized equation (13.3.3). The effect of replacing the
continuous equation (13.3.1) with its discretized counterpart (13.3.3)
must be investigated separately. A confirmation of this observation
was already obtained in Fig. 13.4.1, where the root-mean-square error
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Influence of Mesh Size
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Figure 138.4.2 Influence of the mesh size h = d/M on the convergence
of the conjugate-gradient method. The configuration is a homogeneous,
lossless dielectric slab with €3, = 2.25 in free space, excited by a sine-
squared incident pulse of duration coT/d = 2.

Influence of Contrast

10° — r et
x=10
107'}
[» x=2.5
&? 1072
n ]
b
o x=1.25
107? 1
1074 P P T VSN VRN SHN SR ST SH S . 1 L .\

0 25 50 75 100
Number of Iterations

Figure 138.4.3 Influence of permittivity contrast on the convergence of the
conjugate-gradient method. The configuration is a homogeneous, lossless
dielectric slab with €3, = 1 4+ x in free space, excited by a sine-squared
incident pulse of duration ¢yT/d = 2, subdivided in M = 40 subintervals.
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Influence of Pulse Duration
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Figure 13.4.4 Influence of pulse duration on the convergence of the
conjugate-gradient method. The configuration is a homogeneous, lossless
dielectric slab with €3, = 2.25 in free space, excited by a sine-squared
incident pulse of duration ¢oT/d as specified, and subdivided in M = 40
subintervals.

reached by Version D was 0.007%, while actual error in the solution
obtained was 1.04%. In addition, the result of carrying out 100 steps
with Version A agreed up to four digits with the marching-on-in-time
solution, as predicted towards the end of Subsection 13.4.3.

A special feature of the conjugate-gradient method is that, ow-
ing to its global nature, this method is able to handle domain inte-
gral equations with “negative velocity contrast” as analyzed in Sub-
section 13.3.4. A representative result is presented in Fig. 13.4.5. The
configuration is a sine-squared pulse of duration coT/d = 1, incident
on a homogeneous, lossless slab with €5, = 2.25 embedded in a homo-
geneous, lossless dielectric with €;, = 6.25. The result is about as accu-
rate as the one displayed in the upper half of Fig. 13.3.1. The increase
in the number of discretization steps from M = 40 to M = 100 is
necessitated by the fact that the time sampling should be gauged with
respect to the dimensionless pulse duration in the external medium,
ie. ¢;T/d = (e1,)" 5 =1/2.5 = 0.4.

Finally, it should be remarked that, in the computations sum-
marized in Figs. 13.4.1-13.4.5, convergence could only be obtained
by considering a time interval that was at least twice as long as the
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Figure 13.4.5 Final result of carrying out 250 steps in the conjugate-
gradient method for a homogeneous, lossless slab with €3, = 2.25 embed-
ded in a homogeneous, lossless dielectric with €;, = 6.25, excited by a
sine-squared incident pulse of duration ¢oT/d = 1.

one in which the true electric-field strength differs significantly from
zero. This means that, in practice, each iteration step in the conjugate-
gradient method requires an effort equivalent to performing four com-
plete marching-on-in-time computations.

13.4.5 Rao’s Approach

In view of the large number of operations involved in applying
the conjugate-gradient method to the full discretized integral equation
(13.3.3), Rao et al. have proposed a different way to use this method
for solving time-domain scattering problems [57]. The suggestion is
to minimize the equation error in (13.3.3) successively at separate in-
stants. For each n, the computation is terminated when the equation
error reaches a suitably chosen value. In [57], this approach was ap-
plied successfully to the example of a perfectly conducting straight wire
irradiated by a Gaussian electromagnetic pulse.

The effectiveness of Rao’s approach can be understood from the
matrix interpretation of (13.3.3) as well. The conjugate-gradient me-
thod has the tendency to first determine the components of @;(a,n)
along those eigenvectors of the system matrix that correspond to the



516 13. Transient Scattering

largest eigenvalues. By terminating the computation at the proper
value of the equation error, therefore, it may be possible to reach the
correct components along the “well-behaved” eigenvectors correspond-
ing to eigenvalues of O(1), while avoiding unwanted components along
the “problematic” ones corresponding to small eigenvalues. Continu-
ing the computation too long will, of course, yield the exact solution
of (13.3.3), i.e. the unstable marching-on-in-time result that we want
to avoid.

