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16.1 Introduction

The objective is to find an optimal set of weights for each element
of an array for enhancing the reception of the desired random signal
that is processed in a signal environment containing numerous inter-
fering components and thermal noises. In section 16.2, a procedure of
formulating a communication problem or electromagnetic wave inter-
action as a matrix equation of the form, AW = Y, is shown where
A is a known matrix and W is the weight vector to be computed for
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590 16. Application of Conjugate Gradient Method

a known desired vector Y. * It will be shown that the characteristic of
the matrix A is determined by the nature of input signals and system
environments. A theoretical background for the adaptive signal pro-
cessing is briefly reviewed in section 16.3. Procedures of refining the
weight vector W in conventional methods such as the LMS algorithm
and the method of steepest descent are shown in section 16.3. A design
of an adaptive linear predictor is simulated in Example 1 of this section.
Starting from the basic philosophy of iteration methods in section 16.3,
adaptive procedures of the conjugate gradient method are derived in
section 16.4 for many different fields of applications. The performance
measure will be determined properly depending upon the matrix A,
i.e., whether or not it is real, whether or not positive semidefinite, and
whether or not symmetric (or Hermitian for the case of complex ma-
trix). The linear predictor is redesigned using the conjugate gradient
method in Example 2 and the performances are compared to the case
of the LMS method and the method of steepest descent. In Example 3,
the conjugate gradient method is applied to the design of an adaptive
echo canceller for a telephone system. For the case when the matrix is
arbitrary, a generalized conjugate gradient method is introduced. The
generalized conjugate gradient method is applied to the design of an
adaptive array for multipath telecommunications in Example 4.

16.2 Formulation of the Problem

Consider an array of Fig. 16.1 which consists of N isotropic an-
tennas equally spaced with a separation d. A plane wave is incident
upon the array with an incident angle ¢, where ¢ is the arrival angle
from the broadside of the array as shown in Fig. 16.1. There exists a
difference in time of arrival between the adjacent elements as follows:

T = (d/e) sin(¢) (1)
where c is the speed of the wave. From (1), one can find that the signal
induced at each antenna element can be expressed as a delayed version
of the signal induced at the reference element. Thus, the array output
y(to) at time t; can be represented as

N-1
y(to) = D z(to —ir) w; (2)
i=0

* In this text, normal letter denotcs a scalar quantity whereas bold
letter denotes a matrix or vector quantity.
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Figure 16.1 Antenna array with N elements.

where z(2o) is the signal induced at the reference antenna element at
time to, N is the number of array elements, 7 is given in (1),and w;
is the weight of the ith element.

From (1) and (2), the estimation problem can be formulated as
follows:

Determine the value of w; for each element, i = 0,1,...,
N —1, in such a way that the array output y(to) at t; best
approximates the desired signal d(to).

Note that the observation time interval can be set to be the spa-
tial time interval T without loss of generality. If the observation time
interval is equal to 7, then the estimation problem can be formulated
much more simply as shown in (3). In (3), ¢ and k have been used
as indices for the spatial time interval and observation time interval,
respectively.

N-1
E Tith Wi = Y (3)

1=0

where y;, denotes the estimation at time k for each observation time,
k = 0,1,2,...,M — 1. Note that the estimation Y, may not be
same as the desired value. More details about the error between the
estimation and the desired value will be discussed in section 16.3 and
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16.4. If the number of observation times is set to be the number of
array elements N, we can represent (3) as an N X N matrix equation
with N unknowns as follows:*

AW =Y (4)

where A denotes the signal matrix and W denotes the weight vector
for a desired signal vector Y. Note that the element of the matrix
A at the kth column of the ith row is the input signal z;,r_».
A, W, and Y are shown in (5), (6), and (7) as

Zo Ty ees ETN-1
Z1 T2 e TN

A = : R : (5)
ZN-1 ZN ... ZT2N-2

Wt = [wo, Wiy seey 1UN_1] (6)

Yt = [yo’ Y1y e yN—l] (7)

where the superscript ¢ denotes the transpose operator.

It is well known that there exists a unique set of solutions for
a matrix equation only when the rank of the matrix is equal to the
number of unknowns. For the matrix equation shown in (4), however,
the number of antenna elements cannot always be the same as the rank
of the matrix A because the number of antenna elements is a fixed
value in an array whereas the rank of the matrix A is determined by
the number of frequency components of the signal and various random
noises. Therefore, the solution of (4) is in general not unique. When
the rank of the matrix is less than the number of antenna elements, the
solution does not even exist. In practice, however, this will not occur
because of the interference and noise components. This means that
the actual problem setting is in an infinite dimensional space, which in
simple terms means that we have an infinite number of unknowns to be
solved. Since the matrix A is in general formed as an ill-conditioned
matrix as discussed above, an iterative method rather than a direct
method such as the Gaussian elimination must be used for solving the
matrix equation given in (4).

* Here we are trying to simplify the problem by forming the square
matrix. In general, the matrix A does not have to be a square matrix.



16.2 Formulation of the Problem 593

[ —

Array Geometry
« /1 e
Wo Wy w; .

Array Output

Figure 16.2 Antenna array with N elements in the detection part and
M elements in the estimation part. z~! in this figure corresponds to the
delay T in (1).

