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10.1 Introduction

It is well known that when a wave propagates through a medium
containing dispersed particles, the entrained energy (intensity) is redis-
tributed in various directions by scattering and absorbed by intrinsic
absorption mechanisms, if any. By appropriately controlling the host
and inclusion properties, as well as the geometry and distribution of
the inclusion phase, it is possible to increase or decrease the scattering
and absorption of energy in a composite medium. The selection of the
inclusion phase is not an easy task and is application dependent.

From scattering theory, it is known generally that the larger the
mismatch in physical properties between particles and their embed-
ding medium, the larger is the scattering. Besides, the use of highly
lossy materials can always attain the goal of high insertion loss and/or
low reflection due to the high impedance mismatch. Despite consid-
erable work reported in the past, prediction using correct theories of
wave attenuation in various particulate media as well as artifacts, made
to increase attenuation, is still challenging both the scientific and in-
dustrial communities. Significant applications include microwave com-
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328 10. Microwave Properties of Chiral Composites

munication, laser propagation in atmosphere, and aerospace advanced
materials.

In this chapter, we examine the effects of chirality (known as the
optical activity in the optical literature [Bohren, 1974]) on the propaga-
tion of electromagnetic waves through a nonchiral medium containing
randomly distributed particles made of a chiral material. The motive
for this study is that the chirality of the inclusion phase can enhance
scattering and absorption of electromagnetic waves. In what follows,
the term chiral particle is used to denote the innate chirality of the
inclusion material, not its shape which can be arbitrary. The intro-
duction of chirality into mainstream electromagnetic theory is due to
Bohren [1974] because there is no reason why chiral effects cannot ex-
ist at millimeter or microwave frequencies [Post, 1962; Jaggard, 1979].
Later investigation [Lakhtakia et al., 1985] has shown that a single,
lossy, dielectric, chiral particle may scatter and/or absorb more elec-
tromagnetic energy than its nonchiral counterpart and the shape of the
chiral particle could also play an important role in this energy dissipa-
tion game. Worthy notice is that wave absorbing composites made of
chiral materials can be lighter and more flexible when compared with
regular lossy dielectric and ferromagnetic ones.

When particles are dispersed in a host medium to form a compos-
ite, depending on the volume fraction of particles, single or multiple
scattering effects may be dominant. Multiple scattering effects cannot
be ignored when the concentration of particles is considerable. While
these effects are known and shown for various dense systems [Varadan
et al., 1983, 1985], they have never been investigated for chiral com-
posites.

In this theoretical investigation, the chiral particles are spherical
and have a uniform size distribution. Although these assumptions are
not very restrictive to the multiple scattering formalism, the simpler
model is able to show simply the effect due to the chirality, unshadowed
by shape or size factors. The embedding medium also contributes to
the attenuation, but here we focus attention on the inclusion phase.
Therefore, inclusions and the matrix both made of chiral materials will
not be considered here, though that they may enhance the attenuation
further.

To cast the scattering response of a single chiral particle into
the multiple scattering formalism, a T-matrix, which is a scattering
transfer function, has been modified to include the chiral properties
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[Lakhtakia et al., 1985]. An incident linearly polarized wave field will
give rise to the right-circularly (RCP) and left-circularly (LCP) po-
larized fields inside the chiral particle and both fields propagate with
different velocities. This complexities, not encountered in dielectric
scatterers, do not generate any specific difficulties in the multiple scat-
tering formulation used here if the effective medium is assumed to be
nonchiral (or strictly speaking, weakly chiral). The reason is that, un-
der this assumption, the propagation constant is independent of the
field polarization state. Although a rigorous (and is currently under in-
vestigation) multiple scattering formalism needs to be introduced when
the effective medium is chiral, at least in the low frequency regime, us-
ing the Bruggeman and the Maxwell-Garnett Approximations [Ward,
1988], we derive and present the dispersion equation for the composite
medium which is effectively chiral.