Rao’s approach is only applicable when the spatial distribution
of the unstable part of i;(a,n) differs significantly from the true field
distribution at each instant. An example where this condition is vio-
lated is the impenetrable circular cylinder considered in Figs. 13.3.2
and 13.3.3. From Figure 13.3.3, in particular, it is observed that both
the true field at late times and the unstable part of the time-marching
solution are constant all around the cylinder boundary.

For this configuration, it follows from (13.2.56), (13.2.57), and the
relevant estimate of the integrand as R — 0, that

w(aya’) = (1 + %) b (13.4.23)
where w(a,a’) denotes the weighting matrix introduced in (13.3.4).
In (13.4.23), the + and — signs refer to the cases of magnetically
and electrically polarized incident fields, respectively. The conjugate-
gradient method inverts the weighting matrix w(a,’) in a single step.
For this configuration, therefore, Rao’s approach will produce exactly
the same results as the marching-on-in-time method.

13.5 The Relaxation Method

In this section, we describe a second iterative method that is capa-
ble of determining a stable solution to the discretized integral equation
(13.3.3). In this so-called relazation method, which was first presented
in [37, Section 3.2], we combine the best ideas of the marching-on-in-
time approach and of the conjugate-gradient method. In particular, we
use the lower-triangular structure of the discretized integral equation
as well as the concept of minimizing a squared error. By combining
both ideas, we arrive at a relatively efficient, inherently stable scheme
for solving the discretized integral equation (13.3.3).
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Formulation in Matriz Form

Before we can actually apply the relaxation method, we must
first derive it in a general form. To this end, we consider a system of
N linear equations for N unknown variables {z,}, components of a
vector x. This system can be written in matrix form as

N
Y Amntn=bn (13.5.1)
n=1

where m = 1,2,...,N.In (13.5.1), A denotes the system matrix and
b is a component of a known vector b. We assume the matrix A to
be nonsingular. In that case, A has N nonvanishing eigenvalues \,,
£=1,2,...,N, with N corresponding eigenvectors v,.

Expanding both the unknown vector x and the known vector b
in terms of these eigenvectors, we formally have

N
b= Bivs (13.5.2)
=1
N N
x = E& vy = Z At_l Beve (13.5.3)
=1 =1

In (13.5.2), (13.5.3) and in the remainder of this subsection, we use
Greek symbols to indicate the components along the eigenvectors
{ve} . This notation is used to avoid confusion with the components in
the original coordinate frame.

In the numerical solution of (13.5.1), problems can be expected
when one of the eigenvalues {)\;} is small in magnitude. As (13.5.3)
indicates, a small deviation in the known vector b along the corre-
sponding eigenvector(s) may then cause a considerable error in the
solution vector x obtained.

When the components of x along the problematic eigenvectors
of A are known from a priori information (for example because they
should vanish), the following iterative procedure may be employed to
solve (13.5.1). Starting from an initial estimate X(°), the j’th approx-
imation x(9) is defined as the solution of the system of equations

N
P2 + 3" Amnzl) = b + pz~Y (13.5.4)

n=1
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with m = 1,2,...,N. In (13.5.4), p is a real-valued, positive pa-
rameter, and X(~1) is the result of resetting the components of the
previous approximation x(’~1) along the problematic eigenvectors to
their a priori known values.

