[{

A NEURAL NETWORK METHOD
FOR HIGH RANGE RESOLUTION
TARGET CLASSIFICATION

R. G. Atkins, R. T. Shin, and J. A. Kong

7.1 Introduction

7.2 Neural Network and Conventional Classifler Results
7.3 Noise Performance

7.4 Alignment Uncertainty

7.5 Computational and Storage Requirements

7.6 Summary

Acknowledgments

References

7.1 Introduction

Classification or identification of radar targets from measurements
of their radar signatures continues to be an area of considerable interest
and active research. In the past, a variety of classification algorithms
have been proposed [1-16], and these techniques have yielded varied
levels of effectiveness in differing applications. For practical discrim-
ination, some type of measurement diversity demonstrating variation
across classes must be exploited.

Polarization diverse measurements are utilized by Kong et. al. [1]
who employ a quadratic distance measure with a feature vector con-
sisting of horizontal, vertical, and cross-polarized measurements, to
identify terrain cover. This classifier is shown to be optimal in min-
imizing the Bayes risk under the assumption of Gaussian statistics.
Swartz [2] introduces a polarimetric matched filter to provide optimal
contrast for discriminating between two ground terrain classes, and ap-
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256 7. A Neural Network Target Classifier

plies this method to the processing of polarimetric synthetic aperture
radar (SAR) images. Lim et. al. [3] employ both supervised and un-
supervised classification techniques with polarimetric SAR data, and
Holm [4] uses polarimetric measurements to distinguish between the
response of stationary targets and ground clutter.

Additional measurement diversity is exploited by other classifica-
tion schemes which utilize multi-frequency measurements or transient
target signatures. Mains and Moffatt [5] describe a method of identi-
fying targets using their resonant characteristics, a technique further
developed by Kennaugh [6] who describes a K-pulse method, and by
Chen et. al. [7,8] and Rothwell et. al. [9,10] who present similar E-
pulse and S-pulse techniques. These methods are shown to obtain
discrimination by correlating the late-time response with an angularly
independent waveform unique to each target, which results in either a
zero or single mode response for the correct class. Other algorithms
utilize the entire pulse transient or high range resolution target profile
to provide a range image of the scattering centers of the target. Cham-
berlain [11] combines frequency and polarization diversity to obtain a
time-domain polarization signature or transient polarization response,
and uses this data with nearest neighbor or syntactic methods to clas-
sify aircraft targets.

Most of the applications presented in the past utilize one of a col-
lection of conventional classifiers, each of which has been shown to pos-
sess its own limitations. Profile matching, perhaps one of the most well
known and widely used methods for classifying targets from high range
resolution profiles, relies upon correlating the unknown signature with
a library of measured signatures for each target. This matched filter
approach is in theory optimal for classifying known profiles in statis-
tically independent Gaussian noise [12]. In practice, however, even in
the absence of noise sources, the unknown profile is unlikely to exactly
match any recorded in the library, since profiles can only be stored for
a finite number of aspects. In addition, multi-path and target-clutter
interactions may lead to noise sources which are non-Gaussian and cor-
related with the free-space target signature. For these reasons, profile
matching can often generate sub-optimal results. With a large number
of target classes, profile matching has the added practical constraint of
requiring prohibitive processing and storage. Sometimes this compu-
tational burden may be lessened somewhat when approximate aspect
information is available, as is the case with many airborne targets, and
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some reduction in storage can also be achieved by averaging profiles for
several adjacent angles, and storing only the averaged profiles. K-pulse
(6] and other similar methods [7-10] eliminate both storage and com-
putational burdens by using an aspect independent response, however,
since these methods utilize the late-time, small amplitude signature,
they are generally more susceptible to noise.

Parametric or statistical methods, which extract relevant features
of the profiles and store only the estimated first or second order statis-
tical information for these features [13], escape the need to store the
entire set of profiles and to process these for each unknown. In the
simplest case, the feature vector extracted is taken to be the sampled
range profile itself, and its mean and covariance matrix are determined
by averaging over all aspects. In other cases, more elaborate features
such as target length or positions of peaks in the profile have been
suggested as alternative features. The Bayes classifier [1,3,13,14] may
be used to optimally reduce classification error once assumptions have
been made regarding the underlying distributions of the feature vec-
tors. Alternately, Novak [14,15] shows that the linear Fisher classifier
is only slightly sub-optimal to the Bayes classifier, and may perform
better in practice where the estimated statistics are not known exactly.
In addition, distance methods such as the Euclidean distance or Ma-
halanobis distance classifiers [13] can be employed without making any
explicit assumptions toward the distribution. Implicit in these tech-
niques, however, is the assumption that the distribution of the feature
vector is adequately described by its first and second order statistics.
For Gaussian-like distributions this assumption is not severe, however,
in the general case where the distributions are multi-modal, an attempt
to model with only first and second order statistics may discard useful
information, and lead to poor accuracy. More complex methods such
as Gaussian mixtures or radial basis function classifiers [16] provide
some improvement by allowing formation of more arbitrary decision
regions, but these methods do not escape the inherent limitation of
most conventional techniques, which each assume a specific fixed dis-
tance metric in the space of the input feature vector.