In multiple scattering theory, because of the large population den-
sity of scatterers, it is essential to consider their relative positions;
a detailed knowledge of the positional distribution of the scatterers is
needed. This entails a consideration of inter-body forces as in the many
body problem of statistical mechanics. At a minimum, the pair corre-
lation function is required in analyzing the problem. It is well known
that the Monte Carlo simulation method has yielded superior numer-
ical results for the radial distribution function of densely distributed
hard spheres [Barker and Henderson, 1971]. Therefore it is incorpo-
rated into computations of the effective attenuation rate in studying
electromagnetic wave propagation through randomly distributed chiral
spheres.

The plan of the paper is as follows. In Section 10.2 the consti-
tutive properties and the governing field equations for chiral media
are examined. Scattering from a single chiral sphere in a nonchiral
medium and its associated T-matrix are introduced in Section 10.3. In
the same section, the low frequency expansions of the scattered field
coefficients from a single chiral sphere are also presented. In Section
10.4, the T-matrix is employed in the multiple scattering formalism to
obtain a dispersion equation for the chiral composite materials which
are made by dispersing a large number chiral particles in a nonchi-
ral matrix. The low frequency expressions of the dispersion equation
using the Bruggeman approximation as well as the Maxwell-Garnett
approximation are also given in this section. Finally, computed results
of microwave properties of chiral composite materials, through solving
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the dispersion equation numerically, are presented.

10.2 Constitutive and Wave Equations for a Chiral
Medium

Consider a region V occupied by an isotropic chiral medium in
which the constitutive relations

D =¢E+p.6,VXE, B=pH+pBpuVxH (1)

hold [Bohren, 1974). Use is now made of the regular Maxwell’s equa-
tions along with (1) to obtain the relation

v [z] - -k’ [i] Y x [z] -~ [kl [2] Ve [2] _ [zL)

where the matrix
— e, k: Be

[Kc] = [1 - (kcﬂc)z]“:l [

with k. = w{uce}'/?, and an exp[—iwt] time dependence has been
assumed. Following Bohren [1974), the EM field is transformed to

E| QL
[H] = [4] [QR] (4)

where the left- (LCP) and the right- (RCP) circularly polarized fields,
Q. and Qp, respectively, must satisfy the conditions

{V*+k3}Qr=0; {V’+kx}Qr=0 (5)
along with the auxiliary conditions
VXxQr=kQr; VeQr=0 (6a)
and
VXxQr=-krQr; VeQr=0 (60)
In these equations, the matrix
_ 1 ap
7SR (7a)
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while,
kp = ke/{1 - kBc}; ap = —i(ee/pe)? (70)

and
kr = kc/{l + kcﬂch ap = "i(eclf‘c)-uz (76)

10.3 Scattering from a Single Chiral Particle (T-matrix)

To cast the scattering response of a single chiral sphere into the
multiple scattering formalism, a T-matrix, which is a scattering trans-
fer function used in the formalism, has to be modified to include the
specific chiral properties [Lakhtakia et al., 1985]. The overall goal in
using the T-matrix procedure is to determine the fields induced inside
a permeable scatterer as well as the fields scattered by it when it is
illuminated by an incident electromagnetic field. The relative ease of
computation offered by the T-matrix method has been discussed else-
where [Waterman, 1969; Barber and Yeh, 1975; Varadan et al., 1980,
1988; Tsang et al., 1985).

Consider a chiral sphere embedded in a nonchiral host medium
excited by a linearly polarized plane EM wave. The incident, scat-
tered and the induced (field inside the scatterer) fields are generally
expanded in vector spherical harmonics M,, and N,, [Morse and Fes-
hbach, 1953].