In (3), it is important to note that the induced signal, z;;s, for
each element, i.e., for i = 0,1, ..., N — 1, at each observation time,
i.e,at k=0,1,..., N — 1, must be reasonably reliable to produce
a meaningful estimation y. This means that the left-hand-side of (3)
must not include large interference and/or noise components for a good
estimation. Therefore, the matrix A in (4) must be formed with the
output signals of a detecting network which employs properly selected
weights as its gains to resolve the undesired signal components. More
details about detection problems for resolving interference signals and
noises are discussed in [3]. This is illustrated in Fig. 16.2.
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16.3 Theoretical Background for Adaptive Signal
Processing

This section surveys conventional adaptive algorithms to help read-
ers understand the basic philosophy of the term, “adaptation.” When
an adaptive method is used for solving a matrix equation of the form
AW =Y, starting from an arbitrary initial guess Wy we refine the
weight vector W by

W =W, + t, P, (8)

where the index n denotes the iteration number, ¢,, is a scalar quantity
related to the step size*, and P, is a vector which determines the
direction of search. Therefore, there always arise two questions to be
answered whenever an adaptive method is used for solving a matrix
equation: one is about the value for the step size, t,, and the other
is about the value for the search direction P,. Therefore, an adaptive
algorithm is characterized depending on the way of setting the step
size t, and the search directions P,,.

In this section, we review the classical method of setting ¢, as a
fixed value. When a fixed value is to be selected for all through the
iterations, a special care has to be taken that the value for the step
size ensure the convergence of the adaptive procedure. The boundary
of the value for ¢, which guarantees the convergence will be derived
and discussed in the third article of this section. On the other hand,
we can also try to optimize the value for the step size at each iteration.
When the method of variable step size is used, we must select a proper
functional which is to be minimized with respect to the step size, t,,
at each iteration. If the amount of additional computation required for
optimizing t,, at each iteration does not exceed the speed-up due to the
optimization, then the method of variable step size is preferred. It has
been our experience that the speed-up obtained by the optimization
of the step size becomes larger as the size (or, for the same size, the
condition number) of the matrix becomes larger.

Regarding the value for the search direction P,, our explanations
will be based on the idea of the steepest descent method in which the
direction of search is the negative of the gradient of the functional.

* t, is often called adaptive gain in other texts. In this text,t, will
be denoted as the step size
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Utilizing the philosophy of the mean squared error(MSE) criterion**
for the performance measure, the squared error, i.e., |[AW — Y||?
can be selected as the functional. Or, alternatively, a functional can be
generated in such a way that the gradient of the functional becomes
the error itself, i.e., AW — 7Y, so that we are actually solving the
matrix equation AW =Y when we minimize the functional. More
details about setting a functional will be discussed in Section 16.4.

16.3.1 The Gradient and the Wiener Solution

From (3), the estimation at kth observation time can be repre-
sented in a vector notation as follows:

Y = thk (9)

for each observation time £k =0,1,..., N —1 where X, denotes the
input vector at kth observation time. Once again, the superscript ¢
denotes the transpose operator. If the desired value at an observation
time k is denoted by di, the error signal e, can be obtained as

e = Yr—dr = W X, —dp (10)
The square of this error is
er = di —2d, WX, + WEX, X4W (11)
Therefore the expectation of the squared error is given by
E{e;} = E{d} -2¢(2,d) W+ W' §,(2,2)W  (12)

where E{ } denotes the statistical expectation operator, ¢,(z,d)
is defined as a column vector of the cross-correlations between the

** Besides the MSE criterion, there exists various performancell]
measures which govern the operation of the adaptive procedure such
as SNR (Signal to Noise Ratio) criterion, ML (Maximum Likelihood)
criterion, and MV (Minimum Variance) criterion. However, for using
SNR, ML, or MV criterion, we must assume the availability of the
statistics of both signals and noises. In practice, these values may not
be available. Another reason to avoid using those criteria is that we
concentrate on solving the matrix equation rather than treating the
signals and noises in a statistical manner.
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input vector X; and desired signal di, and ¢ ,(z,z) is defined as an
N x N matrix of the autocorrelations of the input vector Xj. Thus,
$i(z,d) = E{diXs} and @,(z,2) = E{XpX}}. ***

From (12), the gradient of the MSE can be computed as

Grad. [E {e}}] = —2¢(z,d)+24(z,2)W (13)

where Grad. denotes the gradient operator with respect to W. There-
fore, the optimum choice for the weights which minimizes the MSE,
i.e., E{el}, can be written as follows:

Wope = ¢(2,2)7" ¢(2,d) (14)

The expression for Wy, given in (14) is the Wiener-Hopf equation
in a matrix form and is consequently referred to as the “Optimum
Wiener Solution”. Note that the autocorrelation matrix ¢ (z,z) must
be invertible for (14) to be valid.

16.3.2 The Method of Steepest Descent

Starting from an arbitrary guess for the initial weights W, we ob-
tain a refined value by making a change in the direction of the negative
of the gradient vector of the functional. This means that the direction
vector P, in the method of steepest descent is simply the negative of
the gradient of the functional. The method of steepest descent can be
expressed as

Woi1 = Wy, — uGrad. [E {€2}] (15)

where the index n denotes the iteration number and p is a positive
constant which is related to the step size as ¢,, in (8). Note that the step
size is a fixed value for all through the iterations. Also note that the
functional employed in the method of steepest descent is the expected
value of squared error, i.e., E {e2}.

Substituting (13) in (15), we can rewrite (15) as

Wn+1 = W,—pu (—2¢(2, d) + 2¢(3,z) W‘n) (16)

*** In this text, the signals are assumed to be stationary unless men-
tioned otherwise. Therefore, the subscript, k, of ¢,(z,z) and ¢,
(z,d) will be deleted unless the signals are nonstationary.
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Here, the magnitude of g must be less than 1/Amax for the con-
vergence of the procedure where Amax denotes the maximum eigen-
value of the autocorrelation matrix ¢ (z,z).14 The restriction on the
boundary of u can be explained as follows:

Using (16), we can represent the weights vector at each iteration

Wy = [I-2ud(z,2)] Wo + 2p¢(z,d)
W, = [I-2ud(z,2)] W1 +2ué(z,d)

Wy = [I-2ué(z,2)] Wn-1+2p é(z,d)

where I denotes the N x N identity matrix. Then, Wy can be
represented as a power series of the initial guess Wy as

N-1
Wy = [I-2p¢(z,2)" Wo+2u Y [I-2u ¢(2,2)] (2,d)

1=0
(17)
For the power series of (17) to be convergent, the magnitude of
each element in [I — 2u ¢ (z,z)], must be less than unity, i.e.,

|I-2pé(z,2)] <1 (18)

which can be satisfied by the restriction, 0 < s < 1/Amax where
AMmax denotes the maximum eigenvalue of the autocorrelation matrix

¢ (z,2).

