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1.1 Introduction

When a vertical dipole is located in air at a height d over a di-
electric or conducting earth (Fig. 1.1), the oscillating current in the
dipole generates an electromagnetic field that travels outward in the
air and across the boundary into the earth. The determination of the
field and the power in each region as a function of the height d of the
dipole involves not only direct, reflected, and refracted or transmitted
waves, but also a surface wave that travels along the boundary in the
air. When the dipole is in the earth, the surface wave is known as a
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Figure 1.1  Vertical electric dipole at height d in Region 2. Field calcu-
lated at (p, z).

lateral wave; when the dipole is in the air, it is often called the Norton
surface wave.

When the dipole is at the height d in air (Region 2, z > 0) over
the earth (Region 1, z < 0), the components of the electromagnetic
field are [1,2],

" oo . .
Bag(ps2) = 2 S [t 4 et (1 )]

x J1 (Ap) A% dA (1)

18} oo . .

x Ji (Ap) A2 dX;

z>d
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2

X Jo(Ap)A%dA (3)



1.1 Introduction 3

where, with the time dependence e*t,

ky =By +ioy = “#(1)/2(51 +ioyJw)'/% ky = w#(l)/zeyz (4)

Gy = 2k37,N7Y; N = ki, + ks
Y= (k.? - ’\2)1/2’ ij=12 (5)

In each formula, the first integral with the factor 2|~ is the direct
wave, the second integral with the factor e*7a(**9) is the reflected or
image field, and the third integral with the factor Gy, e*7a(*+9) is the
surface wave.

The power P radiated by the dipole was separated into two parts
by Hansen [3]: a part P, that remains in the upper half-space — air,
and a part P, that is transferred into the lower half-space — earth.
These are defined in terms of the vertical component of the Poynting
vector, viz.,

1 *
82:(py2) = 2——E2p(p,z)Bz¢(p,z) (6)
Ho
where the asterisk denotes the complex conjugate. Thus,
P, *
=tRe2r [ S3.(py24)pdp (M
Pg JO

In (7), z, means z >d, z_ means 0 < z < d. The components of
the electromagnetic field in (6) were evaluated by Hansen [3] with the
help of the dyadic Green’s function. They are more simply given by
(1) and (2).

Hansen introduced the division of power given by (7) in order to
define the radiation efficiency as follows:

Pﬂ
"= F.+F, (8)

This is the fraction of the power radiated by the dipole that remains in
the upper half-space. Since it appears superficially obvious that radio
transmission between antennas in the air depends on the power that
remains in the upper half-space, it seems reasonable to assume that
the most desirable antenna is one that has the highest radiation effi-
ciency. Actually, this ignores the important fact that power ultimately
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transferred to the earth at large radial distances is available in the air
at all shorter distances.

Hansen’s numerical evaluation of the radiation efficiency of the
vertical electric dipole (among others) indicated that P, grows without
limit as the height d of the dipole is reduced to zero This means
that P, and the radiation efficiency both vanish as d — 0. Hansen’s
calculations verify this conclusion for all values of o, /we; in the wide
range 0.0001 < o, /we; < 1000.

One purpose of this paper is to derive analytical formulas for P,
and P, in order to study the limit as d — 0 and determine what
actually happens. Since for this purpose it is unimportant whether the
lower half-space — earth — is a perfect dielectric or a conducting re-
gion, the analytically simpler case of a perfect dielectric is investigated.

1.2 Derivation of Formulas for P, and P,

When (1) and (2) are substituted in (6), the following result is
obtained:

Sa.(pyzy) = %:20@ /;“’ fp('iza‘d:)Jl(’\P)Az dA
< [ nonzonera @

For z=2, > d,

(12 2,) = €77 1 (1 Gy ) 7=+ (10)

fi e = o5 [0 L - ) et Eerd] )
For 2=z, 0<z<d,

fo(r2r2_) = =€) ¢ (1 - G,y) eMildtD) (12)

folriiz) = 71 e 4 (1- G) e @] (13)
Note that 7, = (k2 —A%)}/2 when 0 < A < kas 12 = i(A2—k2)/2 =

when k, < A. In this latter range, v; = —iv,, G§; = 2k34}/N*, 71 =
(k#Z Az)l/z
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When (9) is substituted into (7), this becomes

F, WI‘O 2 [C o [T
dil
P,} ® Tor k2/ d“/ /0 dpp
x [J1(A0)01(1)] £o (2 22) fo (73, 22) (14)
Here the integration with respect to p can be carried out with the

use of Formula (34) on p. 92 of Bateman [4], Vol. 2, with » =1 and
g = 0. The relation is

/GwJo(at)Jl(bt)dt —U(b-— )_{1{6 :Z“ (15)

where U(b—a) is the step function. Differentiation of (15) with respect
to a — noting that (d/da)Jy(at) = —tJ,(at) — gives

-a‘.”_ / ~ To(at)Jy(bt) dt = / " J.(at)7, (bt)t dt
a Jo
1d

) (16)

Since —d/da = d/db, (16) leads to the following orthogonality rela-
tion:*

/ ” Jy(at)J,(bt)t dt = L5(b-a) (17)

where §(b— a) is the delta function.
With (17), (14) becomes

P
. } =tRe 2t [T hOnnfh e a8)
9

where f,(75,2+) and f}(73,24) are defined in (10)~(13). The formula
(18) is precisely (2) in Hansen [3] but with the dipole moment m =
Ih, =1 Ampere - meter.

* A more rigorous derivation of this formula makes use of the Carte-
sian components of the field. The cylindrical components are used in
order to parallel the work of Hansen [3].
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The power radiated upward with z = 2, involves the following
product:

T 1 ty,(z— 17,(z
Fo(12s 24)f5 (12, 24) = " [e ma(e=d) (1-Gyy) el +d)]
2
x [e775eD + (1~ 63y) e+ (19)
In the range 0 < A< k,, 43 =7, is real so that
2 F3 (8 2) = 137 [L4 (1= Ga)(1 - G3y)
+(1 - Gy)e® ™ + (1 - G;l)e_zmd]
=17 [2= (Gar + G3) + Gu Gy
+ 2 cos2v,d — (G’zlez""‘d + G;le—z%d)]
(20)

In the range X > k,, v, =iv,, 73 = —iv,, so that

* * i =Vl Z— —ValZ
fp(72’z+)f¢(72’ z,)= . [e a(e=d) 4 (1-Gp)e al +d)]
2

X [e"’ﬁ('"d) +(1- G;l)e_"i(""d)]
- 1—:— [e-zy’(z—d) + (1= Gy)(1 - G5;) e als49)
2

+ (1= Gpn)e™* + (1-Gyy) e—zu,z]

S o—2V,2
_ e~ “"a [ezyad + (1 _ GZI)(]- _ G;1)€_2y°d
v,
+2- (Gn + G3)|
S o—2Vq2
_r [2(1 + cosh 2v,d)
v,
+(G1G31 — Ggy — Giy)e™ 2% — (G + G;1)]

(21)