The incident electric and magnetic fields E° and H°® can be ex-
pressed, respectively, as

E° =) i"[(2n+ 1)/n(n + 1)][Mam(kr) — iNno(kr)] (8a)

HC = (—k/mw) Y i"[(2n + 1)/n(n + 1)][M i (kr)
+ 4N, (k)] (88)

which are independent of the properties of scatterers. In Eqgs. (8a)
and (8b), k,¢ and p refer to the (nonchiral) host medium. Attention
must be paid to both the scattered and the induced fields because
only circularly polarized fields can exist in a chiral medium, The fields
inside the scatterer can be expressed through

Qr =) (20 + 1)/n(n + 1){ falM1nwm (krr)
+ No1ay (kLr)] + 9a[Meynoy (kr)
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+ Negnor (kzr)]} (9a)
Qr =) i™[(2n+ 1)/n(n + 1){pa[Moawm (kar)
+ Ny (kRr)] + wa[Mey a0 (Err)
+ Neja (krr)l} (9%)
The scattered field is circularly polarized and propagates with the

speed w/k. Again, it can be expanded in terms of vector spherical
harmonics which satisfy the radiation condition at infinity, Thus,

E* =Y i"[(2n+ 1)/n(n + 1){anM e (kr)
- ibﬁNeln@)(kr) + cﬂMeln(s) (kr) ‘
~ i, Ny (kr)} (10a)
H' =) "[(2n+ 1)/n(n + 1)]{8.Me1n (r)
+ian N1 aer (k1) + dn My (Er)
+ 1¢n N,y (kr)} (100)
The boundary conditions for the problem are the same as those
for dielectric spheres which require both the tangential components of
the E and H fields to be continuous at the surface of the scatterer.
However, due to the chirality of the scatterer, 8 unknowns, instead of
the usual 4 for a dielectric sphere, are introduced into the equations.

We skip the details [Bohren, 1974] and show only the results for the
scattered field coefficients ay, b,, ¢, and d,, :

an = —[Wa(L)An(R) + Wa(R)An(L)]/[Wa(L)Va(R)

+ Wa(R)Va(L))] (11a)
bn = —[Bn(L)Va(R) + Bn(R)VA(L)]/[Wn(L)Va(R)
+ Wn(R)Va(L)] (11d)
¢n = ~[Wn(L)Bn(R) = Wa(R)Bn(L)]/[Wn(L)Va(R)
+ Wa(R)Va(L)] (11c)
dp = ~cp (11d)
where,
Wa(J) = méa(myz)(a(z) — dn(msz)in(z) (120)
Va(7) = —¢a(myz)(,(z) — méy,(maz)in(z) (12b)
An(J) = ¢n(myz)d,(2) — méy,(miz)én(2) (12¢)

Bn(J) = mgn(myz)¢,(z) — $n(msz)én(z) (12d)
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J is either L or R and z = ka. The prime denotes differentiation
with respect to the argument; ¢,.(z) = 2jn(2),{n(2) = zh,(2); while
jn and h,, are the spherical Bessel and Hankel functions, respectively.
The relative refractive indices,m; = kr/k,mgr = kr/k and m =
(ECﬂ/eﬂc)llz'

In terms of the T-matrix, which relates the unknown scattered
field coefficients to the known incident field coefficients [Varadan and
Varadan, 1980}, a,,b,,c, and d, are simply its diagonal elements
and for a spherical scatterer, these are the only nonvanishing elements
in the T-matrix. In addition, if the scatterer loses its chirality, the
present procedures degenerate into the well known Mie solution.

In the low frequency regime, i.e., when ka,kra and kgra < 1,
the expansions of the Bessel and Hankel functions in powers of their
arguments are truncated so that only terms up to the order O[(ka)’]
are considered. Therefore, from (11) and (12) we obtain

a; = (i22%/3)[(mmg — 1)(2m + mg)

+ (mmp —1)(2m + mz)]/A (13a)
by = (i22%/3)[(mmg + 2)(mgr — m)

+ (mmpg + 2)(mg — m)]/A (13d)
¢1 = (i22°/3)[(mmg + 2)(mmp — 1)

— (mmpg + 2)(mmg — 1)]/A (13¢)
di = —¢; (134d)
A = (=9mpmg)[(mm + 2)(2m + mpg)

+ (mmg + 2)(2m + my)) (13e)

