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10.1 Introduction

The bymoment method, which is a method to handle the trun-
cation of the mesh for boundary value problems in unbounded regions
using the finite-element method, has previously been applied to arbi-
trary cylinders in free space [1,2]. In this paper we will show that the
method can be extended to a case where the cylinder is not in free
space. The specific geometry that we choose is a cylinder in the pres-
ence of two semi-infinite half-spaces. This geometry is chosen because
of its application to such areas as geophysics, radar design, microwave
or high speed integrated circuits, and target identification. Because of
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346 10. Scattering from an Arbitrary Cylinder

the versatility of the finite-element method in handling geometries with
arbitrary shapes and inhomogeneities, it is a powerful tool for study-
ing the problem of electromagnetic scattering from arbitrary cylinders.
Unfortunately, there is very little available in the literature on the ap-
plication of the finite-element method to the interface problem because
of the difficulty in accounting for the interface when the mesh is trun-
cated. To date, the only published work involving the finite-element
method that also accounts for the interface is the one done by Chang
and Mei [3]. This work is specialized to a body of revolution and is not
applicable to the infinitely long cylinder.

Most of the past work on the interface problem involved other
techniques. Some of the earliest investigations were done by Hohmann
[4] and Parry and Ward [5]. They applied integral equation methods to
obtain numerical solutions to homogeneous cylinders. Howard [6] and
Mahmoud, Ali, and Wait 7] used a multipole expansion of the scat-
tered field to obtain a solution. Howard and Kretzschmar [8] developed
a technique which they called the volume current method. Recently,
a method of moments approach was adopted by Butler, Xu and Glis-
son [9]. This work was further extended by Xu and Butler [10,11].

In the following discussion, we begin with a description of the
geometry. Next, we formulate the general theory for the bymoment
method. An expression for the testing functions is introduced. These
testing functions satisfy the correct boundary conditions along the in-
terface and at infinity. A discussion is given on the choice of the loca-
tions of the testing functions. Finally, we compare our finite-element
solution, using the bymoment method for the truncation of the mesh,
to method of moments results in the literature. The purpose of these
results are to validate the bymoment method rather than to show the
capabilities of the method. In fact, the method of moments is more
efficient for perfectly conducting cylinders, whereas the finite-element
method is more efficient for penetrable bodies. Because we could not
find many results involving penetrable bodies near a media interface,
most of the comparisons are for perfectly conducting cylinders. Several
results for penetrable cylinders are given to show the versatility of the
finite-element method.
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Figure 10.1 Geometry of an arbitrary cylinder in the presence of an
interface.

10.2 Theory

Let us consider the case of an infinitely long cylinder in the pres-
ence of a media interface which divides the region into two half-spaces
(Fig. 10.1). Although this figure shows the cylinder to be above the in-
terface, we will also consider the case where the cylinder is wholly con-
tained or partially buried in the lower half-space. The material prop-
erties of the upper half-space, exclusive of the cylinder, are that of
free space. The material properties of the lower half-space are homo-
geneous and in general, may be either lossy or a pure dielectric. The
permeability of the lower half-space is assumed to be that of free space
(p2=m = po). The coordinate system that we use is cartesian. Note
that the coordinate system is oriented such that the z-axis is paral-
lel to the axis of the cylinder. Since we are applying the finite-element
method only over the region occupied by the cylinder, we define a mesh
which totally encloses the cylinder. The mesh is constructed such that
the elements on the boundary of the mesh are exterior to the cylinder.
The boundary of the mesh is given by 85. The line 95’ follows a
closed path which passes through the interior of all the elements on
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the boundary of the mesh. Therefore 8S’ is exterior to the cylinder.
The significance of this line will be discussed later in this paper. We
denote the region inside of 85 by §., The upper half-space, exclusive
of S., is defined to be §;, and the remaining lower half-space is called
Sa.