One novel group of classification techniques which overcome this
limitation, and which has recently received considerable attention, is a
set of methods based on the use of neural networks [17-26]. As classi-
fiers, neural networks have shown greater flexibility than conventional
algorithms, adapting themselves more easily to distributions possess-
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ing a high degree of complexity, and have found application in diverse
problems such as speech recognition [18-21,28) and multi-sensor fusion
[17]. Presented a set of sample feature vectors during the training pro-
cess, the neural network tries to selectively and automatically choose
those characteristics of the feature vector which lead to the greatest
separability between classes.

For a number of applications, neural networks have been compared
to conventional classifiers, and have shown an accuracy equivalent to
or exceeding the previously used methods. Huang and Lippmann [18]
compare the performance of neural network classifiers to a quadratic
Gaussian classifier, and show that even on problems with Gaussian
distributions, the neural network approach performs similarly. When
outliers are present, the Bayes classifier fails, while the robustness of
the neural network allows it to discount the outliers and perform well.
Lippmann [19], Huang [20] and Waibel et. al. [21] both apply neural
networks in speech recognition problems, and show that the network
classifiers can sometimes outperform conventional methods. Gorman
and Sejnowski [22] apply multi-layer perceptron networks to the prob-
lem of classifying sonar targets from wide-band pulse signatures, and
obtain performance with a three layer network which exceeds the ac-
curacy of both nearest neighbor classifiers, and that of trained human
listeners. Similar networks are used by Sigillito et. al. [23] to classify
radar returns from the ionosphere. Decatur [24,25] favorably com-
pares neural networks to Bayesian classifiers in the problem of identi-
fying ground terrain from polarimetric SAR data, and Farhat [26] uses
hetero-associative neural networks to identify aircraft from sinogram
images.

The neural networks used in the above applications can be viewed
as filters which are both non-linear and adaptive. As shown in the flow
graph of Fig. 7.1, a set of inputs {z;,z3,-+-,2,} are applied to the
network either continuously or at discrete times, and from these are
derived a set of outputs {y1,¥2,+,¥m}. The processing is much like
that of a simple linear flow graph, except that the subset of possible
functional blocks is extended to include non-linear elements, and the
coeficient weights on the paths between nodes are allowed to evolve
with time. Unlike a linear network, where each node is simply a sum-
ming junction which adds a number of weighted inputs, the node ap-
pearing in the neural network differs in the addition of a non-linear
element at the output of the sum, as show in Fig. 7.2. Although the
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Figure 7.1 Flow graph representation of an arbitrary neural network
structure, with inputs X;, X3, and X3, and outputs Y; and Ys.

type of non-linearity which is employed varies with the implementation
of the network and its intended purpose, two types are in common use.
The threshold or step non-linearity assumes a value of one for inputs
above a specific level, and is zero for smaller inputs. In contrast, the
sigmoid non-linearity changes continuously from zero to one, providing
a continuously differentiable function needed for training algorithms
such as Back Propagation [29], and a localization effect helpful in ob-
taining better performance with noisy inputs.

A large number of different types of neural networks exist, and
these are often grouped according to the geometry of the network, the
function to be performed, and the training algorithm used to adapt
the network weights. One specific type which has been shown useful in
classification problems is the Multi-Layer Perceptron [27], an example
of which is shown in Fig. 7.3. This network consists of several layers
of nodes, connected in a strictly flow-forward manner to permit prop-
agation from left to right without feedback. Any connection geometry
which preserves this one directional flow is permitted, and the number
of layers and number of nodes in each layer can be chosen arbitrar-
ily. Although four or more layers could be used, three has been shown
to provide the full generality in allowing completely arbitrary decision
regions for classification [28].
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Figure 7.2 Individual node structure within the neural network. The
sum of weighted inputs is passed through a non-linearity of either the
hard-limiting or sigmoid types.
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Figure 7.8 Structure of a Multi-Layer Perceptron neural network con-

sisting of two hidden layers and one output layer, with three inputs and
two outputs.