10.4 Multiple Scattering Formulation

In this section, the average field in the random medium is written
as a partial summation of a multiple scattering series. By assuming
that the average field is a plane wave with an effective wave number
K, the resulting dispersion equation is obtained. Only the most im-
portant details that lead to the dispersion equation involving the pair
correlation are presented and for all intermediate steps, we refer the
reader to [Varadan et al., 1979]. Vector notation is dispensed with, but
the formalism is applicable to the electromagnetic field satisfying the
vector Helmholtz equation.
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Let the nonchiral medium contain N randomly distributed spher-
ical scatterers in a volume V such that N — oo,V — oo but ng =
N/V the number density of scatterers is finite. Let u,u’,uf,u! be
respectively the total field; the incident field; the field exciting the ith
scatterer; and the field which is in turn scattered by the ith scatterer.

Let Re¢, and Ou¢,, denote the basis of orthogonal functions
which are regular at the origin and outgoing at infinity which are, re-
spectively, appropriate for expanding the field which excites a scatterer
and that which it scatters which in turn must satisfy outgoing or radi-
ation conditions. Thus, we can write the following set of self-consistent
equations:

u=1u’+ Z uf (14a)
u’ = Z alRed,(r — r;) (14d)
uf = E ol Redn(r —r;);b < |r—r;| < 2b (14¢)
u! = E fiOuga(r —r;)jjr — x| > b (144d)

where o} and f. are unknown expansion coefficients. We observe
here that b is the radius of the sphere circumscribing the scatterer
and that all expansions are with respect to a coordinate origin located
in a particular scatterer.

The T-matrix by definition simply relates the expansion coeffi-
cients of uf and u! provided uf + u! is the total field which is con-
sistent with the definitions given above. Thus, [Varadan and Varadan,
1980}, :

o= Tondiy (15)
and the following addition theorem for the basis functions is invoked
Ougp(r—r;) = E Opn (T; — rj)Redp (r — x;) (16)

Substituting (14b,c,d), (15) and (16) in (14a), and using the orthogo-
nality of the basis functions we obtain

a=ad+ ZT’id‘(l‘; - r;)od (17)
J#i

This is a set of coupled algebraic equations for the exciting field coef-
ficients which can be iterated and leads to a multiple scattering series.
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For randomly distributed scatterers, an ensemble average can be
performed on (17) leading to

(@) = & + (o(ri — ;)T (o’ )ij )i (18)

where angle brackets and ij... denotes a conditional average and (18)
when iterated is an infinite hierarchy involving higher and higher con-
ditional expectations of the exciting field coefficients. In actual engi-
neering applications, a knowledge of higher order correlation functions
is difficult to obtain, and usually the hierarchy is truncated so that at
most only the two body positional correlation function is required.
To achieve this simplification the quasi-crystalline approximation
(QCA), first introduced by Lax [1952] is invoked, which is stated as

{o)ij = (o) (19)

Then, (18) simplifies to
(@) = a* + (o(r; — r;)T7(a’);); (20)
an integral equation for (a‘); which in principle can be solved. We
observe that the ensemble average in (20) only requires p(rj|r;), the
joint probability distribution function. In particular, the homogeneous
solution of (20) leads to a dispersion equation for the effective medium

in the quasi-crystalline approximation. Defining the spatial Fourier
transform of (a*); as

(af); = / ¢ XH(K)dK (21)
and substituting in (20), we obtain for the homogeneous solution

X(K)=) / o(r; — x;)Tp(xjlrs) x ™ ddr; XI(K)  (22)
i

Thus for a nontrivial solution to {a‘);, we require [Varadan et al.,
1985]

-3 / o(ri — ;) Tip(x;r)e ™t dr =0 (23)
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Figure 10.1 Radial distribution function vs. interparticle distance for
different volume fraction.

In (22) and (23), p(r;|r;) is the joint probability distribution func-
tion. For spherical statistics,

o L Jr; —r;} < 2b
plrslrs) = { (Iei = x51)/V; Jri—x5] > 2b (24)
where we have assumed that the scatterers are impenetrable with a
minimum separation between the centers, and 2b is the diameter of the
circumscribing sphere. For spherical scatterers, the joint probability
distribution depends only on the interparticle distance and not on the
orientation of the vector joining the centers. The function g(|r; —r;|)
is called the radial distribution function. In Fig. 10.1, different values
of the radial distribution function for different volume fractions are
plotted against the normalized radial distance using the Monte Carlo
technique [Barker and Henderson, 1971].