16.3.3 The Least Mean Square (LMS) Algorithm

As shown in (16), one can use the method of steepest descent
only when the crosscorrelation vector ¢(z,d) and autocorrelation ma-
trix ¢(z,z) are perfectly known. In many cases, however, the signal
statistics may not be known apriori. When the signal statistics are not
available, the exact values for the gradient of the performance surface
cannot be computed. Widrow!! has shown that the LMS algorithm
can be used to find the optimal set of weights in an adaptive way when
the gradient must itself be estimated. The LMS algorithm updates the
values for the weights as follows:

Woit = Wy — pGradeew [E {€2}] (19)
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where Grad..,: [E {e2}] denotes the estimated gradient vector of the
MSE w.r.t. W,,.

One method for obtaining the estimated gradient of the mean
square error function is to take the gradient of a single time sample of
the squared error, i.e.,

Grad... [E {e:}] = Grad. [{ef,}] = 2e,Grad. [e,] (20)
From (10), Grad.[e,] = Grad. [W!X, — d,] = X,. Thus,

Gradeey [E {€2}] =26, Xn =2[W.X, ~d,] X,  (21)

Substituting (21) into (19), we have the update equation of the
weight vector for the LMS algorithm as follows:

Wort = Wa—2penXn = Wo—2u [WiXa—dn] X, (22)

Note that LMS algorithm requires the error signal e, given in
(10) to be generated. This means that we have to know the desired
signal. The exact value for the desired signal is generally not available
apriori. In practice, the condition of requiring the desired signal can be
satisfied by generating an approximation of the actual desired signal.
A signal, for example, consisting of the carrier frequency only can be
used as a desired signal d,, in many applications of narrow band signal
processings.[’®! In some other applications such as system identifica-
tion, the desired signal d, is available and can be used as a reference
signal during the adaptation. More details about the application of sys-
tem identification is shown with computer simulations in section 16.4.
The most attractive feature of the LMS algorithm is the simplicity of
the procedure. Since the single time value of the squared error is di-
rectly used as an estimation of the average value of the squared error,
we do not have to store the previous values of the signals for comput-
ing the average. This particularly means that the adaptive procedure
is done for each row rather than for the whole matrix. In other words,
no matrix needs to be stored and processed in the LMS algorithm.

Ezample 1.

Suppose a signal, z,, = sin(0.57n) + sin(0.67n), is to be processed in
an array consisting of N elements. The LMS algorithm is to be used
for designing the array. The objective is to determine the value of the
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weight for each antenna element in such a way that the array output
estimates the next value of the signal. Assume the sampling period and
the spatial delay due to the antenna separation are the same.

Simulation results are shown in Table 16.1 with two typical values
for the step size, u. The adaptive procedure is terminated when the
normalized error, which is defined as |W*!X —y|/|y| becomes less than
10~%. Figure 16.3 illustrates the relation between the magnitude of the
step size and the required number of iterations for the convergence.
Statistical analysis of the LMS algorithm that characterizes the mean
and mean-squared behavior of the weight vector were given in [14]. It
is shown that the mean behavior of the adaptive procedure converges
to the optimum solution given in (14) if the step size u is selected to
be

0 < p < 1/Amax (23)

In many practical applications, however, not only the mean behav-
ior of the adaptive procedure but also the mean squared error of the
weight vector must be convergent. When the input signals are Gaus-
sian, following two conditions must be satisfied for the mean squared
error to be convergent.[14]

0 < p < 1/22max (24)
N Y
L S P = 2
,-=El T—2u; <1 fori = 1,2...N (25)

where A; denotes the eigenvalue of the autocorrelation matrix of the
input signal, correspondingly. Note that the above conditions were ob-
tained under the independence assumption!!®] and the assumption
that the input signals involved were zero-mean Gaussion. However,
it will be still interesting to check the validity of (24) and (25) in this
example. For this, we compute the autocorrelation matrix of z(t) as
follows:

To ™ eee PN-1
™ To eee TN-2
$(z,2) = .
PN-1 TN-2 ... To
where r; for ¢ = 0,1,... N — 1 is computed as

ri = E [2m Tm-i] = 0.5{cos(0.57%) + cos(0.67i)} ~ (26)
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Figure 16.3 Step size vs. Required Iterations.

Note that the autocorrelation matrix can be fully determined from
(26) because it is a Toeplitz matrix. From Table 16.2, we compute
the eigenvalues of the matrix as shown in Table 16.3 when the array
consists of 6 antenna elements. *

From Fig. 16.3, we can see that the step size g must not exceed
0.176 for the mean square error to converge. Note that convergence
conditions shown in (24) and (25) are more strict than the upper bound
of pu shown in Fig. 16.3. The reason is that the derivation of (24)
and (25) have been based upon the independence assumption of the

* The reason why we set the number of antenna elements to six will
be discussed later in this example.
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Step | Norm. | # of | CPU w
size | error |iter’s| time

0.01| < 10-% | 2757 | 2.11 sec [ 0.996, 1.391, 1.473, 1.550, -0.523, 0.158
0.1| <1075 | 259 (0.21 sec | 0.996, 1.390, 1.473, 1.550, -0.522, 0.160

Table 16.1 Numerical Results of the LMS Algorithm.