The convergence of this iteration scheme can be analyzed by also
expanding the iterates {x(9)} in terms of the eigenvectors {v,}. In
analogy with (13.5.3), we have

N

X = 3¢y,
=1
N

) = S8 v, (13.5.5)

=1

Substituting (13.5.5) in (13.5.4) directly yields the recurrence relation

€9 = By + pEd Y

= 13.5.6
¢ P+ A ( )

In order to establish whether fgj) is a better approximation to the

actual expansion coefficient £, = At_lﬂg than Zﬁj"l) , we consider how
it differs from that solution. From (13.5.6), we have

D _a-1g, = B+ pE " — pA;*Be - B
-t e P+

P [FU-1)_ 21
= [& X; ﬂt] (13.5.7)

When Eﬁ"“‘) = EE"'_I), it follows from (13.5.7) that we have strict
convergence if and only if A, > 0. Moreover, this convergence prop-
erty holds regardless of the initial estimate, and for each individual

expansion coefficient ffj ). The latter observation is especially impor-

tant since it shows that resetting a particular coefficient Eg’ ) toits a
priori known value does not affect the convergence of those remaining.

Finally, (13.5.7) indicates that the components corresponding to
the smallest eigenvalues digress the least from their initial estimates.
This suggests that, when only a few iteration steps are required to
arrive at an acceptable result, it may be possible to leave out the
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reset step entirely. In subsequent steps, however, we will then gradually
obtain the exact solution (13.5.3), whose inaccuracy initially motivated
our taking up the iteration scheme.

The result (13.5.7) rules out the possibility of applying our scheme
when one or more of the eigenvalues {)\;} are negative. In the appli-
cation that we have in mind, this restriction is not acceptable, since
we are not even able to determine all the eigenvalues. However, nega-
tive eigenvalues can be handled by redefining x(%) as the vector that
minimizes the squared error

N N 2 N .
> {Same -t} 40 S (s 20} s
m=1 \n=1 m=1

Differentiating this error with respect to the individual components

{zij) | k= 1,2,...,N} reveals that the minimum is obtained when
the linear equation

N N N
P20+ 3N Ak Amne@ = Y Apicb + %20 (13.5.9)
m=1

n=1m=1

is satisfied for k = 1,2,...,N. The system of equations (13.5.9) is of
the same form as the one given in (13.5.4), the only difference being
that the system matrix A is replaced with the result of a left multi-
plication of A with its transpose. As is well known, such a product
matrix has only positive eigenvalues.

It should be noted that each step of the relaxation method is in
fact the solution of a regularized version of the linear algebraic equa-
tion (13.5.1) [58]. The new element in our solution technique is that,
by incorporating this regularized inversion in an iterative scheme, we
avoid unnecessary changes in the components of x along the “well-
behaved” eigenvectors. As such, the relaxation method brings about
a similar effect as inverting (13.5.1) with the aid of a singular-value
decomposition.

13.5.2 Application to Transient Scattering Problems

The properties of the relaxation method found above make this
method almost perfectly suited for solving the discretized time-domain
integral equation (13.3.3). From the stability analysis of Subsection
13.3.3, we recall that numerically solving this equation can be regarded
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as inverting a large, lower-triangular matrix equation, the system ma-
trix of which has a few small eigenvalues with corresponding “prob-
lematic” eigenvectors. From (13.3.20), we also have enough informa-
tion about the behavior of these eigenvectors to “filter out” unwanted
components in their direction from the result of each iteration step.

To illustrate the stabilizing effect brought about in the relaxation
method, let us reconsider the simplified model introduced in (13.3.16).
From (13.5.8), it is observed that a single iteration step of the re-
laxation method can be modeled by taking, for n = 0,1,...,00, the
minimum of

{vj[n] + woC (gvj[n] — 20;{n — 1] + %vj[n - 2])

+ w,C (%v,-[n -1] - 2v;{n - 2] + -;-vj[n - 3]) - g[n]}

+ 9 (v;[n] — v;-1[n))? (13.5.10)

In (13.5.10) v;[n] represents the approximate time signal found in
step j of the relaxation method, and ¥;_;[n] denotes the “corrected”
approximation resulting from the previous step.