When (20) and (21) are substituted into (18) with the upper signs, the
result is
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k
wp 32 —_ * *
P, =Re 161r1(::§ {/; %2 1 [2(1 + c0s 27,d) + G5;G3 — Go1 — G

— Gyye¥d — Gipem ] X2 d

oo e—2u,z
+ i/ [2(1 + cosh 2v,d)
k

2 Vs

+ (G31G3 — Ga1 — G3) Pk

~ (G + G|V dx} (22)

In this expression, the two terms in square brackets are real so that

the entire second integral is a pure imaginary and can be omitted. This
leaves

Wikg ka -1 2 2
Pa = Re 167rk% o ‘72 [4 COs 72d + |G21| - 2G21
— 2GR dN3dN  (23)

This follows since ReG,, = ReG};, ReG,e¥ "¢ = Re Gjre 2.
The power transferred into the lower half-space involves the fol-
lowing product:

1 . .
o 20303 22) = oz [~ 4 (1= G+
2
x [e""’ﬁ (d-2) 4 (1 - G;l)e-”?("“)] (24)
In the range 0 < A < ky, 73 = 7, is real so that
£ 2 )33 22) = 73 [~1+ (1 = Gn)(1 - Giy)
F (1= Gy)e™ — (1= Gyy)e ™7
=7;" [0210;1 ~ Gy1 — G5y — Gy 7

+ G e~%M® 4 2isin 2722:] (25)



8 1. Radiation Efficiency of a Vertical Dipole in Air

In the range A > k,, 7, = iv,, 73 = —iv,, and

i - - -V, z
Fo(r22-)f3(12,2-) = Pl vald-2) 4 (1-Gy)e a(d+ )]
2

X [e—u,(d—z) + (1 _ G;l)e—u,(d+z)]
1

= —¢€
Vs

—2,d

[—e?3* 4 (1= Gy )(1 - Gy )e™ 2"

+(1-Gn) - (1-G3)

-2v,d

.—2 sinh 2V2Z + ETZV’z(G21G;1

=Gy —Gy) -Gy + G§1] (26)

When (25) and (26) are substituted into (18) with the lower signs, the
result is

k
Wi T . - 17,2
'Pg = — Re 167‘.23 {‘/0 "72 1 [G21G21 - G21 - G21 - GZIez Y2

+ G e~ 2 4 2igin 27,2] A3 d)

oo e—2u,d
+i / — [-2sinh 20,z + = ¥4%(G, G,
k, 2

-G —Gy)-Gy + G;1] A3 d’\} (27)

Here G,,e%"* -G} e~%"* and G,, — G5, are pure imaginaries. Also,
Gzl - G;l - 2i11'nG21. It fonows that

k
wy L
P, = —161rI:§ {Re/o 75 IGul? - 2G,1] A3 d)
o0
+2Im / v; Gy e 2903 d) (28)
k?

Note that both P, and P, depend on the height d of the dipole but

are independent of the location z of the planes of integration within
the ranges 0 < z_ <d and 2z, > d.
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The total power radiated is
- 2 2iy,d| 43
P,+P,= 16 k2 Re/; v, [4cos 7,4 — 2G 3 e ]A d

—2Im / vy 1Gyy e dN3 dA} (29)
kz

1.3 Special Cases: Homogenous Region; Perfectly Con-
ducting Ground

Two special cases are of interest. The first is the homogeneous
region with k, = k,. The upward-directed power with z > d now
involves the functions

1 - Yo 1 i z—
fol1mzy) = €7D, fi(a52) = e ED(30)
2

so that

— Who °° __1_ iv,(2—d) —i‘y;(z—d),\fi A
P, _Relﬁwkg | 7;e e d (31)

In the range 0 < X\ < k,, 73 = 7, is real; in the range A > k,,
¥y = §(A3 — k3)Y? = iv,, 4§ = —iv,. It follows that

k 3 3
Wit 2 A% dA —2u,(z—d) A d\
P, =Re——3 167’02 {/ (k2 ,\2)1/2 +te” " k2)1/z

_ Wio (k3 - A? )3/ 2 y2y1/2
= Re 1ewk§{ 5 Rk - )

0
wioky
— 32
24n (32)
Note that the second integral above is real so that, when multiplied by
i, it is a pure imaginary that contributes nothing to the real part.
The downward-directed power involves the functions

fp(72’ z )= "ei"’(d_z)v f;(‘)’z" z_)= _7];" emilé=) (33)
2
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so that

— Who * e (d—z) ~i75(d—z) 3 #OkZ
P_=Re lﬁwszo e Sd-Ntay = H02 (3q)

The total radiated power for a dipole with the electric moment
2Ih,, where h, is the effective half-length, is

Py = 10k? x 4I*h? = 40k2R2I? (35)
The well-known formula for the radiation resistance is

2P,
R = 722 = 80k2h2 (36)

The second special case is the dipole over a perfectly conducting
half-space or a dielectric half-space with infinite permittivity, so that
k, — oo. This means that

2"’%71

2= kf‘lz + k271

so that, from (28), P, = 0 and, from (23),
k 2
WHo 2 cos®7,d 5
P, = = — _—
, = P, ank3 Re/0 A% dA (37)

This is readily integrated with the change of variable,

u=7,d=dki- )2  W?=d(k2-2?), udu=-d?Ad\
2

,\2=k§—32-; when A =0, u = k,d; when A=k, u=10

Hence,

k,d 2
wpo COS u u_ 1
Fo= e / w/d) ( d=> o
_ wpok, 1+3 sin 2k,d — 2k,d cos 2k,d
T o12n (2k,d)3

(38)
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When the dipole is on the boundary so that d = 0, it constitutes
a monopole with the electric moment Ih, on a perfectly conducting
half-space. The power radiated by the monopole is

k k
P, = “’{‘2" 2 22 x -“-”;Lwlﬁhz = 20k2R21? (39)

[Note that as k,d — 0, sin2k,d — 2k,d — (2k,d)3/6; cos2k,d —
1- (2k2d)2/2.]
The well-known formula for the radiation resistance is

RT = =™ = 40kZh? (40)

1.4 Evaluation of the Normalized Powers in the Air
and Earth

Paralleling the formulation of Hansen [3], the powers in the air
and earth are normalized with respect to the power radiated by the
isolated dipole with the same electric moment. The normalized powers
are

P 3 ka 2
Pe = 'I‘Ji 4k3 Re/; ‘/21[4‘:03 74 + |G'21|2

— 26y - 2021.92‘1:4] Ady (41)

A 3 s -1 2 3
S i v L A T
oo
+2Im/ V';IGne—zV’d’\ad’\} (42)
kz

In these formulas, 7, = (k2 — A2)Y/2 = iy, = i(A2 - k3)/%; G, =
2k2y,N-', N = k27, + k%v,. In the range, k;, < A < o0, N =
ik2v, + k2v,. These formulas can be expressed as follows:

sin 2k,d — 2k,d cos 2k,d
(2k,d)?