1.0000 —0.1545 —0.9045 0.4045 0.6545 —0.5000
—0.1545  1.0000 -0.1545 -0.9045 0.4045 0.6545
—0.9045 -—0.1545 1.0000 -0.1545 —0.9045  0.4045

0.4045 -0.9045 -0.1545 1.0000 -0.1545 —0.9045

0.6545  0.4045 —0.9045 —0.1545 1.0000 -—0.1545
—0.5000  0.6545  0.4045 -0.9045 —0.1545 1.0000

Table 16.2 Autocorrelation matrix ¢(z,z) for 6 array elements.

0.0000|0.0000 | 0.1221|0.2797 | 2.4703 | 3.1279

Table 16.3 Eigenvalues of the autocorrelation* matrix.

Gaussian signals [15]. **

For determining the number of antenna elements, we have to con-
sider the rank of the autocorrelation matrix of the input signal. In
general, there exist 2N nontrivial eigenvalues in the autocorrelation
matrix for an input signal consisting of N distinct frequency compo-
nents. Recall that there were four nontrivial eigenvalues in the autocor-
relation matrix of this example as shown in Table 16.3 and there were
two distinct frequency components in the signal, z(t). This particu-
larly means that we need at least four antenna elements to estimate the

* IMSL routine has been used for computing eigenvalues of the
matrix.
** The independence assumption states that E {Xy, Xt} = 0 for
k # 1 where X; denotes a column vector of the input signal formed
at an observation time ¢ and 0 denotes the null matrix. More details
about the independence assumption is discussed in [15].
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signal with a reasonable error, which has been set to 10~5. Therefore,
the solution for the weight vector becomes unique when the number of
antenna elements is 2N (which is four in our case). If the number of
antenna elements is greater than 2N, then the solution is not unique
and varies upon the initial choice for the weights, W,. The solution
shown in Table 16.1 has been computed with initial choices being all
1’s, i.e., Wo = (1,1,...,1). If the number of antenna elements is
less than 2N, then the mean square error of the weights vector can-
not converge within a reasonable bound, e.g., 1075. Above discussions
regarding the number of elements can be summarized as follows:

(1)If Ng = N thenthereisaunique solution,
(2)If N < N, thenthesolutionisnonunique,
(3)If Np > N, thenthesolutiondoes not exist,

where N and Npj denote the number of antenna elements and non-
trivial eigenvalues of the autocorrelation matrix, respectively.

In practice, however, the rank of autocorrelation matrix is not
available apriori and, furthermore, interfering components and thermal
noise components are randomly included in the system environment.
Because of these random components, the actual problem setting is in
an infinite dimensional space, which physically means that an infinite
number of antenna elements is required to solve the problem if the
error is to be converged within a reasonable bound, e.g., 1075,

16.4 The Conjugate Gradient Method

The conjugate gradient method® was initially presented in elec-
tromagneticsls] as an efficient way of solving a matrix equation of the
form, A W = Y[ In this section, the update equation for the
weight vector of the conjugate gradient method is presented.

First, the method of steepest descent with variable step size is in-
troduced. So far, the step size ¢, in (8), has been treated as a constant,
i.e., p in (15), all through the iterations. In this section, we introduce
a method of variable step size in which the step size of the adaptive
algorithm is optimized at every iteration. As mentioned briefly at the
beginning of Section 16.3, by finding the minimum of the properly se-
lected functional, one can obtain an optimal value for the step size t,
at each iteration. Therefore, to use the method of variable step size,
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we have to first generate a proper functional, which is to be minimized
with respect to the step size at each iteration. Once a functional is
generated, then the objective becomes to find a value for ¢, which
yields the minimum of the functional at the next iteration, i.e., to find
t, such that

Of (Wny1) /0t = 0 (27)

where f(W) is a functional and 8/9t, denotes the partial differential
operator with respect to t,.

16.4.1 The Conjugate Gradient Method

Let’s first assume the matrix is real. Then, a functional can be
properly generated such that the adaptive procedure of the conjugate
gradient method is summarizéd very simply, i.e., simple expressions for
the step size t, and the search direction P,. In the later part of this
section, i.e., 16.4.2, we introduce a generalized functional and adaptive
procedure to eliminate the necessity of the assumption that the matrix
is real.

Consider the following scalar quantity as a functional:

F(W) = 0.5(AW; W) - (Y; W) (28)

where (;) denotes the Euclidean inner product. It can be found that
minimizing the functional, f(W) shown in (28), is equivalent to solv-
ing the matrix equation, AW =Y shown in (4), under the assump-
tion that the matrix A is symmetric and positive semidefinite. To
check the validity of the equivalence mentioned above, we compute the
gradient of the functional, f(W) shown in (28), with respect to W
as

Grad. [f(W)]=AW - Y (29)

assuming that the real matrix A is symmetric. Equation (29) states
that minimizing the functional f(W) is itself solving the matrix equa-
tion, AW = Y. Once again, the real matrix A must be symmetric
(for (29) to be valid) and positive semidefinite (for the procedure to
be a minimization procedure). Note that if the matrix A is negative
semidefinite, then the procedure becomes a maximization problem.