The material properties of the cylinder do not vary with z but
are allowed to vary in a piece-wise constant fashion over the cylinder’s
cross-section. Let us choose a source which produces an incident field
which is invariant in z. The resulting geometry is a two dimensional
one. Therefore, the fields may be decoupled into a TM, (E;, Hg, Hy)
polarization and a TE, (H,, E,, E,) polarization. The subscript indi-
cates the fact that the transverse direction is with respect to 2. This
leads to the following Helmholtz equation:

(v’mf)(flz ):0 (1)

where we choose E, for the TM, case and H, for the TE, case. The
operator V? is the Laplacian in z and y. The wave number is given
by k; = ko\/Eri€ri with the subscript i denoting the region where the
Helmholtz equation is evaluated, i.e., k. for S, k; for S1, and k;
for 2. Note that (1) holds inside each element of the finite element
grid used in the discretization of S,, which agrees with our original as-
sumption of piece-wise element-by-element material property variation.
In general, we assume that the relative dielectric constant incorporates
the conduction loss and is given by €,; = €.; —10;/weg. The variable kq
is the wave number in free space, and the e'“! time variation has been
suppressed. Note that since §; is free space, ¢,; = 1 and Hr1 = 1.

Since the formulation for the TM, and TE, polarizations are
virtually identical, only the TE, case will be considered. On occasions
where the two cases differ, we will show the steps for both.

a. Boundary Conditions on 89S

To determine the set of boundary conditions on 95, we must first
develop the notation for representing a function on the mesh boundary.
Let us introduce a variable ¢t which varies from 0 to d where d is the
length of 5. We may then represent H, along &S by a function of
the single variable ¢ with each value of ¢ corresponding to a point on
0S. Let us call this function h,(t). Note that since the points t = 0
and ¢t = d correspond to the same point on 85, h,(0) = h,(d). We
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may write h,(t) in terms of a complete set of linearly independent
functions ¥,(t) as follows:

Ro(t) = Y anlalt),  te(0,d] 2

n=1

where a,, are unknown coefficients. Since we must numerically solve
our problem, the summation in (2) must be truncated to a finite num-
ber of terms which we define to be N. The value of N depends upon
the convergence requirements and the choice of basis functions ¥,.

b. Finite-Element Solution

Let us consider the finite element problem in S, where the solu-
tion on 85 is known. Since the solution on 85 is known, H, in S,
can be found by using a standard finite-element formulation of an inte-
rior Dirichlet boundary value problem. We use the method of weighted
residuals [12] to formulate the finite-element expression. This guaran-
tees that the Helmholtz equation in (1) is true in the weak sense. We
can write the expression as follows:

/ / (VZ+k2)H.4;]dS =0 (3)

where the weighting functions ; (j=1,2,...) constitute a set of first
order differentiable, real scalar functions which we choose. By using
Green’s first identity, expression (3) becomes

[[ 894 e as - [(wovEL)ae=0 @)

where 7 is the outward unit normal. To obtain the solution for H,, we
evaluate (4) over each element in the mesh. By applying the boundary
conditions on the fields at the interfaces between adjacent elements, we
can nullify the contributions from the line integral along these inter-
element boundaries. Noting that since both H, and #-VH,/¢,. are
continuous between elements, we obtain the following equation from

(4):
// Zl— (VH, - Vy; — kIH:9;] dS = 0 (5)
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Similarly, for the TM, case, we obtain

// Ll_ [VE, - Vy; - k2E,y;] dS = 0 (6)

where we have applied the continuity of both E, and # - VE,/pre.
Note that the line integral along 85 does not vanish. However, since
we are solving the Dirichlet problem, the weighting functions ; are
chosen to be zero on 8 ; hence, the line integral along 95 is zero and
does not enter into the formulation.