Equation (23) is known as the dispersion equation of the effective
medium. By effective medium we mean that a microscopically dis-
crete random medium, in which a wave propagates, can be replaced by
a macroscopically homogeneous medium characterized by an effective
wavenumber K. The effective wavenumber which is a complex propa-

1
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gation constant can be used to derive the effective properties, e.g., effec-
tive dielectric constants €.g via Eegpo = K2/w?, of the nonmagnetic
composite medium. Although randomly distributed inclusion phases
(chiral spheres) undergo multiple scattering, an average wave, which is
a plane wave propagating in this effective medium along the incident
plane wave direction, does not suffer further scattering. However, its
velocity and amplitude now are determined by the new propagation
constant K. ’

The dispersion is a determinantal equation. Its roots can be solved
numerically to yield the values of the effective wavenumber K = K, +
iK, as a function of the frequency via k, the size and properties of
the scatterer via the T-matrix and the statistics of the distribution via
the joint probability distribution function. The real part Ky describes
the phase velocity while the imaginary part K, gives the attenuation
of the amplitude of the average wave in the effective medium.

Dispersion Equations - Low Frequency Ezpansions

The multiple scattering formalism required to obtain the disper-
sion equation in the microwave frequency range (ka > 1) is shown for
an effectively nonchiral composite medium. In order to handle an effec-
tive medium which is chiral, the present multiple scattering formalism
needs to be modified and is currently under investigation. However, in
the low frequency regime, i.e., ka < 1, the Bruggeman approximation
(BA) as well as the Maxwell-Garnett approximation (MGA) may be
used instead to study the effective medium which is either nonchiral
or chiral.

In the Bruggeman approximation, the two components (inclusions
and matrix) of the composite are treated in an equivalent manner,
whereas in the Maxwell-Garnett approximation, the grains of one com-
ponent are considered to be embedded in the matrix of the other com-
ponent. Consequently, the BA has the property of invariance with
respect to a change in the roles of matrix and inclusions. However, in
the MGA one needs to make a choice as to which component is the ma-
trix phase and which one is the inclusion phase. Nevertheless, both the
BA and the MGA become exact for a composite having one component
and containing only a small fraction of the other component. Details
for the BA and the MGA as applied for the present purposes are given
by Khebir [1986] and only the dispersion equations are repeated here.
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The Nonchiral Effective Medium - BA

Assuming that an LCP plane wave travels through an effective
nonchiral medium, it can be shown that

3 en [(e,, +2e8) ™! {-2i [s,. — et — kLa(eea-)l/ze,.(,B/a)] /3}
+ [eeqr(26e + £n)?] 7! X {(kpa)?(icen/45)[40e3s — T2e25e,

+ (en + 2eeq){—262g + 10ceqe, — 862 + 170e.qe,(8/a)? — 15062
(B/a)*}] + 24ceqe? + 8¢3 — 340e24e,.(B/a)? + 190e.qe2(8/a)?
+150e3(8/a)?} + [cemt(en + 2€eq)]  (kpa)?(ices/45) x [—€2¢

+ Eeften + €2 + 20e.ge(B/ a)z]] =0 (25)

where e.g is the effective permittivity of the nonchiral effective
medium for LCP plane wave propagation. For RCP plane wave prop-
agation, the dispersion equation remains the same except that the
wavenumber k7, is replaced by kgr.

In the above and subsequent equations, the subscript n =1 cor-
responds to the inclusion; hence, ¢; = ¢ (volume fraction of the chiral
scatterers) and €; = €.. The subscript n = 2 corresponds to the host;
thus, c2 =1 —~c¢ and &3 = ¢.