Now, let us compute the step size t,, which minimizes the func-
tional at each iteration, i.e., to find ¢, such that
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3f (Wn+1)
ot,
_ O[05(AW 13 Whi1 ) — (Y5 Way)]
Otn Wat1=Wpttn Py
= (8/08tn) [0.5(AP,; PL)t2 + (Rp; Pty
+ 0.5(AW,; W,)) — (Y; W,.)] = 0 (30)

where the residue vector R, is defined as
R,.=AW,-Y. (31)

Note that (30) is valid only when the matrix A is symmetric because
(AP,; W,,) is equal to (A W,; P,,) only when a real matrix A is
symmetric. Since (30) is given in a quadratic form with respect to ¢,,
the coefficient of ¢2, i.e.,0.5(AP,; P,), must be positive for the
solution of (30) to be the minimum of the functional f(W,4;). Since
the matrix has been assumed to be positive semidefinite, this condition
can be satisfied. Therefore, the scalar quantity, t,,, at each iteration
can be written from (30) as

_ (Ra;iPn)  ||R,2
= “{AP. P, - (AP, P, (32)

Now, let’s derive the expression for the search direction P,,. From
(8), we first derive the expression for R, ; by multiplying the matrix
A on both sides of (8) and subtracting Y from the results of the
multiplications. Then, we get

Rn+1 = Ro+t, AP,. (33)

The direction vector is initially set to be the negative of the initial
residue Ry, i.e., Po = —Rg. Then, starting from an initial guess Py,
we refine the search direction as

Pn+1 = —Rn+1 + ¢n Py, (34)

The scalar quantity g, is chosen for the conjugate gradient method
such that P; are A -orthogonal with respect to the inner product as
follows:

(Pi; AP;) = (Pj; AP;) = 0 fori#j. (35)
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Applying the relation of (35) for P,y and AP, in (34), ie,
(Pny1; AP,) = 0, we can compute the value for ¢, as follows:

o = (Rnt1; APn) || Rny |2
" (APn; Py) | R |2

(36)

When the search directions P; satisfy the condition (35), it is

guaranteed that the adaptive procedure converges in a finite number
of steps.[11l[1€]

Ezample 2.

The conjugate gradient method is used for designing the same ar-
ray discussed in Frample 1. The simulation results are shown in Table
16.2.1. In the simulation, to guarantee the positive semidefiniteness of
the matrix, we square the signal matrix as follows:

A = (A)(A)) (37)
where the signal matrix A’ is defined as

Zy g cee Zg

Z2 T3 coe T
A= T T (38)
Tio T11 cse L15

Note that we do not compute the autocorrelation matrix of the in-
put signal, z,, = sin(0.57n) + sin(0.6xn). This means that we do not
store many input data to compute the time averages of them for form-
ing the autocorrelation matrix and crosscorrelation vector. Instead,
instantaneous values of the input signal is used to form the matrix,
A’. Compare the results shown in Table 16.2.1 to that of Table 16.2.2,
which have been computed with the acceleration factor, g, of (34),
being zero. Note that when the acceleration factor ¢, is zero the pro-
cedure becomes nothing but the method of steepest descent because
if g, is zero then the search direction would be simply the negative
gradient of the functional. It has been our experience that the required
number of iterations in the method of steepest descent, i.e., ¢, = 0,
becomes less as the number of rows of A’, which is set to 10 in (38),
increases. This means that the adaptive procedure for the method of
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Norm. Error | #-iter’s | CPU time w
< 10-8 6 0.05 sec |0.997, 1.392, 1.473, 1.550, -0.524, 0.158

Table 16.2.1 Numerical Results of the Conjugate Gradient Method.

Norm. Error | #-iter’s | CPU time w
< 10-5 202 | 0.11sec |0.996, 1.391, 1.473, 1.550, -0.523, 0.158

Table 16.2.2 Numerical Results of the Steepest Descent Method.

9.997605 | —1.545082 | —7.140579 2.898278( 3.447232 | —1.968863

—1.545082 6.193379| —0.398282 | —4.045115 1.013947 1.516346

—7.140579 | —0.398282 5.847889 | —1.331557 3.486099 1.601732

2.898278 | —4.045115 | —1.331557 3.329220 0.207282| —1.918485

3.447232 1.013947 | —3.486099 0.207282 2.770206 | —0.986067

—1.968863 1.516346 1.601732 | —1.918485 | —0.986067 1.940121

Table 16.2.8 Elements Values for A.

—0.328 | —0.067 | 0.957 | 0.045| —1.573 | 0.357

Table 16.2.4 Elements Values for Y.

steepest descent in which the acceleration factor ¢, is zero can con-
verge faster as we store the more number of input data for computing
the matrix, A. In the conjugate gradient method, however, the re-
quired number of iterations for the convergence is always less than or
equal to six, which is the number of unknowns, whether or not we store
more than six rows of input data for forming the matrix A’. This will
be discussed in more details in Ezample 3.

Ezample 3.

An adaptive echo canceller for a telephone communication channel
is to be designed using the conjugate gradient method. The objective is
to determine the values for the coefficients of an FIR filter in such a way
that the impulse response of the FIR filter approximates the impulse
response of the echo path connected to the telephone line shown in
Fig. 16.4. Then, the reflected echo which can be thought as being the
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kth input signal, x,

FIR Filter
with Echo
Adaptive Path
Algorithm

Error-x;w-dk x;w
+

2 = echo signal, d,

Input vector )(k is defined as xk-[x

t
KeNat * Xiengz oo X 1

Figure 16.4 Block diagram for example 3.

output of the echo path will be cancelled with the output of the FIR
filter.
We assume the echo path can be modeled as a finite order linear

system, i.e, an FIR filter. Suppose the system function of the echo path,
H (&), is modeled as an 8th order FIR, filter as follows:

8
H(e‘n) = Z h,‘ z—‘|z=exp(jn) (39)
=1
where the coefficients, h;, are arbitrarily selected as

0.1, 0.4, —0.5, 0.3, -0.1, 0.7, —0.2, 0.1. _ (40)
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For simplicity, we set the number of unknowns, i.e., the order of
FIR filter to be designed, as the same as the order of echo path, i.e., 8.
Therefore, it is expected that the final solution for the filter coefficients
converges, at the conclusion, to the values of h;, fori=1,2,...8
shown in (40), correspondingly. If the order of the filter to be designed
is higher than the actual order of the echo path, then the final solution
for the redundant orders will converge to all zeros. Input training signal
z) shown in Fig. 16.5 is a zero mean uniformly distributed random
signal which has been generated by a 66th order MLSR (Maximum
Length Shift Register).