Let us now consider the situation where the solution on 85 is not
known, as is actually the case. From the uniqueness theorem we know
that, with the presence of any physical loss mechanism, the fields inside
a given volume are determined uniquely by either the tangential electric
or tangential magnetic fields on the surface enclosing the volume (13].
Therefore, the field in $. is uniquely determined by h,. From (2) we
see that we can represent h, by N basis functions, each of which is
multiplied by an unknown coefficient a,,. If we solve N finite-element
problems with ¥,,(t) (n=1,2,...,N) as the boundary condition for
the nth finite-element problem, we obtain N numerical finite-element
solutions which form a basis for the magnetic field in Sc. We shall call
each of the finite-element solutions a finite-element basis function. We
denote the finite-element basis functions by An(z,y) for (z,y) € S..
Because of linearity and the uniqueness theorem, we can write the H,
as a superposition of the finite-element basis functions multiplied by
the appropriate coefficient a,. The expression is given by

N
Hz(zay) = Z anAn(z, y)s (z, y) € S. (7)

n=1

The coefficients a, are determined by coupling the interior solution
to the properties of the exterior region.

¢. Determination of Coefficients

To evaluate the coefficients, we must first define additional sur-
faces in our geometry. Let the surface enclosed by 85’ be denoted by
S¢- We also define S to be the surface exterior to 95"

The field in S, can be divided into the incident field and the
scattered field. This is written as

H,((B, y) = H;'nc(z, y) + H:c(z,y), (z’ y) € SL (8)
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where the scattered field satisfies the Helmholtz equation,
(V2 + k?) H:c(z, y) =0, (= y) € S; (9)

and the Sommerfeld radiation condition at infinity. The incident field
Hine is defined to be the field everywhere in the absence of the cylinder.
This definition of the incident field implies that the boundary condi-
tions for the continuity of the tangential electric and magnetic field at
the interface are satisfied by H;°.

Let ; (j = 1,2,...,N) be a set of N linearly independent
testing functions which are chosen to satisfy the Helmholtz equation
over the surface 5., i.e.,

(Vz + klz) Q.7'(:”’ y) =0, (z,y) € S; (10)

and the radiation condition at infinity. Applying Green’s theorem for
H?* and &;/e,; over the region denoted by the intersection of S! and
the upper half-space and the region denoted by the intersection of S

and the lower half-space, we obtain the following expression by using
(9) and (10):

[ [Q.a_ffz__ﬂ;c@]m
8

s &i| ° On on
sc(+ (+)
/ 1 <1,(_+)_‘9_HLQ e 9% g
85, €r1 | on z on
ac( - (_)
1 (=) 0H, ) ac(-) 8§J‘ _
/z;s.-,.. = [@i - dt=0 (11)

where 85;n: denotes the plane interface and the superscripts (+) and
(=) denote the values of the field quantities just above and just below
the interface, respectively. Note that the contributions of the line inte-
gral at infinity vanishes in (11) since both H;° and &; satisfy Sommer-
feld’s radiation condition. Since H2° satisfies the interface boundary
conditions which are given by

H ) = gre-) (12a)

se(4) se(-)
10H:7T _ 1 9H. (125)

&1 On €2 On
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we observe that the contribution from the line integral along the in-
terface will vanish if we choose &; such that they satisfy (12a) and
(12b) also. This leaves only the line integral term,

OH® . 8%,
/6“"[@] e ]dl—o (13)

By substituting (8) into (13) and then using (7), we may write the
following equation:

0%;
Zan/S‘erz[ _A on }dl~

1 [ OHin . 5%,
/as';[éj*an a2 ]dl (14)

The expressions for both Hi" and &; are known. We can there-
fore obtain expressions for JH;"/8n and 8&;/dn. Also, the numeri-
cal values for both A, and 8A,/8n along 85’ can be obtained from
the finite-element solution. We chose the line integral in (14) to be
along 0§’ rather than S since it was found that more accurate re-
sults were obtained when the integral was evaluated along the interior
of the elements.