The Chiral Effective Medium - BA

When the effective medium is supposed to be effectively chiral, the
Bruggeman approximation leads to two polynomial equations.

5 cn [i13(en + 2eea)|{en — eur + 2enlr/a + enlfa

— 26cqBest/ a)lc;,as:{;.2 + [30ceq(en + 2eeq)] " (en + 2ce){—Te2

— 1506282 /a? + 11epecq — 17066082/ a° + 160€ 6 et BestPn/ a2
+190e,eea82 /a® — 4e2g — 30625825 /a®} + 862 + 1506382 /a®

+ 24e2ceq + 25062 c.qBls/a® + 40e2 e qBeqPn/a® + 1902 e g2 [a®
— 12,62 + 2306,620 82/ a® — 406,624 PeitBn/a® — 340e,62582 [ a?

+40¢3; - 4soe§ﬁﬂ3f,/a’](k1;a)’ea}] =0 (26a)
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and

E Cn [i[9(e,, + 26eq)] " H{en — Teet — 2(€nBn/a — IOeefrﬂ,fr/a)kLaei,{-2

+[30(en + 26cq] M [(En + 2cca){—9¢2 — 150c282 /a® + 111e eeq

— 330t/ a% + 2406 e BetPn/a’ + 11706402 /a® — 48c2g
+ 5106258%/a®} + 82 + 28035 + 1506382 /a® — 24e2e g

+ 250624825/ a® + 4062 e gBnBer/a® — T10e2e.af2 [a® — 264c,624
— 1270e,6258%: /a® — 280€,624PePn/a® — 2380c,6202 [ a?

- 336063ﬂﬂfﬁ/a2](kz,a)ze,ﬁ-}] =0 (26b)

Since the host is nonchiral, f; = 0 while 8; = 8. in (26a, b). Equa-
tions (26a, b) have to be simultaneously solved using numerical tech-
niques on a digital computer to obtain e.g and B.g of the chiral
effective medium.

The Mazwell-Garnett Approzimation

Likewise, if chiral particles dispersed in a nonchiral medium is
assumed to be chiral, the MGA also yields two equations which involve
Eef 8nd Beg:

(~2i/3)[(ett — €)/ (et + 26) — c(€c — €)/eff + 2¢)] — ka(e)/?
[ectr(Berr/a) — cec(Be/a) + (kpa)®(ei/45){e ™" (eetr + 26)~2(40€°

— T26% . + (et + 26){—262 + 10ceqr — 82g + 170ceaBl/a®

— 15062582 /a®} + 24 + 8e3; — 340e%c.qP2g/ o’

+ 190ee258%5/a® + 150635825 /a?] — ce " (ec + 26) 2

(40€® — 72e%e. + (€. + 2¢) x {—2¢€% + 10ee. — 862 + 170ec. 82 /a®

~ 1506282 /a?} + 24c€? + 8¢2 — 340e%¢.8%/a® + 190e€2p42 /a®
41506282 /a?) + £ (eet + 26)(—€2 + €eqt + €25 + 20ecaPlg/a®)
— ce M (ec + 2€) X (—€? + €. + €2 + 20ee.B2/a’)} = 0 (27a)

and

(—2i/3)[(ceit — €)/(Eeqt + 26) — c(ec — €)/ (et + 2€)] + kra(e)'/?
[eeﬂ'(ﬂeﬁ'/a) - cec(ﬂc/a) + (de)z(Ei/45){£—l(€eg + 25)_2
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(4063 — T2e%ceq + (ceir + 26){—26% + 10cceq — 825

+ 170ceeq B/ a® — 15062582 /a’} + 24eels + 8e3

— 3406%cqBlx/a® + 190ee24 24/ a® + 150635824/ a?]

— e (ee + 26)7%(40¢® — 726%¢, + (€. + 2¢) x {~2¢?