Let z), denote the input signal with the observation time index k&
and W denote the vector of the filter coefficients to be determined,
then the matrix equation can be formed as follows:

1 T2 cee Tg w1y dl
2 Z3 ces Zg w2 dz

o — ‘e 41
i ZTipl o.. Tigr wg d; (41)

where d; denotes the echo signal reflected from the telephone line. Note
that the echo signal d; can explicitly be calculated at any observation
time i by taking a convolution of the input signal, z;, z;41, ... Z;47
with the 8th order FIR filter, h; which have been assumed as (40).
Recall that in most practical applications the desired signal, which
corresponds to the echo signal in this particular example, was usually
not available as discussed in 3.1.

To apply the conjugate gradient method for determining the values
for W, we have to first form a positive semidefinite matrix from the
matrix shown in the left-hand-side of (41). Two different situations in
forming a positive semidefinite matrix are considered as shown below.

< case #1 > When the averages for the autocorrelation and cross-
correlation are computed.

Suppose the autocorrelation of the input training signal and the
crosscorrelation between the input and echo signal are available. This
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situation can be represented as follows:

t A
( i T2 cee g 1 2 e Ig
£3) T3 ves ZTg Ty T3 cee g w1y
E ) ce ces Wy
Ti Tl .. Tig7r T Tip1 e
Ws
\ )
( M di 1)
Z1 T2 cee Tg dz
T z3 e Tg
d3
- E | Y (42)
Ti Tig1 ... Dig7 d:
1
\ - 4

where E denotes the expectation operator. Equation (42) can be
rewritten in a matrix form, AW = Y where A and Y denote the
autocorrelation and crosscorrelation, respectively. A and Y can be
computed by taking the time averages of the signal, i.e., by averaging
enough number of blocks of 8 sampled signals. In the simulation, 3500
blocks are averaged as follows:

3500

(1/3500) ) s fork = 0,1,...7 (43)
i=1
3500

(1/3500) > disi  fork = 0,1,...7  (44)

i=1

Ak

I

Y

Since the autocorrelation matrix is a Toeplitz matrix, we represent
A with a single variable k in (43). The values for A for k = 0,
1,...7 and Ygfork = 0,1,...7 are shown in Table 16.3.1. As
shown in Table 16.3.2, the final solution for the filter coefficients,
W, fork = 0, 1,...7, almost coincide with the values for the
coefficients of the echo path. Note that the echo path has been mod-
eled as an 8th order FIR filter with the coefficients defined as shown in
(41). The method of steepest descent, in which the acceleration factor
gn of (34) is zero, results in similar values for the final solution for
W as shown in Table 16.3.3. The procedures in both methods were
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terminated in 3 iterations with the normalized error being less than
10-5. This means that the method of steepest descent can work as
efficiently as the conjugate gradient method when we compute the au-
tocorrelation matrix and crosscorrelation vector with enough number
of input data. However, it is not realistic to assume the availability of
that many input data (3500 blocks in our simulation). Even if the data
are available, the statistics of the signals and system environments may
change while we store the data and compute the averages of the data
for the autocorrelation and crosscorrelation functions. If the statistics
change then the final solution of the matrix equation is not optimal any
more. Therefore, this application is valid only when (1) enough number
of input data for computing the autocorrelation and crosscorrelation
with reasonable accuracy are available, (2) the time for computing the
averages is allowed, and (3) the statistics of the system is stationary
(in wide sense). It is apparently not realistic to assume that above
three conditions can be satisfied together. In the next application, we
observe the difference of efficiency in both methods, i.e., the conjugate
gradient and steepest descent methods, when the autocorrelation and
crosscorrelation functions are not computed.

< case #2 > When the instantaneous values are used.

In this application, we take 2N —1 samples for forming the matrix
A where N denotes the order of the FIR filter to be designed. Thus,
instead of taking the averages of many samples, we use the instanta-
neous values of the input training signals for the elements values of the
matrix A. Recall that we used 3500 blocks of samples for computing
the averages in the previous application. Also note that 2V — 1 is the
minimum number of samples to form an N X N matrix. The simula-
tion results are shown in Table 16.3.4. The solutions for the weights W
have been computed by the conjugate gradient method and the method
of steepest descent in Table 16.3.4. and 16.3.5, respectively. What is
interesting is that the acceleration factor g, affects the convergence
of the procedure very conspicuously in this case. In other words, when
the instantaneous values of the input training signals rather than the
time averages are used for the elements of the matrix A and vec-
tor Y, the method of steepest descent converges much more slowly
than the conjugate gradient method. Since, as discussed previously,
the autocorrelation and crosscorrelation are generally not available in
practice, the instantaneous values must be used to form the matrix A
and vector Y. Therefore, it is strongly recommended that the conju-
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Figure 16.5 Input signal used in example 3.
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k=0] k=1] k=2 k=3

0.1544750.002768 | 0.001649 | —0.003169
k=4 k=5 k=6] k=1

—0.000562 | —0.001429 | —0.000527 | 0.002409

Values for Autocorrelation Matrix (Toeplitz).

k=0] k=1 k=2] k=3
0.014022 [ 0.061347] —0.077551 | 0.046811
k=4] k=5 k=6] k=7

—0.015469 | 0.109181 | —0.030136 | 0.016941
Values for Crosscorrelation Matrix Vector.
Table 16.3.1 Autocorrelation and crosscorrelation for Example 8.