pa=1+3[ ]+Jla+"2a+"3a (43)
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with .
3 17 1,
Jy =-Re——/ = . —A%d)\ 44
J,o = Re 3k / S GUR T (45)
¢ = IN€ - °
2 2 o 72 |N2|
k?
Jag = — % / 2%4,\34)« (46)
Py =J1g+ oy + I3y = —(J14 + J25) + I3, (47)
with
3 1 _adys
= —Im— = — e M%)\ d) 4
Tsy Imkz/l; b e (48)
and
sin 2k,d — 2k,d cos 2k,d
] e e P AR S

The integrals involved in (43)-(49) are evaluated in the appendices,
subject to the condition k% > k2. With

T o z —
Si:c:/ smudu and Cina::/ I——C—()ﬁdu
(] u 0 u

the results are

_ sin 2k,d — 2k,d cos 2k,d
po =1 ea [

_ 3k, 3k2 kl) 3 3k,
{(“ 7)e( )35

2

+(1 ) 2k3d
1

2
X [h — Cin 2k,d (1 + -k—z) + Cin 2k2d]
k, ky

2 2
+ (1 ) i 2'° d Si2k,d( 1+ k’) _ s 2kad
k k,

1 — cos 2k,d ky\ sin2k,d
T iee (1 kl) 2k2d} (50)
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_3k, 3k2 E\ 3 3k
”v'kl{(‘"w)m(”kz)‘sw

2 2 2
oo 2K3d (1 2 o zk,d)

kl kl kl
. 2k3d (.. 2k2d 1r) ( | 2k§d)
—sin —-—ic:— (Sl —1;1—— - 2 + 11— cos kl E1(2kld)

- 2k, d dz
+7+ln2k1d-—1+ln2——2—/0 [1() - Ly(2)) 2

+ ,’:—:{1 - 4—1’1‘7 [12(2k10) - Ly(2k1)] } (51)

Here I is a modified Bessel function, L is a Struve function. These
are defined more explicitly in the appendices.

When the dipole is on the surface in the air, d = 0 and the above
formulas reduce to

6k 2k2
=92 _£72 1 — .._.2..
e (- H)ue ) ) e
3k, 3k2 kl) k5 3,
P= {(1— k”)m(l+k2 +21nk2-—2+ln2+ 5

Y
k,

bl

+ (53)
Note that p, is not zero but a finite quantity and P, is not infinite.
The following specific values of Pay Py and n with d =0 are of
interest: (a) Region 1 is fresh water with k,/k, = 9 and we; > oy:
p, = 1.021, p; = 10.71, n = 0.087. (b) Region 1 is rock with k,/k, = 3
and we; > 0y: p, = 0.510, p, = 5.314, n = 0.088. (c) Region 1 is dry
earth with k,/k, = 2 and we; » 0y: p, = 0.352,p, = 4.031, 7 =
0.080. Note that in this last case the condition k% 3> kZ is not well

satisfied so that the formulas are not as good approximations as for
larger values of k, /k,.

Complete graphs of p,, p, and the radiation efficiency n = p,/
(pg + pg) are shown in Fig. 1.2. In all cases, the frequency is assumed
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to be sufficiently high (we; > ;) so that Region 1 is a good dielectric
with negligible conductivity. These results are in good agreement with
the corresponding ones of Hansen [3] except near and at d = 0. The
ratio 7 remains finite for all values of k,/k, and does not vanish as
indicated by Hansen [3].

It appears from (51) and (53) that p, — co when k; — oo due to
the presence of the term multiplied by k,/k,. Actually this is not the
case because the formulas (51) and (53) are not valid when k, — oo.
This is evident from the following asymptotic expansions. In (51) one
of the crucial terms is L,(2k,d) — I,(2k,d). With formula (9.6.6) on
p- 375 and (12.2.6) on p. 498 of Abramowitz and Stegun [5], it follows
that

-1t (m+ L
Z (-1) (m+3)

Ly(2k,d) — I,(2k;d) ~ T(E )k, d)em-t

— — 1)m+1r(m+ )

) _;_ 2o (3 — m)(k3d?)™

— __d r( ) > (_.]_)mr(m+ _3-)

= {_P( ) +'§) T3 - m)(kfd2)3n+1} (54a)

With T'(1)/T(3) = v7/(3/7/4) = 4/3, it follows that

:—:{1— 1k, d[Iz(2k1d) L,(2k, d)]}

Lk (-1)"T(m + 3)
{ -2 g —m)(k%«ﬂ)mﬂ}

m_.O

3k ( 1)'"r(m+ b))
f k2d2 Z 3 _ m)(k2d2)m (546)

Clearly this decreases with increasing k,/k, for any nonzero value of
k.d.
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A large-argument approximation of the second crucial term in (51),
viz.,

™

2k,d .
[ - ne 3

s

2k, d
- 5{ [ o) - Lol - (1) - (z)l}

can also be obtained with formulas (12.2.6), (12.2.8) on p. 498 of
Abramowitz and Stegun [5]. These give

v

2k, d dz
2 e -nen g

2\ (2m)(2m-1)!
~ ln4k1d + 7 - "2::1 (m!)2(4—kld)2"‘

1 o (<) *T(m+3)
* 2; (3 —m)(k, )™

(2m)}(2m-1)!

=4 + In4k,d - Z T

er-‘

(-1)mT(m+3)
+ Z T(3-m)(k3d?)™+!

le

m-—O
1 & (-1)"T(m+3)
kid? < r(j-m)(k2d*)™

N (2m)(2m—-1)!
mz::l (m!)?(2kydy™ (54c)

=7+In2kd+In2-1+

Here the only term that increases without limit as k, — oo is In2k,d.
However, the entire expression is multiplied in (51) by k,/k, and

lim 2k,d 2219 _op d im B2 —okdlim 1=0  (54d)

k,—o0 2 1 z—00 z—o0 I

Evidently the critical quantity in the evaluation of the power into
the earth is k,d. The simultaneous limits d — 0 and k; — oo are
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Figure 1.2 (a) Radiation eficiency 1 of a vertical dipole at height d in
air (k3) over a dielectric half-space (k). (b) Normalized powers into the
air (p;) and earth (p,) and radiation efficiency (1) of a vertical dipole on
the surface of the dielectric (k1) at d = 0 in the air (k3). (c) Fraction of
power 7 in upper half-space with dipole at d = 0 and d = oo.
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indeterminate. In (51), the limit d — 0 leads to (53), but this is not
valid with k;, — oo because the quantity k;d has been set equal to
zero.

The limit k;, — oo has been carried out in conjunction with (37),
and the subsequent application of the limit d — 0 led to (39).

The graphs in Fig. 1.2(a) show that the radiation efficiency of a
vertical electric dipole, as defined in (8), drops to a small value as the
height d of the dipole is reduced to zero. This means that most of the
power radiated by the dipole is ultimately transferred into the earth.
It will be shown that this is necessary for transmission to receivers on
or near the surface of the earth and for the transmission and reception
of low-angle radiation in over-the-horizon radar.