The only unknowns left in (14) are the coefficients a,. By using
the NV testing functions &;, we can form an N x N matrix equation
to solve for the coefficients. We write the matrix equation as follows:

S11 S12 ... Sin a Ty
S S . S a T
?1 ;zz 5 2N 2 | _ :2 (15)
SnN1 Sn2 ... SnN ay Tn
where §;, and T; are given by
oA,
Sim = / [ = [ e A,,l dt (16)

1 (. oHI . 93,
T; = 851;7[@, 5 — Hj an]dl (17)
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10.3 Calculation of Testing Functions

Up to now we have not specified the testing functions ®;. For a
cylinder in free space, Cangellaris and Lee [1] gave two possible sets
of solutions for ®;. One set of solutions was the cylindrical harmonic
functions. The other was a set of free space Green’s functions with
the sources located in S.. For the half-space problem, we will choose
the latter method to obtain our solution. The Green’s function for the
half-space problem is well known for an electric line source (TM, case)
and is given by Felsen and Marcuvitz [14]. Similarly, the solution for
a magnetic line source (TE, case) can be easily obtained. In order to
differentiate between the two solutions, let g7 be the Green’s func-
tion due to an electric line source, and let g™ be the Green’s function
due to a magnetic line source. The geometry for the Green’s function
problem is the same as that in Fig. 10.1 except with the cylinder ab-
sent. Therefore, §; encompasses the entire upper half-space, and 52
encompasses the entire lower half-space.

a. TM, Case

Let us consider the problem of an electric line source of unity
strength located in §;. We must therefore solve the following differ-
ential equation:

- (Vz + kf) g,-"l(a:,yh:',y') = 5(2 _zl)‘s(y—yl>s 1=1,2 (18)

where the primed coordinates indicate the location of the source and
the unprimed coordinates indicate the observer location. The subscript
il of the Green’s function indicates that the observation point is in S;
and the source location is in §;. Since we are considering an elec-
tric line source, g;’l must satisfy the boundary conditions of E, and
OE,/0n along the interface. The resulting solution for the observation
point in S; is given by

1
gi1 (z,9l2',9') = :(th(Jz) (kalF —7) +

L[ _wm—t ) '
- /; T P—— e cos k. (:c z ) dk, (19)
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where |7 — 7| = \/(a: -2 4+ (y-y)? and u; = v/ k2 —kF; Re ()
> 0. The form of (19) is not the same as that given by Felsen and
Marcuvitz because the above form is more suitable for numerical eval-
uation [15]. Also, we have corrected for differences in coordinate system
and time variation definitions. In studying the expression in (19), we
note that the first term represents the Green’s function in the absence
of the interface, and the second term represents the reflection from the
interface. The solution in 5, is given by

J(z |2’ ')—l/wwcosk (z - z')dk (20)
g\ & ¥y[T,Yy =T ) uy + ug = 2
To obtain the Green’s functions for the line source in §;, we simply
have to switch u; and u; and replace (y, v/, k1) by (-y, —¥', k2).
Then (19) becomes the solution for the observation point in §,, and
(20) becomes the solution for the observation point in §j.

To determine the values of the Green’s functions we must nu-
merically evaluate the integrals in (19) and (20). This is done by
repeated application of Gauss quadrature integration on finite sub-
intervals along the real axis until a specific convergence is achieved.
Because of the highly oscillatory behavior and slow decay of the inte-
grand as a function of k., the evaluation of the integral is both tedious
and computationally expensive. For most problems, the majority of the
computational time is spent evaluating the testing functions rather
than the finite-element solutions. Thus, it is very important to mini-
mize the testing function calculations. Several techniques are utilized
to improve the convergence of the integral [16], including asymptotic
extraction and variable transformations.

b. TE, Case

For a magnetic line source of unit strength in §;, we have the
following differential equation:

—(V2+k,-2)gﬁ" (z,y|z',y’) = 6(z—z’)6(y—y'), i=1,2 (21)

The definitions are the same as that in the TM, case except that
g¥ must satisfy the boundary conditions for H, and 8H,/0n at
the interface. The resulting solution for the observation point in §; is
given by
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1 _
o (z,ylz'y’) = ;l—iﬂéz) (kllr ~ F’I) +