Differentiating (13.5.10) with respect to v;[n] results in the mod-
ified difference equation

1+ P)la] + wnC { Jula] - 2fn — 1+ Joiln - 21}

3 1
+0iC {Jufn = 1) - 200 - 2+ Jusln - 91} = oln] + 555110
(13.5.11)
where 3
7' =p"/(1+ wC) (13.5.12)

Repeating the stability analysis of Subsection 13.3.3 for the modified
difference equation (13.5.11) leads to the conclusion that this equation
has a stable solution if and only if

0<C < (P +1)/(4w; — 4wo) (13.5.13)

This means that, for a given value of the configuration parameter C,
the regularization parameter p can always be chosen such that solving
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(13.5.11) produces a stable result, provided that g[n] and ¥;_;[n] do
not have components along the “problematic” eigenvectors.

The only difficulty in applying the relaxation method to the dis-
cretized time-domain integral equation (13.3.3) is that the system ma-
trix of (13.3.3) is infinite in the n -direction. Therefore, we cannot apply
the relaxation method, which involves a multiplication of the system
matrix with its transpose, to the full equation. Instead, we utilize the
lower-triangular structure of (13.3.3) to apply the relaxation method
to subsystems of equations pertaining to field values {#(a,n)} at a
fixed instant n.

This leads to the following procedure for the iterative solution of
the system of equations (13.3.3). Starting from a sufficiently smooth
estimate Uo(a,n), we carry out a number of iteration steps. In step
number j, the approximate solution #;(a,n) is obtained as the result
of minimizing, for each fixed n, the squared error

Z {ﬁj(a,n) — f(eyn) — Z Z k(a,o',n — n') @j(a’, n’)}

a a' n'=0

+9* ) {ij(a,n) — Gj_1(a,n)}? (13.5.14)

for known values of f(a,n), %;—1(a,n), #;(a,n’) with n’ < n, and
p. Differentiating the squared error (13.5.14) with respect to each of
the unknown field values {#;(a,n)} results in the system of linear
equations

Y wy(a,a)ij(a’,n) = p*T;_1(a, n)

+ Z w(a',a) {].’(a',n) + Z z—: k(a/,a",n — n') &j(a”, n')}

a’ n'=0

(13.5.15)

with
wp(a, o) P26 + E w(a”, a)w(a",a') (13.5.16)

In (13.5.15) and (13.5.16), w(a,a') is the weighting matrix defined in
(13.3.4).
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The system of algebraic equations (13.5.15) is of a similar form as
the original marching-on-in-time equations (13.3.3) and (13.3.5), and
can be handled numerically in exactly the same way. The only differ-
ence between (13.3.5) and (13.5.15) is that solving the latter involves
multiplying known terms on the right-hand side with the transpose of
the weighting matrix w(a,a’) at each instant. Hence, each iteration
step in the relaxation method can be envisaged as a modified time-
marching computation. Compared with the effort required to carry
out the summations approximating the multiple integrals on the right-
hand side of (13.3.1), the additional effort involved in the extra matrix
multiplications is negligible.

After each iteration step, we must remove the small, unwanted
component(s) along the “unstable” eigenvector(s) of the form (13.3.20)
from the approximate solution obtained. This is achieved by carrying
out a smoothing operation that consists of replacing #;(a,n) with

Bj(a,n) = [@j(ayn — 1) + 26j(ayn) + #j(a,n + 1)) /4 (13.5.17)

for 0 < n < oo. This smoothing operation is based on linear inter-
polation in time, and, hence, is accurate up to O(h?). This makes
the error induced by the correction consistent with the discretization
error specified at the beginning of Subsection 13.3.5. If necessary, the
smoothing operation can be repeated several times.

This iterative procedure should not be confused with solving, for a
fixed n, (13.5.15) repeatedly until convergence for known (converged)
values of #;(a,n’) with n’ < n. The latter procedure is equivalent to
solving (13.3.3), and, hence, will produce the unstable time-marching
result that we aimed at avoiding. The improvement in our iterative
procedure is that, by computing in each iteration step #;(a,n) for
all n, we are able to apply the smoothing procedure that removes the
component(s) along the problematic eigenvector(s) of the system of
equations (13.3.3).