An analytical determination of the power transferred into the earth
by a vertical dipole was carried out by Sommerfeld and Renner [6, egs.
(46) and (46a)] specifically for a dipole over sea water. Many approxi-
mations were made to obtain a solution of the order of k,/k;. When
applied to a perfect dielectric, their formula is simply p, ~ 27k, /k;,
which is independent of the height d of the dipole and is a completely
inadequate approximation of (51) and (53). This raises serious ques-
tions about the accuracy of the formula when applied to sea water
including the leading term, 1/(2k,d)?, which becomes infinite when
d — 0. Note that this is incompatible with the formulas (56)-(58) for
the electromagnetic field in the air which are valid for complex k; and
remain finite when d — 0.

1.5 The Electromagnetic Field of the Vertical Electric
Dipole in Air Over a Dielectric or Conducting Half-
Space

The general integrals (1)—(3) for the three components of the elec-
tromagnetic field of a vertical electric dipole are difficult to interpret.
Fortunately quite simple integrated formulas are available [1,2]. Sub-
ject to the one condition

k1| > 3k, (55)

the following formulas have been derived [2]:
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ky \kyry
—_ﬂ ik, _p._ z-d ﬁ"}___i___:;}__
E2p(p7 Z) = 47|'k2 {e (1'1) ( " ) ( m r% kz’r%
+ PALALSY (ﬂ) ('z + d) (ﬁ - i - i)
L Ty T, T2 kz"g
& ikyry (ﬂ) (1'16_2 —_ .l.
ky L T, T2
kg ® 12 —iP
- ks (_kzrz) e F(P) (57)

Wiy | ik |thky 1 i
Ep(p,z) = bl en |22 - L L
22300 4k, L) rf kzr‘f

+ ezk,r, 7'k2 _ _1_ . i
2 3
r, 13 kyry

_(z+d)z(& 3 3
T, T, r.f, kzrg

) @l

n=l G- =T (59)

k3ry [kory + ki(2 4 d) 2 (60)
2k kap

where

P =
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F(P) = /: j% dt = 5(141) - Co(P) —iSy(P)  (61)

Here C,(P) + iS,(P) is the Fresnel integral.

In (56)-(58), the part of the field with the factor e**s"» represents
the direct field, the part with the factor e’*s™> the reflected (image)
field, and the part with the Fresnel integral the surface-wave field. The
above formulas for the direct and image fields are exact and not subject
to the condition (55); this applies only to the surface-wave terms.

Of particular interest is the field of the dipole when it is on or close
to the boundary but still in the air. With d ~ 0, (56)—(58) become

to P ik 1
Bz¢(P,z) = —2—; e'karo [(E) (r_: - ;g)

k3 T 1/2 =
- kz (k . ) e P F(P)) (62)
1 \ KT
Ho  ik,r pz\ (ik, 3 3
E, (p,2) = ~ === —
20(P+2) Icze zo{(r%)(ro ra kzrg)

() (E)enme] e

P - kgro kyro + kyz
o 2k? kyp

where

>2: ro = (p* + 22)1/2 (65)

Note that when the dipole is moved from d ~ 0 in the air to d ~ 0 in
the earth, the field (62)-(64) is unchanged except that it is multiplied
by the small factor k2/k2.
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microvolls /meter

Figure 1.8 Complete fleld of |E}g(ry,©)| for vertical dipole in air on
boundary between air and (a) sea water, (b) wet earth, (c) dry earth,
and (d) lake water. Frequency f = 10 MHzx, radial distance ro = 500 km.
The dashed curve is for o, = co.

o, S/m|e;, |Omax | F30(70:@)max V/m|Ejg(re®/2) V/m
a| 4.0 80 | 78.°5 2.36x10~% 1.73x10~¢
b| 0.4 12 | 73.°0 2.20x10"% 1.73x10"7
ci 0.04 8 | 86.°0 1.87x10~% 1.74x10~*
d| 0.004 |80 |65.°5 1.80x10~% 1.93x10~8

The field in the air on the surface z = 0 of the earth is

Bo ipliky 1 K[ w2
Bz¢(P,0)=—ﬁek’p[‘p—z—p—z—k—: k) °© RF(R)| (66)

. 1/2 ‘
_ Who k|ik, 1K _"_) ~iR
E,,(p,0) = ok, e [ P 2k p e"F(R)| (67)
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(o) &y +4S/m, €,*80
(d} ) +0.48/Mm, ¢, 12 J
() 0,20.045/m, ¢,*8
(@) 0,0.004 5/m, ¢,*80

-2} 4
W
— D. -
‘0-1.- -
o ] -
€

L

[ [1]

]

Figure 1.4 Enlarged section of Fig. 1.3 near © = 90°.

[F /[ e Totol field

L 1] ———  Field without surfoce wove
| ~===—  Surfoce-wove field olone
-8
10 1. 4 n 1 1 1 i I A
(o} 0.5 1.0 1.5 2.0 2.5
Height z in km

Lo uaanll

Figure 1.5 Magnitude of Ejg (7o, ©) at height z in air over sea water in
range z € 7. [Note that |E}g(rg, ©)] ~ 1/r3 to agree with (82).]
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T 1
By (p,0) = 210 gk [l_z 1 i

2rk, p P kyp?
B x \Y? —
1

where R = k3p/2k32.
At very large distances from the source where |P| > 4, the Fresnel-
integral term assumes a simple asymptotic form. This is

Bl \" B« \"? 1 1
T = ~2 0 " _iPs P -2 (___ )
ky (kz"o> R~ ky ("’2"0) (27 P,)!/2\2P, *

ikyp kip®

= - (69)
o[l + (kyz/kyro)]l  k3rg[L+ (kyz/karo))?
When z=d =0 and k,p > 8|k?|/k2,
ik, K
T="24 (70)

With (70), (66)—(68) reduce to

ky
kz

_wp M e o
2wk, k2 p?

w
Ezp(P’ 0) = " Bz¢(P’ 0) = E,,(p,0) =
2

Note that the asymptotic form of the Fresnel-integral term con-
tains a 1/p term that cancels the 1/p terms in (66)-(68). It also
includes a 1/p? term multiplied by the large factor k2/k2. This term
becomes the dominant part of the far field along the boundary.

It is usually convenient to use the spherical coordinates 7y, ©, @,
where O is measured from the vertical z-axis. With p = r,sin®, z =
rocos O, and

Byg(ro, ©) = Byy(p) 2) (72a) -
E,,(r0,©) = Eg,(p,2)sin © + E;,(p,z) cos © (72b)
E,0(r0, ©) = Eg,(p,2)cos © — E;,(p,z)sin © (72¢)
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the field components (62)—(64) become

B,5(re,0) = —g—: e'kamo [sin@(% - %) - T] (73)

. 21
E,.(r0,0) = 231% etkaro { (f_g + K:S’ — Tsin @) cos ©

k[ . ik, 1 .
+ k, [sm@( —— rg) —T] sm@} (74)

Ey6(r0,0) = ~ 2k eik"“{ (z_kz_ — —1— . TsinG)) sin @

27k, rg T k,ry
- ﬁ[sin@(z—k—z— lz) —T] cos@} (75)
ky To To
where 12
3 .
T= 51(—"—) e=iP: F(P,) (76)
1 \ka7o