1 [® euw—u —u1(y+y') '
- ——e¢ coskz(z — z')dk 22
T ,/o 2e,u1(u1 + ‘U2) ( ) ® ( )

where we define ¢, = €,2/€,;. Since €1 = 1, we see that ¢ = €2.
The solution for the observation point in S, is given by

1 [®ee v Uy
gg{ (2, ylz', y') = ; ‘/0 —rer_ul-}-—uz- Cos k,(z‘ - z,) dkz (23)

For a line source in §3, we make the same modifications as in the TM,
case. In addition, we replace ¢, by 1/¢.. To numerically evaluate the
TE, Green’s functions, we use the same numerical techniques as those
used to evaluate the TM, Green’s functions.

We may now relate the Green’s functions to the testing functions
®,. Since the Green’s function must satisfy the Helmholtz equation in
S!, we locate the line source in S.. Let {z,y;}, j = 1,2,...,N be
points in S!. Then for the TE, case

$; =gM (z,ylzj,yj) , i,m=1,2 (24)

where the subscript im indicates whether the observation and source
locations are above or below the interface. This results in /N linearly
independent testing functions for any choice of (z;,y;) € S. as long as
the locations of the line sources are different for each j. Unfortunately,
the locations of the sources cannot be chosen arbitrarily. This is anal-
ogous to the situation in the method of moments. Consider the case
where we apply collocation to a method of moments problem. Then
the basis functions are pulse functions given by

1 n-1<e<z,
pe)={ g o (25)

otherwise

where z,_; and z, denote the boundary of the nth (n=1,...,N)
pulse. The weighting functions are delta functions located at z =
¥i, + = 1,...,N. The location of the delta functions cannot be ar-
bitrary. In fact, for the case where y; & (¢p—1,2,) for all values of i,
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the resulting matrix is ill-conditioned. Thus, we must place y; such
that y; € (zp-1,2,) for ¢ = n. From this example, we see that al-
though ideally the location of the line sources can be chosen anywhere
in §!, realistically some care must be taken in choosing their location.
The choice for the placement of the testing functions is not quite as
obvious as in the method of moments example. In the numerical results
section, a procedure is described for choosing the location of the line
sources.

By substituting our Green’s function expressions into (14), we
obtain

Son
88! €ri

gHine . 9gM
M inc “Jim
/;5, €ri [g'm on - A on ]dl (26)

The normal derivative of the Green’s function dgM /8n is determined
by evaluating the Green’s function at the nodes of the elements which
contain 85’ and then numerically calculating the derivative along 85’.
Because we choose the Green’s function to be the testing function, the
right-hand side of (26) can be simplified since

inc . M
_Ht‘nc - — /;s' - [gﬁ[n 3-2-[ H;nc 6917’H]d£ (27)

[MBA AL ag'"‘]dl_

€ on

c. Far-Field Ezpressions (TM, Case)

Once we determine the solution of E, in S., we can obtain an
expression for the E2¢ in S; and §, from Green’s theorem. This is
given by

E¥(z,y) =

1 0 J 10
/ [g;:’m (-’c,ylz',y') ————aEzéz,’y ) _E, (z’, y’) ag""‘(agz,lz Y )] de'
as'
(28)

In general, the above form is rather complicated since the Green’s
function must be evaluated numerically. We can simplify (28) by con-
sidering a far-field approximation for the Green’s function. In order
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to do this, let us modify the Green’s function expression in (19) and
rewrite it into the form,

91 (z,ylz’,y'> =

l.. = _1_ —uyly-v'| -—ul(y+y') —iky (z—2')
L[ L et e,

where R(k;) = (u1 — u2)/(u1 + uz). Also from (20), we obtain

1 [*1 : . '

J Ly —_ — — —-uyy +uzy —tk.(g—m ) k

921 (z,ylw ,y) in /_ ” [1 + R(kz)]e e dk
(30)