A consequence of this strategy is that the iterative procedure will
start to converge at the beginning of the time interval under considera-
tion, and will gradually produce results that are accurate over a longer
subinterval. For very fine space-time meshes in particular, this may
have the effect that, in the initial iteration steps, spurious wavelets are
built up at late times. The elimination of such wavelets in subsequent
iterations may even cause the global root-mean-square error (13.4.5)
to grow temporarily with increasing j, in spite of the fact that the
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approximate result #;(a,n) is actually improving. An example will be
given in Subsection 13.5.3.

The only remaining question is the choice of a suitable value for
the relaxation parameter p. This value must be determined by trial
and error in the first iteration step. When the instabilities do not show
up in that step, we may expect them not to turn up in subsequent
steps either.

The essential difference between the relaxation method and the
conjugate-gradient method is that the relaxation method produces,
in each iteration step, a partial improvement along all well-behaved
eigenvectors. A gradient-type method, on the other hand, produces a
total improvement in a single direction. The common element in both
methods is that they will produce similar global errors.

The principal difference between the relaxation method and Rao’s
approach is that the former suppresses the unwanted components from
the successive iterates on the basis of the temporal behavior, and the
latter on the basis of the spatial behavior. As remarked in Subsec-
tion 13.4.5, considering the spatial behavior may not provide a suffi-
cient separation. The temporal behavior, on the other hand, is com-
pletely known from the stability analysis of Subsection 13.3.3, and is
essentially different for the stable and the unstable parts of #;(a,n).

13.5.8 Ezamples

As in the previous two sections, our theoretical observations have
been confirmed numerically. To this end, we have applied the relax-
ation method to the “tutorial” problem of scattering by a slab, and to
the corresponding two-dimensional problem of scattering by an inho-
mogeneous, lossy dielectric cylinder in free space. This means solving
discretized versions of the integral equations (13.2.64) and (13.2.67).

In all computations, the iterative procedure was started from the
initial value #o(a,n) = 0. Since this initial value has zero components
along all eigenvectors of the system matrix of (13.3.3), it certainly
fulfills the requirement that it should have zero components along the
problematic ones. Moreover, making the same choice as in (13.4.6) and
(13.4.11) facilitates the comparison of the various methods discussed
in this chapter.
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Influence of Relaxation Parameter
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Figure 13.5.1 Dependence of the rate of convergence on the relaxation
parameter p. The configuration is a homogeneous, lossless dielectric slab
with €2, = 2.25 in free space, excited by a sine-squared incident pulse of
duration ¢gT'/d = 2, and subdivided into M = 40 subintervals.

Dielectric Slab

Starting with the case of the slab, we first investigate the influence
of the relaxation parameter p. For the same configuration that was
considered in Fig. 13.4.2, we have, for M = 40, applied the relaxation
method with p = 1,2,3,4. After each iteration step, we performed the
smoothing operation given in (13.5.17) a single time. The convergence
of the successive iterates is demonstrated in Fig. 13.5.1. For consis-
tency, we use the same root-mean-square error as in Section 13.4, i.e.
the one defined in (13.4.5).

Figure 13.5.1 demonstrates two characteristic features of the re-
laxation method. In the first place, the rate of convergence decreases
with increasing p. This can be understood from the fact that the sec-
ond term in the squared error (13.5.14) becomes increasingly more
important as p increases. In the second place, the root-mean-square
error approaches a fixed level as the iterative procedure progresses. The
interpretation of this phenomenon is that, upon convergence of the re-
laxation method, a balance sets in between the correction achieved in
each iteration step and the distortion brought about by the smooth-
ing operation. The larger final value of the root-mean-square error for
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Convergence for M=80 and. p=1

10° y—r '
107!
1 9
E
€3]
. 107
n
=
o
10°°
-4 N L N " P N — — N PR 1} N N N L
107 25 50 7% 100

Number of Iterations

Figure 13.5.2 Convergence of the relaxation method for a fine space-time
mesh. The configuration is a homogeneous, lossless dielectric slab with
€2r = 2.25 embedded in free space, excited by a sine-squared incident
pulse of duration ¢yT/d = 1. The computations were carried out for
p=1and M = 80.

larger values of p corresponds to the deceleration of the convergence.