Of primary interest is the far field defined by k,p > 8|k%|/k2. In
this range, all 1/r3 and 1/r3 terms are negligible compared to 1/r,
terms. Where all 1/r, terms cancel, the 1/r2 terms are retained. The
dominant 1/r? terms are those in the Fresnel-integral term which are
multiplied by the very large factor k%/k2. Since they are significant
primarily near © = m/2, the other 1/r2 terms in E,(r,, @) are also
retained although they are relatively small. The asymptotic form of
the Fresnel-integral term in (69) is

. ik, sin © k2 sin® ©

= 77
roll + (k,/k,) cos O] + k2r2[1 + (k,/k,) cos O)3 (77)
The dominant terms in the far field are
. _ _HBo ik, Jiks (K sin©cos©
Bie(r, ©) = or € { To (kz + k; cos ©
k?sin® © }
T WAL (/) eosoF) Y

E3.(r0,0) = %‘-‘:—2 ekaro {3—2 cos ©
0
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k,sin @

- 79

k,ri[1 + (k,/k,)cos O] } (79)
. _ W0 ik, [ 1Ry [k 5in©cos®
Ezo(ro,©) = 27k, e { To (kz + k, cos ©

k2 [sin3 O [sin?© — (k,/k,) cos O] ] } (80)
k3rg [1+ (k,/k,) cos O]s
Note that Ej.(r,©) has no 1/r, component. The dominant compo-

nent of the electric field, Ej}g(7q,®), has a large 1/r, term except
near © = r/2 where it vanishes. At © = /2,

. ik, kf , Wity k% etkato
= 70‘ + %; E3e(ro,7/2) = ok, k_§ ?; ro=p (81)
When |k z| € kyrg, sin® = p/rg~ 1, cos® = z/ry € 1, and
who ky eHa%o (. ky
E; ~—— = kyz — — 82
2@(7'0, 6) 27rk2 kz rg (1' 2% kz ( )

The 1/ry term in (80) is the far-field contribution by the plane-wave
reflection coefficient; the 1/r2 term is the surface wave. Graphs of
|E3o(ro, ©)| arein Fig. 1.3 in a conventional polar plot, and in Fig. 1.4
in a linear/logarithmic plot for the range 80° < ® < 90° for the low-
angle radiation. Figure 1.5 shows |Ejg(7¢,®)| when z « r, as a
function of z specifically when Region 1 is sea water. The magnitudes
of the field without the surface-wave term and of the field due to the
surface-wave term alone are shown separately. Note that both terms
decrease with distance as 1/r2 for any fixed z.

For engineering applications it may be useful to generalize the far-
field formulas (78) and (80) so that they can be used for all values
of k, without the restriction |k,| > 3k,. This is readily done for the
1/r, terms simply by substituting the exact formula for the plane-wave
transmission coefficient f,, for the approximate one that appears in

(78) and (80). That is,

2 2
1 n*cos © 2 ki
=(1 = ; = —= 83
21+ fer) n? cos @ + (n? — sin? ©)1/2 n k2 (83)
is substituted in the 1/r, terms for
k;ycos©
31+ for) ' (84)

~ ky+ ky cos©



1.5 The Electromagnetic Field of a Vertical Dipole in Air 25

(which is obtained from the exact formula when sin?® < 1 is ne-

glected compared to n?). With this substitution, (78) and (80) have
the following forms:

Bia(re, ©) = —£L ciaro

ik, (k3/k2)sin @ cos ©
{r—o [(kf/kg)cose + [(k2/k2) — sin? e]*/z]
k2 sin® @
" k2r2[1 + (ky/k,) cos 013}

Efo(r0,0) = — 5Lk e*a"
2

{ffl [ (k2/k2)sin© cos © ]

ro L(k}/k3)cos © +[(k}/k3) — sin® O]1/2
_ K [sin3 © [sin? © — (k,/k,) cos O] }

k2rl [1+ (k,/k,) cos ©)3

These formulas are valid subject to the far-field condition

kyro > [8k3/ 3| (87)

When k, = k,, this condition approximates the usual far-field

requirement k,ry > 1, so that the terms 1/(k2r2) and 1/(k3r3) can

be neglected compared to 1/k,r,. When k, = k,, the far field in (85)
and (86) becomes

(85)

(86)

. vk
B33(rg,0) = ~Fo gikyro 2 iy 0;

4r To
o ik
Ele(r,©) = —% etkamo ’r—z- sin © (88)
2 0

which is the far field of the isolated dipole in air. Note that, when
k; = k,, the 1/ry terms do not vanish when ® = w/2 but have
maxima, so that all 1/r2 terms are negligible.

The accuracy of the surface-wave term is reduced when |k, /k,| is
smaller than 3, but it should still give the right order of magnitude
at © = 7/2 until, as k, approaches k,, it becomes negligibly small.
The fact that it does not vanish when k, = k, is irrelevant since r,
must be chosen large enough so that it — along with all the other 1/r2
terms — is negligible.



26 1. Radiation Efficiency of a Vertical Dipole in Air
1.6 The Poynting Vector Near the Boundary

The Poynting vector in Region 2 (air) is defined by

3-2(paz) = 252:(/’:2) + i)SZp(p’ z)

1 1= —
=5 [E2(p,2) x B30, 2)] (89)
1
S2z(P7Z) = _E2p(p’z)B;¢>(p’z);
24,
1 *
S2p(paz) = '—2_/“’0 E2z(p’z)B2¢(p,z) (90)

The slope of the locus of the Poynting vector is

dz ReS,,(p,z)
ittt - 1%kt 91
dp  ReS,,(p,2) (o1)

The general equation of the locus obtained from (90) with the compo-
nents of the field (62)—(64) is complicated and no explicit solution is
available. In the near and intermediate range, an approximate formula
can be obtained that indicates that the Poynting vector at a point
(p,0) on the boundary has followed a curved path from the dipole at
(0,0) upward into the air and back down to the earth at (p,0). For
present purposes, it is adequate to determine its slope as it reaches
the surface. This is readily determined from the field in both the inter-
mediate and far ranges. In the former, defined by k,p < |k%|/k2, the
Fresnel term contributes negligibly and (66)-(68) give the following
leading terms:

1 wio k3 '
b 0) = — E, (p,0)B; 0)~— —= 92
2z(p’ ) 2""0 2p(p ) 2¢(P, ) 87r2k1 pz ( )
1 * Wiy kg
S2p(p10) = —2‘1’ Eg,(p,0)32¢(p,0) ~ 872k ;,E (93)
0 2

In the far field, where k,p > 8|k2|/k2, (71) gives

k, . . wig (kR 1
(0,0 = S3up,0) = - o (B L

4
1 8x2k, k3 p* (94)
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S2(p,0) @, Region 2 (air)

!
Region{ (earth) i S,(p,0)

Figure 1.6 Poynting vector at a point on the air-earth boundary in the
far zone.