W tual 0.1 0.4 -0.5 0.3
Weomptd |0.098971]0.400100 | —0.500012 | 0.3000332
Wactual -0.1 0.7 -0.2 0.1
Weompta | —0.099972 [0.700002 | —0.199974 [0.100017

Table 16.3.2 Simulation results by the CG method with averaged data

W actual 0.1 0.4 -0.5 0.3
W compta | 0.098958|0.400094 | —0.500012 | 0.3000323
Wactual -0.1 0.7 -0.2 0.1

W eompta | —0.099965 [ 0.700007 [ —0.199972 | 0.100028

Table 16.3.2 Simulation results by the CG method with averaged data

gate gradient method be used rather than the steepest descent method
for efficiently solving the matrix equation which arises in a telephone
communication problem due to the reflected echo. The normalized er-
ror, || AW —Y]||/||Y]||, is shown in Fig. 16.6 for both methods. Note
that the error reduces very rapidly in the conjugate gradient method.
In the simulation, the normalized error becomes less than 102 in 8
iterations which is the number of unknowns in the FIR filter.

From the simulations for case #1 and #2, we conclude that the
conjugate gradient method works very efficiently in solving a matrix
equation no matter whether the matrix has been formed with average
values or instantaneous values. On the contrary, the steepest descent
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Iterations Norm. Error Final Sol. for Coeff. Values
1 7.59824e-2 0.100000
2 2.50764e-3 0.400000
3 5.03112e-4 -0.499999
4 6.37421e-4 0.300000
5 1.47509e-4 -0.100001
6 1.09022e-4 0.700001
7 2.15068e-4 -0.200001
8 2.95511e-10 0.100000

Table 16.3.4 Simulation results by the CG Method with instantaneous
data.

method, in which the acceleration factor ¢, is zero, works much less
efficiently than the conjugate gradient method when the average val-
ues are not available, i.e., when the instantaneous values are used as
elements of the matrix A and vector Y.

16.4.2 A Generalized Conjugate Gradient Method

In Section 16.4.2, for the procedure to be valid the real matrix
should be symmetric and positive semidefinite, which forced us to
square the matrix as shown in Ezamples 2 and 3. However, it is well
known that if a matrix is squared, then the condition number of the
matrix is also squared, which consequently worsens the convergence
of the adaptive procedure. In this section, the adaptive procedure of
the conjugate gradient method will be modified in such a way that the
procedure can be used when the matrix is not real, positive semidef-
inite, or symmetric (Hermitian for the case of complex matrix). The
conjugate gradient method will be further modified such that it can be
used even when the complex matrix is not a square matrix.

For solving a complex matrix equation AW = Y in which the
matrix A consists of complex elements, we introduce L? norm of the
residue vector as a functional f(W) as follows:

f(W) = (Rn;Ra) = ||Ra]? (45)

where the residue vector R,, is defined as R, = AW, - Y and
(;) denotes the Euclidean inner product'®l. The conjugate gradient
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Figure 16.6 Normalized error vs. iterations.
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Iterations Norm. Error Final Sol. for Coeff. Values

1 7.59824e-2 0.098832

2 7.59825e-3 0.399595

5 4.87984e-4 -0.498824

37 9.93395e-5 0.297811

143 9.66463e-6 -0.098094

247 9.81738e-7 0.696928

351 9.97682e-8 -0.199003

457 9.71090e-9 0.097400

Table 16.3.56 Simulation results by the SD Method with instantaneous
data.

method minimizes f(W) by generating the following sequence of so-
lutions:

Woir = Wp +t,P, (46)
tn = [|[ATRL|/ ||AP,? (47)
Rn.y1 = R+, AP, (48)
Pnyn = —A¥FR.i1 +¢.P, (49)
¢ = [|ATRnp|?/ |AFR,|? (50)

where the superscript H denotes the Hermitian operator. Note that
the matrix A does not have to be positive semidefinite for the func-
tional of (45) to be minimized. Recall that, for the functional defined
in (28) to be minimized during the adaptive procedure, the real matrix
A had to be positive semidefinite.

Ezample 4.

An array is to be designed for a multipath telecommunication by
utilizing the generalized conjugate gradient method. We consider a
(2N — 1)-element adaptive array of the structure shown in Fig. 16.1.
Suppose that two multipath components are incident upon the array
with incident angles ¢, and ¢,,, respectively. Thermal noise com-
ponent is also included at each antenna element of the array. The
complex-valued signal induced at the kth element can be represented
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as follows:
T = ) +my + ng fork = 1,2,...2N -1 (51)

where s, my, and n; denote the signal component, interference com-
ponent, and thermal noise component, respectively, at kth element.
Note that the required number of antenna elements for forming an
N x N matrix is 2N — 1. The reason is that all the elements of the
matrix, the number of which is 2N — 1, must be obtained at one ob-
servation time so that each element can be represented as a function
of incident angles of the multipath components. Assuming the antenna
elements are isotropic and a half wavelength apart, we can express s;
and m; as follows:

sk = 8o exp [—jx(k — 1)sin(g,)] (52)

mi = mg exp [—jx(k — 1) sin(¢m)] (53)

for k = 1,2,... N where sy and mo denote the signal component
to be received and the interference component due to a multipath, re-

spectively, induced at the reference antenna element. Then, the matrix
equation can be established as AW = Y where

1
Acs| cxel-imsin(4)]

------

exp[—jx(N — 1)sin(¢,)]

exp[—j~ sin(g,)]
exp[—j2x sin(¢, )]

oooooo

exp[—jnN sin(¢,)]

exp[—jx(N — 1)sin(¢,)]
exp[—jx N sin(¢,)]

exp[-jx(2N — 2)sin(¢,)]

1
exp[—j‘k Sin(¢c )]

------

exp[—jx(N — 1)sin(¢,)]

+mg
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exp[—j= sin(¢,)]
exp[—j27 sin(¢,)]

oooooo

exp[—jn N sin(¢,)]

exp[—jn(N — 1)sin(g,)]
exp[—j7 N sin(¢,)]
exp[—j7r(2.1'\; — .2) sin(¢,)]
+n (54)

and

Y' = so[l exp[-jrsin(4,)] ... exp[—jn(N - 1)sin(¢,)] (55)

The noise matrix n will be described later in this example (57). Note
that when there exist more than one multipath interference compo-
nents we simply repeat the second term of the right-hand-side of (54)
with different incident angles and references (my).