We can similarly modify the Green’s function due to a line source in
S, . We now apply the method of steepest descent [14] to our Green’s
functions. This results in the following far-field expressions:

1 . o .y .y e
J in/4 ik sm¢[ ikyy' cos ¢ —thyy cos¢]
~af—e€ e e Rye
I v Py + iy Tip

—ik1p

. - ik
J /51; (/4 [1 n R2] g—ikae’ sind g —ik1y'V/1-er sin? § thap

g
21 Tap
(315)
1 S o —= e e1p
J L iw/a ikiz' sing _—ikay'\/1—sin? ¢/esa
gip ~ e [1 + R ]e e
1274 gx 1 7
(31¢)

—ikap

ggz ~ ,8_];‘._ ei?r/«t e—ikg:'oin$ [e—ikzy'coaaa + R2 eik;y'cos&)] € =
(31d)

where we have used the definitions z = psing,y = pcos¢ and é =
¢ — . Thus, the angle ¢ = 0 represents the positive y-axis. The
reflection terms are defined by

Ry = cosp — \/ €z — sinZ¢
! cosp + V€2 —sin? @
cosd — \/1/€r2 — sin2¢

_R2 = " = (32b)
cosg + 1/1/ez — sinZ¢

(32a)
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(ET5H)
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(e,1y) ¥
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(51

Figure 10.2 Geometry of a circular cylinder in the presence of an inter-
face.

In performing the steepest descent integral, we ignored the con-
tributions due to the branch cut. If we choose p sufficiently large,
the branch cut contribution is only significant at the grazing angles
which are at ¢ = 7/2 or ¢ = —x/2. Therefore, by substituting (31a)
through (31d) into (28), we can obtain an accurate far-field expression
for E;° as long as ¢ is not too close to grazing.

10.4 Numerical Results

Although our method allows us to solve the problem with a cylin-
der of any arbitrary cross-section and material properties, most of the
results are only for simple geometries so that our results can be com-
pared to those available in the literature. The numerical computations
were performed on a VAX 2000 workstation. The mesh generator was
written by T.D. Blacker [17]. First order quadrilateral isoparametric
elements are used for all the finite-element computations in this paper.
The bymoment method allows us to choose a mesh which only extends
one element outside the cylinder. We find that this is true even for
cylinders with sharp corners.
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The numerical results are given in terms of a normalized sur-
face current j™™™ for the perfectly conducting circular cylinder and a
normalized far-field expression for the dielectric circular cylinder. The
surface currents are normalized to the incident magnetic field at a spe-
cific point on the cylinder. For the TE, case, the normalized surface
current is given by

snorm HZ(AG, 0)

Je (0) - Hi’"(Aa, oa) (33)
where the p,0 cylindrical coordinate system is centered on the cylinder
with the angle 8 defined in the usual manner as shown in Fig. 10.2. The
radius of the cylinder is specified to be p/X = a where X is the free
space wavelength. The cylinder is centered at the point z/A =0, y/A =
h. For cylinders which are totally or partially in the upper half-space,
we define 6, = 90°. For cylinder which are totally in the lower half-
space, we define , = —90°. For the TM, case, where the incident
magnetic field is given by H, inc}, we obtain the following expression
for the normalized surface current:

, Hy(2a,0)
normipy — — 7 34
3z (6) Hi"*(Aa,0,) (34)

Hy and H,"'" can be obtained from the derivatives of E, and E;"‘",
respectively. Note that since the derivatives of E; must be obtained
by numerical evaluation inside the finite element mesh, we calculate
H, at the centroid of the elements bordering the cylinder rather than
on the element boundary at the surface of the cylinder. Therefore, the
results for the TM, case have some inaccuracies. To minimize these
inaccuracies, we keep the elements which border the cylinder small. For
the TE, case, this inaccuracy does not exist since H, is calculated on
the nodes along the cylinder. For the dielectric cylinder (TM.), the
normalized far-field expression is

el — e (B2 0)
B(0)] = lim 2 (35)

where |Emaz(p,0)| is defined to be the maximum value of |E;*(p,6)|
as p — oo for all values of 6. We substitute the far-field expression
from (31a) through (31d) into (28) to determine E;°. We observe
that 0 < |Eff| < 1.
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We define the incident field to be the field due to a uniform plane
wave in the absence of the cylinder. Let us assume that the plane wave
is travelling from the upper half-space into the lower half-space. The
solution to this problem is well known [18]. For the TM, case, we write