In each range,

dp ~ Re Szp(p,()) _ﬂl

where f3; is the real part of k; = ; + ia;. With the boundary con-
ditions at z = 0, it follows that

dZ _ B'e Szz(p90) ~ ﬁ (95)

k2

Slz(p’ 0) = S2z(p’ 0)) Slp(p’ 0) = k_g S2p(p’0) (96)
1

Hence, the slope of the Poynting vector in the earth just below the

surface is R

dz) ky B B

—-— =--F.==-= 97

(&)= 2% =% )

The Poynting vector in both regions at a point on their boundary in
the intermediate or the far field is shown in Fig. 1.6 with 8, /k, = 2.
This rather small value is chosen to permit a clearer diagram. Actual
values of §;/k, are much greater. It is seen that the Poynting vector
arrives at the point of observation (p,0) traveling almost horizontally,
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i.e., with a large angle of incidence in the air, and enters the earth to
travel almost vertically downward, i.e., with a small angle of refraction.
Since §,,(p,0) is greater than §,,(p,0) by a factor k,/k,, most of the
power continues to travel radially along the surface in the air. However,
a small fraction is continuously transferred into the earth where it
travels almost vertically downward. This is a complicated phenomenon
that includes incident, reflected (reradiated) and refracted fields and
associated powers. It is important to note that in the far field only the
surface wave is involved in this transfer of power into the earth.

1.7 Conclusion

A study of the fraction of power that remains in the air (upper
half-space) and the fraction that is transferred into the earth (lower
half-space) when the radiating source is a vertical dipole at a height
d in the air confirms the results obtained by Hansen [3] except that,
as d — 0, the power in the air is reduced to a deep minimum and not
zero. A study of the properties of the electromagnetic field generated
by the same dipole shows that the power transferred into the earth
is associated with the surface wave that travels outward along the
boundary in the air. Furthermore, when d ~ 0, the entire far field
along that boundary is due to the surface wave. This also provides a
significant part of the field in the low-angle range when |k,z| < k,rq
that is of interest for over-the-horizon radar.

An antenna with high radiation efficiency in the sense defined by
Hansen [3] necessarily must generate a very weak surface wave. On the
other hand, an antenna that generates a strong low-angle field with a
significant value along the boundary surface, @ = 90°, necessarily
generates a strong surface wave that transfers all the power associated
with it into the earth. Therefore, it has a low radiation efficiency. It
may be concluded that the concept of radiation efficiency as defined
by (8) is not a useful figure-of-merit.

The design of an antenna that maximizes the surface wave and
the entire low-angle field in the range 80° < ©® < 90° is a problem
of considerable interest. Such an antenna will have a low radiation
efficiency and most of the power radiated will not remain in the upper
half-space (air) but will be transferred to the lower half-space (earth)..
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Appendix A. Evaluation of the Integrals for the Power in the
Air

The two integrals J,, and J,, in (44) and (45) can be evaluated
together. They are

k,
Jia+J2e =Re — 4k3 / 7;° [|G"21|2 - 2G21] A% dA

3 [k 1k B ,s
=RG—L 72 (W—T)A d\

= Re 3 /k’ 75t [k§71 71(1’;2271 + kf‘)’z)] A3 dA
0

k2 71 3
= — Re — / ——2X%dA Al
() (kf’iz + k§71)2 (A1)

With the condition k3 < k? it follows that, in the range 0 < X <
ky N> < k%. Hence, 7, = (k2 — A2)1/2 ~ k,. The integral therefore
becomes

3 3
Tty ~ ~ReH 3ky /‘ A%dA
0

k, (k172 + "’zz:kl)2
k 3
= —Re /2 A% dA i
ky Joo [ky(K} - A2)1/2 4+ k]

Let the variable be changed to

(A2)

k2 — \2)1/2
¢ = (;’;__)_ M =k(1-¢%),  AdA=—k3(dC
2
so that
Tt d, = —Re R [ (=CdC
a a

o (¢ + kykTt)?

_ ?_k_z_{ ! ¢d( B ! ¢3d¢ }
= Re ky /(;(C'l'kzkl_l)z o (C+kokit)? (A3)

These are elementary integrals with the following integrated values:

3k k k
J — _ 3k 2) L. T
1t 2 kl{ (C+ +k((+k2 _1)
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R ) - (en )
3k32 k
Fo(ep)
1
1
+ 3 kg 1 ] }
ky (C+ kgk] ) o

_ 3k, 3k2 kl) 3 3k2]
=% (1- kz)ln(1+k2 S (A4)

The third integral (46) is

k
Joo = —Re > / P 2imdy3 gy
kz 0 ‘72N
3 rk 1 e2id(k3—22)1/3
~ —Re — A%d) (A
Re kz /(; (k% — /\2)1/2 kl(ki _ ,\2)1/2 + kg ( 5)

The approximation 7, ~ k; has been made because A\? < k? in the
range 0 < A < k,. With the same change of variable made in (Al),
ie., ¢ =(k%—)?)2/k,, the integral becomes

B [1_1-¢
ky Jo ¢+ koki?

Now let m = ky/k; and u={(+m,( =u-m,1 - =1-u? +
2um — m?, Then

Jss = —Re e?kadl d¢ (A6)

3 —2ikodm m+1 2tk,du
J3a = —Re3me "2 (1-m du
m u
m+1
/ RISV
m

+ 2m/ ez"kf’“du} (A7)

Next, let v = 2k,du, so that

_ —2ik.dm 2k, d(m+1) L i
J3, = —Re3me " (1 -m?*) dv
2k dm v
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/2k3d(m+1) Vo dv
2k,dm 4k3d?

,m 2k,d(m+1) oy (A8)
-_ € v
kod Jok,dm

These integrals can be expressed in terms of the sine and cosine inte-
grals, viz.,

z 2 z 1 _
Siz = / = du; Cinz = / 1~ cosu du (A9)
0 0

u u

Thus,
Jsa = —Re 3me’2ik?dm{(1 —m?)[lnv — Cinv + iSiv)

. 2k,d(1+m)
m "U}

kpd ©

1

- :1-’:22—&5 e"’(——iv + 1) -

2k, dm

= — Re 3m{ e~ #*a9™(1 _ m?) |In T+m) _ Cin 2k,d(1 + m)
m

+ Cin2k,dm + i Si2k,d(1 + m) — i Si 2k2dm]

tk.d . .
T {J* (1 — 2ik,d(m + 1)) - 1+ szzdm}

— k—’:‘-& (e?*ad — 1)} (A10)

Rearrangement and substitution for m = k,/k, give the final formula.
It is

3k k2 2k3d k
8 k, ( k? k, k,
2

k2> + Cin 2k2d]

ky k1

2k [ k2> ,2k§d]}
+ sin k, [Sl2k2d<1+k1 Si k,

— Cin 2k2d(1 +
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1 — cos2k,d
4k2d?
k,\ sin2k,d
-(-2) zkzd) ()

Appendix B. Evaluation of the Integral J3,
Since Jy, + Jp, = —(J14 + J3,), the only remaining integral is

o ,—2v,d
Jag = ~£—Im/ —— X
2
3 00 (kf - /\2)1/2 e—2d(A-k3)* 333 4y
——1Im
J,, TR R B B
(B1)

In the range A > k;, (k% — A%)Y/2 = §(A% — k?)'/2 = iy,. Hence,

=S [
k

¢ k, v,(ik3v, + k2v,)

iv,e” 2 )\3 d)
B2
+ / v, (ikiv, + zkzul)} (B2)

Here the second integral is real and, therefore, has no imaginary part.