+ 10ce. — 83 + 170c¢.82 /a® — 1506282 /a®} + 24¢¢? + 862

— 340e%e.8% /a® + 190ec2B2 /a® + 1506382 /a?) + 71

(Eest + 26)(—€? + cteqr + €25 + 20ceqBlg/a®) — ce™*

(ec + 26)(—€* + ee. + €2 + 20e¢.82/a®)} = 0 (27%)

10.5 Results and Discussion

We have reported scattering and absorption characteristics of a
single chiral object in an earlier paper [Lakhtakia et al., 1985]. In
which the properties of the chiral object, £.,p. and B. used there
were adopted for this multiple scattering analysis. The chiral parame-
ter B. = 10~*m and pu. = p, were assumed to be frequency indepen-
dent but need not be so. Nevertheless, the relative permittivity ¢./¢,
was chosen to be complex and frequency dependent with values listed
in Table 10.1. The radius of the sphere was (.2 mm and chiral particles
were assumed suspended in free space. (We have observed elsewhere
[Varadan et al., 1987] that the reflection of plane waves by a planar
chiral plate, sitting upon a perfectly conducting substrate and having
these properties of table 10.1, is almost uniformly less than 25% over
a 50 - 300 GHz frequency range for incidence angles 8, < 30°. Should,
however, 3. = 0, the reflection coefficients vary considerably and can
have values up to = 85%.) Although J. is likely to be frequency
dependent as well, in this study it is assumed to be constant. Since
the kind of chiral scatterers envisioned here are yet not available, and
their feasibility is to be devoutly hoped for, the value of 8, used in the
preceding calculations is purely arbitrary. Proteins in the ultra-violet
range usually have lower values, but one will have to wait measure-
ments on possible chiral composites before any given value of 3. for
non-molecular chiral properties in the GHz range can be estimated,
because their chirality would be at the structural level rather than at
the molecular level.

The real and imaginary parts of the effective wave number K,
which is related to the phase velocity and attenuation in the effective
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Frequency (GHz) Real (e¢ / €g) Imag(ec / &)
60 17.4 0.435
70 15.8 0.395
80 15.7 0.314
90 15.56 0.156
100 1474 0.0737
110 12.82 0.0641
120 10.8 0.054
130 99 0.0396
140 8.4 0.0336
150 791 0.0316
160 7.0 0.028

Table 10.1 Complex relative permittivity of the chiral scatterers (prop-
erties used in obtaining numerical results in Figs. 10.2 and 10.8.

medium, respectively, can be obtained by numerically solving the dis-
persion equation (22). In Fig. 10.2, the normalized phase velocity, i.e.,
real part of k/K , showed that even for a volume fraction ¢ = 5% of
chiral suspensions, the chirality of scatterers changed the dispersion
pattern of the effective medium drastically. For the lossy dielectric
sphere case (8. = 0), the wave travelled with a more or less constant
speed but it was not so for the chiral sphere case in which the phase
velocity was highly frequency dependent and could be faster and slower
than that of the nonchiral case.

As for the attenuation, i.e., the imaginary part of K/k, Fig. 10.3
revealed that chirality in addition to the lossy dielectric property gave
the largest attenuation which could be as high as hundred times that
the lossy dielectric spheres at about 80 GHz (which could be verified as
a strong resonance scattering due to a single chiral particle [Lakhtakia
et al., 1985]). We clearly elucidated the effect of enhanced attenuation
using a step by step approach. First, lossy dielectric spheres increased
the attenuation compared to lossless spheres, but not very much, ex-
cept at frequencies lower than 90GHz. Next, the lossless chiral spheres
increased the attenuation compared to lossless nonchiral spheres; but
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Figure 10.8 Attenuation vs. frequency for 5% chiral particles.
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not always so, which could be observed in Fig. 10.3 the attempt failed
in some frequency ranges. Finally, the lossy chiral spheres completed
the job by achieving a constantly high attenuation in the frequency
range from 60 to 140 GHz (corresponding nondimensional frequency
ka was in the range of 0.25 to 0.75). This explains that the incor-
poration of chirality could serve to modify the properties of otherwise
low-loss scatterers. The increased attenuation is mainly from the en-
hanced absorption due to chirality [Lakhtakia et al., 1985].
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