As in Subsection 13.4.4, we studied the influence of the discretiza-
tion, the duration of the incident pulse, and the permittivity of the slab.
Refining the discretization has no significant effect of the initial rate of
convergence. For very fine meshes, however, the root-mean-square error
may temporarily grow before it decays to its final value. An example
is shown in Fig. 13.5.2. ,

The growth in the root-mean-square error is caused by the occur-
rence of spurious wavelets at late times mentioned in Subsection 13.5.2.
In Figure 13.5.3, we have plotted, as an illustration, the reflected and
transmitted fields obtained after 25 iterations, when the root-mean-
square error is near its maximum, and after 100 iterations. In con-
nection with these results, it should be remarked that, although each
iteration of the relaxation method changes the solution #;(a,n) over
the entire time interval of interest, the actual improvement is confined
to a subinterval. Consequently, a global error of the type (13.4.5) may
not be an appropriate yardstick for measuring the improvement in
ﬁj(a, n) .

Turning our attention to the physical parameters, it turns out
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Figure 13.5.3 Occurrence and disappearance of spurious wavelets at late
times as observed in applying the relaxation method for a fine space-
time discretization. The configuration is a homogeneous, lossless slab
with €3, = 2.25 in free space, excited by a sine-squared incident pulse of

duration ¢oT/d = 1. The computations were carried out for p = 1 and
M = 80.
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that the convergence of the relaxation method is hardly affected by
the duration of the incident pulse. Enlarging the susceptibility of the
slab even results in a faster convergence, in spite of the fact that the
desired time-domain field extends over a longer time interval. This is
just as well, since the stability condition (13.5.13) prescribes that, when
the results are actually unstable, raising the value of the susceptibility
must go together with augmenting the relaxation parameter p.

Dielectric Cylinder

To prove that the relaxation method is really capable of stabi-
lizing time-domain computations, we have also applied it to the one
problem discussed in Subsections 13.2.3, 13.2.4 and 13.3.5 for which
the marching-on-in-time method is inherenty unstable, i.e. the dielec-
tric cylinder specified in connection with (13.2.64).

Figure 13.5.4 shows results for the same situation as specified in
Fig. 13.3.4. Now, the dimensionless conductivity has been increased to
Zgoa = 10, which exceeds the upper limit of the stability range for
the marching-on-in-time method for the pertinent discretization by a
factor of 2. From the upper half of Fig. 13.5.4, it is observed that, after
ten iteration steps, the iterative result meets the equality sign in the
discretized integral equation with a global accuracy of three significant
digits. Note that performing the 15 iteration steps takes about half
the computational effort required in applying the marching-on-in-time
method with a twice-refined discretization, which is the least we would
have to do to extend the stability range of that technique by a factor
of two. '

The results shown in Fig. 13.5.4 may also serve to demonstrate
the poor condition of the discretized integral equation. As remarked
above, the smooth solution of Fig. 13.5.4 meets the equality sign of
that equation with an average accuracy of about 10~2. On the other
hand, the exact solution to the discretized equation is dominated by a
large, alternating unstable component. This is in complete agreement
with the matrix interpretation of Subsection 13.3.3, that this unstable
component can be associated with an eigenvector of the system matrix
of the discretized equation with a small eigenvalue.

In Figure 13.5.5, we consider the same discretized equation as in
the lower half of Fig. 13.3.5 with a three times larger susceptibility,
i.e. x = 5. The most interesting aspect of this particular application
is that, according to Fig. 13.3.5, we must now suppress an interplay of
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Figure 13.5.4 Results of applying the relaxation method to obtain the
fleld excited by a Gaussian pulse of duration cyT/a = 10 in a homo-
geneous, square cylinder of width 2a with x = 0 and Zgoa = 10. The
computations were carried out for p = 1 and M = 3. Point 1 = (—a, 0),
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instabilities alternating with the double time step. This is achieved by
carrying out the smoothing operation (13.5.17) two times after each
iteration of the relaxation method. As Figure 13.5.5 indicates, a stable
result can be obtained for p = 2.5. The larger residual value of the
root-mean-square error is due to the more rapid variation of the exact
field £; with p and t, which results in a larger discretization error.