The matrix A shown in (54) consists of two multipath compo-
nents, s and m, and the thermal noise n. In general, when there
exist L multipath interferences, the element at the ith column of the
jth row of the matrix A can be represented as

L

1
Aij = st ) mi 40
=1

(56)

where the superscript ! is used as an index for the corresponding
interference component and a random quantity n denotes the thermal
noise component at each array element. In the simulation, the random
component n is generated as follows:

n = (3)Y*(S/SNR)'?g exp(-j2rg) (57)

where § is the average power of the signal to be received, a is a
uniformly distributed random quantity in the interval [-1, 1], and ¢ is
another (independent) random quantity uniformly distributed between
—7 and .

The adaptive procedure of the generalized conjugate gradient meth-
od shown in (46)-(50) is applied to this problem. The simulation results
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are shown in Table 16.4 for the different values of signal-to-multipath
interference ratio (SMR) and signal-to-noise ratio (SNR). For the sim-
ulations, we considered four interference components due to the mul-
tipaths of which the incident angles are, —48°, —24°, 30°, and 60°,
respectively, while the desired signal is assumed to be incident along
the direction of 0°. The values for (SMR,SNR) have been set to (0dB,
20dB), (20dB, 20dB), (0dB, 40dB), and (—20dB,20dB) in Table 16.4,
(a), (b), (c), and (d), respectively. The final solutions for the weights
are shown in Table 16.4 together with the magnitude of the error at
each iteration. The array pattern shown in Fig. 16.7 has been computed
utilizing the following equation.

Array pattern for Y .. .
incident angle ¢= Z W; exp(—j=(i — 1)sin(¢)) (58)

=1

Iteration | Error [Re(W), Im(W)]
1 0.2 [0.15118195633698,—5.3331990647804 e-2]
2 2.21e-2 [0.21700717450047, —3.1222094826687 e-2]
3 2.91e-3 [0.24592750674078,—17.4339596236216 e-5]
4 1.12¢-4 [0.21805807807816, 3.1042507446225¢-2)
5 1.86e-6 [0.15466003272798, 5.4484958246424 -2
6 2.62e-37

(a) SMR = 0dB, SNR = 20dB

Iteration | Error [Re(W), Im(W)]
1 0.2 [0.13642150675143,—4.9501015851098 e-2]
2 1.76e-4 [0.22244807808097, —4.6627397971111 e-2]
3 1.81e-5 [0.23422790312294, 1.7345718303866 e-3]
4 3.93e-6 [0.22840605633478, 4.0157297779941e-2]
5 6.29¢-8 [0.16553643540934, 5.4653081862584 -2
6 5.98e-21

(b) SMR = 20dB, SNR = 20dB
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Iteration| Error

[Re(W), Im(W)]

1 0.2 [0.15496157953842,—5.4723919105755 e-2]
2 2.35e-2 [0.21907776944136,—3.0211840535102¢-2]
3 3.21e-3 [0.25011709167830,—1.2106797072577 e-5]
4 8.42e-5 [0.21919013363437, 3.0196826031389e-2]
5 1.53e-6 [0.15532117843457, 5.4846483158216¢-2]
6 1.56e-37

(c) SMR = 0dB, SN

R = 40dB

Iteration| Error

[Re(W), Im(W)]

1 0.2 [0.15317135902711,—5.3945528178160 e-2]
2 0.18 [0.21650728478971,—2.9670112625984 ¢-2]
3 0.17 [0.24715349593322, 1.9782253228295e-4]
4 0.11 [0.21656764977023, 3.0022873479564 €-2]
5 4.42e-3 [0.15343479480437, 5.4326889765988e-2]
6 8.34e-34

(d) SMR = —20dB, SNR = 20dB

In Fig. 16.7, array patterns are illustrated as a function of incident
angle in the interval [—90°, 90°]. Note that there exist pattern nulls
along the incident angles of the multipath interferences. As can be pre-
dicted, the pattern nulls are generated more deeply as SNR becomes
larger. This is shown in Fig. 16.7(c). What is interesting is that the
pattern nulls become deeper as the value for SMR become smaller as
shown in Fig. 16.7(a), (b), and (d). This means that the array can gen-
erates pattern nulls which become deeper as the interferences become
larger. Note that in Table 16.4 and Fig. 16.7(d) the pattern nulls are
deep enough to resolve the interferences even when the magnitude of
the interferences are 20dB larger than the signal to be detected.
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Figure 16.7 Continued.
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Figure 16.7 Array pattern by the optimal weights. Incident angles; M1 =
—48°, M2 = —24°, M3 = 30°, and M4 = 60°.
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16.5 Summary

The conjugate gradient method is presented as an efficient method
for solving an ill-conditioned matrix equation which arises in commu-
nication problems and electromagnetic wave interactions. Comparisons
of the conjugate gradient method to the other conventional adaptive
algorithms are also presented showing the strong and weak points of
each method. The conjugate gradient method is generalized and sim-
plified to treat an arbitrary complex matrix equation.

The following two features of the conjugate gradient method be-
come evident: (1) The convergence of the adaptive procedure is guar-
anteed by setting a proper functional which monotonically decreases
at each iteration. This means that, no matter what kind of matrix
equation we are facing, the conjugate gradient method can solve it in
a finite number of steps for any initial guesses. (2) The conjugate gra-
dient method converges faster than any other iterative method. Since
we cannot use any direct matrix solution techniques when the matrix
is very ill-conditioned, one can say that the conjugate gradient method
solves the matrix equation arising in practical situations in the most
efficient way.

What we have to pay for the above two features is an added com-
plexity of the procedure which will result in additional hardware of
the system. However, the speed-up gained by the efficiency of the con-
jugate gradient method compensates for the added complexity in the
hardware.
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