Einc _ [eikxycosd)‘ + rle—ik,ycosdr'] eiklzsinqb", y>0 (36)
z [1 + I‘.L] eik;(zsin¢‘+ycos¢'), y<0
where T, = (cos¢® — cos¢!)/(cosd’ + cos¢t) and cos¢t =

Ve, —sin? ¢*. The angle ¢' is defined from the y-axis (Fig. 10.2).
For the TE, case,

. ik1y cos ¢* —ikiycos¢d®| ik sing’
Hmc:{[e + e ]e y y>0 (37)

[1 + I\”] eik;(:sin¢‘+ycoa¢‘)’ y<0

where T = (¢, cos ¢ — cos ¢t)/(e, cos ¢* + cos ).

For all the results which follow, we use sinusoidal functions for the
basis functions ¥,,. The number of basis functions used varies from 12
to 24, depending on the electrical size of the cylinder. The source loca-
tions of the weighting functions are arranged inside the cylinder such
that their pattern conforms to the boundary of the cylinder. For the
case of a circular cylinder with radius a, we distribute the sources in
a circular pattern with the radius of this circular pattern being 0.75a.
Results for a perfectly conducting circular cylinder were obtained by
Butler, Xu, and Glisson (9] and Xu and Butler [10,11] for both the
TM. and TE, cases using the method of moments. We will compare
our results to theirs. In the numerical results which follow, the method
of moment solutions are shown by the solid and dashed lines while
the bymoment results are denoted by the triangular and asterisk sym-
bols for the perfectly conducting cylinder cases. For the first dielectric
cylinder case, the method of moment result is given by the solid line,
and the bymoment result is given by the dashed line.

We begin by considering a perfectly conducting cylinder with a =
0.175. The lower half-space is a pure dielectric with €, = 4. A plane
wave is assumed to be normally incident on the interface (¢' = 0).
Results were obtained from the method of moments [9,10] for h =
—0.175 and h = 0.175. Because the cylinder contacts the interface
only at one point, we could not obtain a suitable mesh for this geometry
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using quadrilateral elements. Therefore, we obtain a solution for h =
—0.185 and h = 0.185 and assume that this small perturbation does
not result in too drastic a change in the numerical results. This problem
can be overcome by using triangular elements, but unfortunately, our
mesh generator can only use quadrilaterals elements. For the TM,
case, a comparison between the two methods of the magnitude and
phase of j, as a function of 6 are shown in Figs. 10.3 and 10.4. We
observe that the agreement is very good for both the magnitude and
phase. For the TE, case, the magnitude and phase of jy are given
in Figs. 10.5 and 10.6. Again, we see that there is good agreement
between the method of moments and bymoment results. In addition,
the agreement between the results indicate that the slight shift in the
value of h did not adversely affect the results.

Let us now consider a geometry where we vary the material prop-
erties of the lower half-space rather than the cylinder position. For the
parameters h = 0.425, a = 0.375, and ¢' = 0°, we consider cases
where ¢, = 4 and ¢, = 16. Figures 10.7 and 10.8 show the mag-
nitude and phase of j, for the TM, case, and Figs. 10.9 and 10.10
give the magnitude and phase of jg for the TE, case. The agreement
between the two methods is excellent except for the phase plot of the
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TM, case with ¢, = 4. In the region near § = —90°, there is a
discrepancy between the two solutions. Note that in this region, the
magnitude of the j,/H{™ is very close to zero. Therefore, we believe
the phase error is due to numerical computation errors rather than
errors in the method.