In connection with Fig. 13.5.5, finally, it should be remarked that
the smoothing operation (13.5.17) is an effective, but relatively crude
low-pass filtering procedure. It seems possible, therefore, to come up
with a less radical procedure for removing the unwanted alternating
behavior given by (13.3.20) from the successive iterates. Perhaps, using
such a procedure would avoid some of the over-smoothing effects that
show up in Fig. 13.5.5.

13.6 Conclusions

In this chapter, we have presented a systematic formulation of in-
tegral equations for the description of electromagnetic transient-scatte-
ring problems as well as techniques for the numerical solution of such
equations. The derivation of the integral equations is carried out with
the aid of a spatial Fourier transformation of the space-time electro-
magnetic-field equations over a finite domain, and a temporal Laplace
transformation over a semi-infite interval.

The numerical schemes comprise the marching-on-in-time me-
thod, which is a direct procedure based on the principle of causality,
as well as the conjugate-gradient method and the relaxation method,
both of which solve the problem iteratively. A matrix interpretation
has been proposed that provides a detailed understanding of the the-
oretical as well as the practical aspects of each of these methods. In
addition, all of our theoretical observations have been confirmed nu-
merically.

At the first glance, it seems most attractive to solve transient-
scattering problems directly, by marching on in time. However, the
accumulation of discretization errors as the time-domain updating pro-
cedure progresses may give rise to exponentially increasing instabilities.
For some configurations, either the discretization of the integral equa-
tion or the problem formulation can be modified such that these insta-
bilities are avoided. On the other hand, configurations exist for which
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neither modification leads to a stable result. Of the examples discussed
in this chapter, the dielectric slab and the two- and three-dimensional
impenetrable obstacles appear to fall into the former category, and the
dielectric cylinder into the latter.

Both iterative procedures have the advantage that the instabil-
ities encountered in the marching-on-in-time method are inherently
avoided, albeit at the cost of a considerable increase in computational
effort. The conjugate-gradient method does not suffer from instabilities
because of its global character, which restricts the successive iterates to
field distributions that are negligible outside a finite time interval. How-
ever, because of the vast dimension of the space of possible solutions,
it may take a large number of iterations to arrive at an acceptable
solution. Moreover, each iteration step requires an effort equivalent
to performing two complete marching-on-in-time computations over a
time interval that is twice long as the one of actual interest. A spe-
cific advantage of the conjugate-gradient method is that, because of its
global character, only this method is capable of solving domain inte-
gral equations with a negative velocity contrast. This makes it the only
time-domain integral-equation method available for solving transient
scattering by e.g. voids in dielectric media.

The relaxation method was taylored directly to time-domain scat-
tering problems, and amounts to a regularized solution of the dis-
cretized integral equation in matrix form. The method seems generally
applicable, provided that the approximate behavior of the unstable
part of the solutions is known. Compared with the conjugate-gradient
method, it seems more suitable for the determination of a large so-
lution vector, since it operates on all components of that vector si-
multaneously, as opposed to achieving total improvement in a single
direction. Moreover, each iteration step requires only an effort equiv-
alent to carrying out a single marching-on-in-time computation over
the time interval of interest.

A somewhat surprising result of our analysis is that, with respect
to the global error in the solutions obtained, the three methods are
almost equivalent. In fact, when the marching-on-in-time method pro-
duces a stable result, applying either iterative method with the same
space-time discretization will eventually lead to precisely that result.
In view of the difference in numerical efficiency therefore, it seems al-
most mandatory to first investigate all possibilities of constructing a
stable time-marching scheme. Only when this investigation is unsuc-
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cessful should an iterative solution be considered..The effort spent in
the numerical implementation will not be lost, since the computation
of the source-type integrals, which takes up most of the work, can form
the basis of the implementation of both iterative procedures as well.
These conclusions have been summarized in the decision tree of
Fig. 13.6.1. Given a particular time-domain integral equation, this de-
cision tree offers the reader a suggestion as to which numerical method
has the best chance of success. It is admittedly somewhat speculative,
but it is the best assessment that can be given at the present time.
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