3 ki oy (ikdy, — k2y,)
Ja = ——Im/ 1 1 2 271 2du,A3 d\ B3
% k, k, Val k4 k271 (B3)

The integral that includes the second term in the numerator is real
and has no imaginary part. Thus,

2 k 2 2)1/2,-2d(2%~k3)/? 33
Js =%lrte/l('c —X) XA (B
k

Y K52 = k2) + k3(k? — X2)

In this integral, let { = A2/kZ or A? = (k}, AdA = }k2d(. Then,

2 k3/k3 (12 2+\1/2,—2k,d({~-1)"/3 1.4
Jy= My / (k] — k3()'/2e2ks ECAC g
1

¢ 2k k13 (¢ — 1) + k3 (kT — k3C)
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Here the denominator is

kz
K - k) - KR - ) = 06t - kD) (¢ - )
1 2

so that
J. = Re 3Ic2k2 kI (k2 - k2c)1/2 ~2k d((—])‘/’(dc

Nowlet 72 = ( =1 or ( = 7241, d¢ = 2rdr. Also let n? =
(R/k2) —1, m? = k2/(k? + k2). Then,

(B6)

21,2 2 _ 72)1/2,-2k,dr (-2
I, k k3 / (n? — 72)1/2e= 2297 (72 4 1)r dr (BT)
2 + m?
Since kf > k3, this reduces to the following two integrals:
k2
Js _m32m+5) (BS)
where
n (n2 _ 1.2)1/26—2k,dr1. dr
IL= Re/; o g (B9a)
n (nz - 1.2)1/2e—2k,dr1.3 dr
5=mL L (B9b)

Since m?® = k3/(k? + k3) < k2/k? < 1, it can be neglected in I,
but must be retained in I, because the integral becomes infinite when
m = 0.

The evaluation of I, is carried out in two parts obtained with
7 = nt. Thus, with z = 2k,dn, a =m/n ~ k3/k?,

1 g-2t(1 _ 42)1/2
Il = nA _ﬁ—tdt = Ill + I12 (BIO)
where
1 tdt
— -zt .
hn= "/,, Ay e

1 1-— (1 - t2)1/2
— —zt
I12 = —n‘/; [4 —Waz—tdt (Bll)
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The integral I;; can be evaluated with formula (5.1.44) on p. 230 of
Abramowitz and Stegun [5]. With z = —2t or t = —z/2,

—z d
I, = n/ et 222
0

z% + a?z?
= —g [eiazEl(—z +iaz) + e B (—z — iaz)]
0

[¢**E, (iaz) + e7***E,(~iaz)
—€*E,(z + iaz) — e ***E, (z - iaz)| (B12)

|3

where E;(z) is defined in (5.1.1) on p. 228 of Abramowitz and Stegun
(6]. This can be expressed in terms of the more familiar exponential
integral E;(—z) = —FE,(z) [see (5.1.2) on p. 228]. Also with z(1+ia) =
z[1 £ i(k%/k3)] ~ z (since kZ < k%), the desired formula is
I, = —g [ E;(—iaz) + e***E;(iaz) + 2E,(z) cos az] (B13)
Note that
Ej(+iaz) = Ciaz (Si az - %)
=7+1naz—Cinazﬂ:i(Siaz——12£) (B14)

where v = 0.5772 and Cinz and Siz are defined in (A9). With this
notation, the final formula for I,, is

I, = —%{e‘“ [’y +Inaz — Cinaz - i<Siaz - g)]
+ eiaz [7 +Ilnaz - Cinaz + i(Siaz - g)]
+ 2E,(z) cos az}
= —n{cos az(y +Inaz — Cinaz] + sinaz (Siaz - g)

+ E;(z) cos az} (B15)
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The integral I,, in (B11) can be evaluated as follows:

1
I, = —nhm{/ e Ht1te gt
€—0 0
1
—/ e~ (1 - )2 a4t (B16)
0

Here the first integral is given by formula (1) on p. 255 of Bateman [4],
Vol. 1, with ¢c = 1+4+¢€, a=¢, and # = —z. The second integral is
given by Gradshteyn and Ryzhik [7], p. 323, formula 1, with g = —z,
p= %, v= %e, and u = 1. The results are

= —nlim ———r—l € €6 —z
I, = - nlim {(+1) B(e,1+ ¢-2)

- §B(§fv D1F(3e 5 de+ 35 §2%)

z
+3BGer b DuRGer B dern )] @10
The function & is defined in (1) on p. 248 of Bateman [4], Vol. 1. It is

B(e, 1+ ¢ —z)=iM_1+ S :6(";!)k

per Gy G)kk! A
1+€Z k(k')
=1 —e[7+1nz+E1(z)] (B18)

The last step makes use of (5.1.11) on p. 229 of Abramowitz and Ste-
gun [5]. The Beta function is defined in (6.2.2) on p. 258 of Abramowitz
and Stegun [5]. It is

I(3o0(3) _ 2T +393vT
T(3e+3) € T(}+3¢

_ v I(1)
- € I\( ) [1+ ¢(1)_ 2€¢( )]

B(3¢ 3) =

= % [1-3ey—Fe(-v+2- 21n 2)] (B19)
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where 9(z) = I''(2)/T'(z) as defined in (6.3.1) on p. 258 of Abramowitz
and Stegun [5], and with (6.3.2) and (6.3.4) on the same page. Thus,

B(3e, %)~§—2+21n2 (B20)
Similarly,
I(3¢+3)0(3)
B(L 13 _._2_________ B21
(2€+2 2) I‘(2€+2) ( )

With (6.1.18) and (6.1.15) on p. 256 of Abramowitz and Stegun [5],

1-e /=T(e
P+ )= TY
2
_ 21-¢/me (e + 1)
B 2¢-1T(1e + 1)
_ AT(e+1)
T 2T(ie+1)

(B22)

Also, T'(3) = //2 and T(3¢+2) = (je + 1)I'(je + 1), so that

wl(e+ 1) N 7I'(1)
2l+e(Ze + 1)I2(1e+1)  2I%(1)

T
Blet = ~5 ®2)

The hypergeometric series , F, is defined as follows:

Fy(} 43 2) 14 Z €)k+1(.§z2)k+1
1Fa(36 30 3¢ iz
’ 2’ 2 2 4 k=0 ( )k+1(2‘+ 3)k+1(k+ §L
1,
=14 ——— 2
3Ge+ )

had 1+€ 12k+1
E )(52%)

(B24)
= (Du(ze+ (b +1)!
When higher-order terms in ¢ have been neglected, this reduces to

(i 2)k+1

25 k!
E( D(Gh (E+1)

bli—l

1Fa(36 3 3¢+ 35 42 (B25)
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The second series is

Fpolc St T aupl) B £ 2
( h(ze+ 2)kk' = @)% + k)R!
(B26)

1F2(%€+ %;

Nlu
NIH

;122
red

With these values I;, becomes
. 1
I, = —”}1_{%(;{1 — €[Ey(2) + 7 +Inz]}

k! 1 2k+1
_l(§_2+21n2) [1+ (42")