To show the variation with angle of incidence, solutions are ob-
tained for ¢* = 0° and ¢* = 60°. For these solutions we only have
method of moment results for the TM, case [11]. Therefore, let us
only consider this polarization. The perfectly conducting circular cylin-
der under consideration has a radius given by a = 0.125. We specify
€2 = 4 and h = —0.065. Figures 10.11 and 10.12 give the results for
both the magnitude and phase of j,.

For the case of the homogeneous dielectric cylinder with TM ; po-
larization, we have method of moments results [19] for |E{/(8)| where
a=0.175, h = —0.175, ¢, = 4, and ¢* = 0°. The cylinder has a rela-
tive dielectric constant given by ¢,4 = 8. Again, because the cylinder
is only touching the interface at one point, we solve the problem using
the bymoment method with A = —0.185. A comparison of the two
methods is shown in Figure 10.13. The next case involves a larger di-
electric cylinder (a = 0.6, h = —0.65, ¢, = 4, ¢, = 8, and ¢ =0°).
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In order to obtain accurate results for this size cylinder, 8000 elements
are used to mesh the cylinder. The field pattern |E;f f (8)| is shown in
Fig. 10.14. To demonstrate the capabilities of the bymoment method
in handling arbitrary shapes and inhomogeneities, we consider the case
of two dielectric cylinders. Each cylinder has a radius of a = 0.3, and
their centers are separated by a distance of one free space wavelength.
The mesh used for such a case is shown in Fig. 10.15. The boundaries
of cylinders are located two elements inside the mesh on the left and
right side of the geometry. For the first case, the cylinders are located
in the upper half-space with A = 0.35, €4 =4, and ¢' = 0°. Curves
are shown in Fig. 10.16 for the field pattern when ¢, =1 and ¢, = 4.
The free space result (¢, = 1) agrees with the result shown in [2]. It is
interesting to note that the forward scatter is focussed by the presence
of the interface and the backscatter is suppressed. Let us next consider
the case where the two cylinders are buried in the lower half-space. We
choose h = —0.35, €,q =8, € = 4, and ¢* = 0°. The result is shown
in Fig. 10.17.
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10.5 Summary

In this chapter, we formulate and solve the problem of scattering
from a cylinder in the presence of an interface using the bymoment
method. The cylinder’s cross-section and material properties are as-
sumed to be arbitrary. The placement of the cylinder with respect to
the interface may also be arbitrary. The formulation is given in terms of
the TE, polarization although this formulation can easily be modified
for the TM, case.

We begin by considering the solution interior to the cylinder. The
interior solution can be generated by using the finite-element method
if the solution on the boundary of the finite-element mesh is known.
The solution is not known, but we can represent the solution on the
boundary of the mesh in terms of a sum of unknown coefficients, each
of which is multiplied by known functions ¥,, . These known functions
form a complete set of basis functions on the boundary of the mesh.
We can therefore solve a set of finite-element problems using the ¥,’s
as boundary conditions to obtain a set of finite-element solutions. By
summing up these solutions with the appropriate coefficients, we obtain
the correct solution inside the cylinder. Thus, the problem is reduced
to one of finding these coefficients. In order to do this, we apply Green’s
theorem to the region exterior to the cylinder using a set of linearly
independent testing functions which satisfy the Helmholtz equation,
the Sommerfeld radiation condition, and the boundary conditions at
the interface. For our case, we choose the Green’s function for our
geometry without the cylinder. The placement of the sources for the
Green’s function cannot be arbitrary. In this paper, we provide reasons
for this. Also, a guideline is given for the placement of the sources.

We validate our method by writing a computer program to com-
pare our results to that given in the literature. Because of the inter-
face, the numerical evaluation of the testing function is rather inten-
sive. Therefore, the majority of the computation time is spent on the
evaluation of the testing functions. Results are provided for both the
perfectly conducting circular cylinder and the dielectric circular cylin-
der. The agreement between the method of moment and bymoment
results validates our method.
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