2 =5 GGk + 1)
(322)k
Z (2)1.(1 + 2k)k')

A Ey() =7 -Taz+1-n2- P(2)] (B27)

where
©0 k'( 1 2)k+1

2
PO =32 a D)

2 (522)
- Tz_: @0 T 2R P(0)=10 (B28)
P’(z)=zfi gl 2)" Ef: (32%)
3247 (3),( 4 & (2),,k'
1 (‘1l Z)k
=51hL 3 517 42 GrDm (B2

With Bateman [4], Vol. 2, pp. 38-39, Formula (57), and p. 5, Formula
(12), this becomes

P(s)= [%(—)—)] Ina @)
Since T(3) = §7(3) = 3v/7,
P'(z) = - [Ly(2) - I(2) (B31)

and
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T [* dz
P() =7 [ 1) -ha) Z (B32)
0
In these formulas, L,(z) is the modified Struve function, I;(z) the

modified Bessel function of order 1.
With z = 2k,nd ~ 2k,d,

2
- 2k, d dz
22 [ @@ 2y e
0 z

With (B33) and (B15), (B10) becomes

Li=1+1,
k, 2k2d 2k2d . 2k2d
. In _
k, {cos k, (7 + k, Cin k,
. 2k§d( . 2k2d 1r)
+ sin Si - =
1 ky 2
2
- (1 — cos 2k2d) E,(2k,d)
ky
—4~In2k;d—In2+1
T 2k,d dz
+ 5/ [11(2) = Ly(2)] —} (B34)
0 z

The integral in (B34) can be rearranged with the recurrence relation

27! [L(2) = Ly(2)] = Io(2) = Lo(2) — [I1(2) — Ly(2)] (B35)

It follows that

x [2d dz
5/; [Il(z) - Ll(z)] 7

T

2k,d

= 12'- { fo(2kyd) — [I,(2k;d) —Ly(2k,d)]} (B36)
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The functions f,(2k,d) and I;(2k,d)— L,(2k,d) are tabulated in the
range 0 < 2k,d < 5 on p. 501 of Abramowitz and Stegun [5]. For large
arguments,

£ [2hd
ORI AO L=
=In2kd+ o {f2(2k1d) — [I1(2k,d) — Ly(2k,d)]}  (B37)

The functions f,(2k,d) and I,(2k,d) — L,(2k,d) are tabulated on p.
502 of Abramowitz and Stegun [5] in the range 0 < (2k,d)"! < 0.2 or
5 < 2k,d < co.

Alternatively, an asymptotic formula can be derived for the inte-
gralin (B36) when k;d is large. This is given in (54c). With it, (B34)

becomes
k 24 2k2d 2k2
I~ ——l{cos 2k (7+1n 2 _ Cin 2d)

kz kl kl kl
. 2k3d (. 2k3d «
T S T 5)

— (2m)!(2m — 1)!
- Z (m!)?(4k,d)?™

(-1)"T'(m+3)
T2 Z (s~ m)(k d)2(12"+1)} (B38)

m—O

The integral I, in (B9b) is evaluated with the help of (1) on p.
323 of Gradshteyn and Ryzhik [7] with p = -2k, d, v =1, p= %,
and u = n. The result, with k,nd ~ k,d, is

I2 = %B(la %) 1F2(1’ 2 g: kzdz)

—kdB(3, $)n* 1 Fo(3 3, 3; kid?) (B39)
Here
sy _ T()T(3) _ 2 s 3y LGE) _w
B(1, 3) = TORREL B 2 =—T@E =35 B0
Hence,

1
L= LR b b M) - Tha G 8 6| (B
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The hypergeometric series can be expanded in terms of the modified
Struve function L and Bessel function I. Thus, with (1), = k!,

(k2d2)k
(B

kzdz k+1

le(l’ 29 2a kzdz) =1+ E

k=0 5 )k ( )k

kzdz)k
=1+ = k’d’ (1_
5 ,;, (Dr(Dh

=14z 5 kzdz 1F2(1’ ;: g’ kzdz) (B42)

It follows with the first line on p. 39 of Bateman [4], Vol. 2, that

4 L,(2k,d)T(%)

1 5, 22 2 52 L2\4R 2

1Fa(15 3, 35 kdY) =1+ gkld o —1/2k3d3
3r

Also, with formula (12) on p. 5 of Bateman [4], Vol. 2,

o k2d2)k
F(§,§ 3: k2d2)=z ( 1
1£212y 2y 9 Aq

k=0 (3)kk!

= —— I,(2k,d) (B44)

It follows that
k2
=21
o= {5 - bk - Leka)}  (Be9)
This can be evaluated with the recurrence relations (12.2.4) on p. 498
and (9.6.26) on p. 376 of Abramowitz and Stegun [5]:
1

vaT(3)

Ly(2) = Lo(z) = 2 Ly(s) - (B46)

and
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I,(2) = I() - = (2) (B47)
With these formulas,
I,(2k,d) — Ly(2k,d) = Iy(2k,d) — Lo(2k,d)
i - [£;(2k,d) ~ Ly (2%,d))
k d
F AT

The functions Iy(2k,d)— Ly(2k,d) and I,(2k,d)— L,(2k,d) are tabu-
lated on p. 501 of Abramowitz and Stegun [5] in the range 0 < 2k,d < 5
and on p. 502 in the range 5 < 2k,d < oo.

Alternatively, use can be made of the power-series expansions of
L,(2k,d) and I,(2k,d). These are convergent for all values of the
argument. With z = 2k,d, they are

(= 3 oo (lz)zk
Ly(2) = (5) kzo T(k+ é)r(k +1)

2k
Iy(z) = ( ) Z k,;"(k) 5 (B49)

When (B34) and (B45) are combined in (B8), the result is

(B48)

3k2
J3g = 2 (I + I)

2 2 2
=_&{6082k2d( Lo 2k3d szkzd)

k, k, k, k,
. 2k3d (. 2k2d 1r)
+ sin k, (81 k, -3

2
- (1 — cos 2:2d) Ey(2k,d)
1

—y—-In2kd+1-1n2
r 2k, d dz
+ 5/ [I1(2) = Ly(2)] 7}

+ :2 {1 + m [L2(2kyd) - I( 2k1d)]} (B50)
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When d =0,

3k, k k,
.13‘,=-k—1(1—1112—211116—;>+k—2 (B51)

For large values of k,d, asymptotic formulas for the integral in
(B50) and for the term L2(2k d) — I,(2k,d) are, respectively, in (54c)
and (54a,b). With these,

2k2d 2k2d 2k2d
J3g = —%{COS 2 ('y +In =2 - Cin—L)

1 k, ky ky
) kzd . 2k.f,d T
+ sin ks (Sl —k1— - 5)
(2m)!(2m - 1)!

B Z (m!)?(4k, d)2m

1S (=1)7T(m +3)
+3 2 T m)(k oD

m=0

= (-1)"T(3+m)
4k2dzz (2 -m) kzdz) } (B52)

Note that when k; — o0, J3, — 0.
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