The method in which this type of neural network is applied con-
sists of two stages. In the first, the network is trained by adapting its
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weights to perform the function for which it is desired. This training
is performed by minimizing the difference between the desired output
for a set of inputs, and the actual output, obtained as a function of
the connection weights. Back Propagation [29] adapts the weights by
successively applying a set of training vectors as input to the system,
calculating the actual output with the present set of weights, and form-
ing an error term at the output. This error is propagated back through
the network, adapting the weight values using a gradient descent tech-
nique to reduce the output error. This process is repeated for each
input vector in the training set, and then repeated for the entire train-
ing set until convergence is attained. After this first training stage,
the network is used to perform the desired function. The connection
weights remain fixed, and inputs are applied and processed through
the network from the input layer through successive hidden layers to
the output.

The method by which this procedure can be applied in a simple
classification problem is shown in Fig. 7.4. The problem presented is a
two class example where the observed vector from which classification
will be performed consists of two features, X; and X,. The observed
distribution of these features for the two classes are shown with ‘+’ for
class one, and ‘o’ for class two. The network used to classify feature
vectors for this simple problem is the single node structure of Fig. 7.5.
Assuming a threshold non-linearity is employed, the decision boundary
in the space of the features will be linear, since the output of the node
will be one for features such that,

AX, + BX, +7 >0 (1)

By choosing appropriate values of the constants A and B, and for the
threshold, <, this decision boundary can be established to separate the
two classes, and provide a mechanism for identifying a given feature
vector. In this manner, the neural network can be used to realize the
structure of a simple Gaussian Maximum Likelihood (ML) classifier
for the case of identical covariances across classes [19].

The advantage of the neural network approach becomes clearer for
the more complicated example shown in Fig. 7.6, where the two classes
can no longer be separated by a single linear decision boundary. For
this situation, a more complex network, such as that of Fig. 7.7, must
be employed. Each of the nodes in the bottom layer of this network
functions in an analogous manner to that of the simpler problem above,
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Figure 7.4 Simple two-class, two-feature classification problem where
class 1 is represented by ‘4’ and class 2 by ‘0’, and where a linear de-
cision boundary can be produced between the two using a single node
Perceptron.

X4
Y = f(AXy + BX3 -C)

X2
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Figure 7.5 Single node Perceptron with two inputs, X; and X3, cor-
responding to the two features. This classifier creates a linear decision
boundary in the space of the inputs.

with each forming one of the six linear boundaries shown in Fig. 7.6.
From these boundaries, the two disjoint regions, R; and R, can be
formed by the second layer of the network, which with the appropriate
weights, performs a logical ‘AND’ operation on the results output from
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Figure 7.6 Complex two-class, two-feature classification problem where
the first class is clustered in two disjoint regions.

the first layer. Hence, the output of either of the second layer nodes
will be one only if the input vector lies in the corresponding region.
Finally, the last layer performs a logical ‘OR’ operation such that the
final output of the network is one for feature vectors in either of the
two shaded regions, and is zero for all other pairs of inputs.

With this method and with the appropriate number of nodes in
each layer, it is possible to synthesize arbitrarily complex decision
boundaries which may form multiple disjoint regions. This technique
is therefore better adapted to handle multi-modal distributions which
are not easily modeled as Gaussian, and for which Gaussian ML or dis-
tance classifiers do not generally perform well. In addition, the Back
Propagation training algorithm provides a simple method for choosing
the connection weights of the network, and automatically generating
decision boundaries.

This chapter considers the application of neural networks to the
problem of target classification from high range resolution profiles.
The effectiveness of the neural network classifier is demonstrated us-
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Figure 7.7 Multi-Layer Perceptron classifier for the two-feature, two-
class problem with two disjoint regions. The first layer produces linear
boundaries, the second forms the two regions, and the last merges the
two regions.

ing synthetically generated range profiles of two groups of geometries,
produced using RCS prediction techniques. For both groups, the neu-
ral network approach is compared with the conventional techniques of
profile matching, and Euclidean and Mahalanobis distance classifiers.
In addition, the performance of both conventional and neural network
classifiers in the presence of additive noise and alignment uncertainty
is explored. Finally, a comparison of the computational and storage
requirements of each approach is presented.



7.2 Neural Network and Conventional Classifier Results 265

7.2 Neural Network and Conventional Classifier Re-
sults

The two sets of targets which are used to test the neural network
and other classifiers are pictured in Figs. 7.8 and 7.9. The three targets
shown in Fig. 7.8 (Targets 1-3) are all canonical geometries for which
radar cross section predictions can easily be performed, and all are
assumed to be composed of perfect electrical conductors. The first
target is a circular cylinder, 1 meter long and 1 meter in diameter.
The second is a longer, more slender cylinder, 3 meters long and 0.5
meters in diameter, and the third is a rectangular box, 2 meters long,
and 1 meter in both height and width, constructed from six flat plates.
Although this first group consists of simple, unrealistic structures, the
targets provide geometries with which the classification errors may be
more easily interpreted.

The second set (Targets 4-6) provides, in contrast, a group of tar-
gets more realistically modeling vehicles of potential interest in prac-
tical classification applications. The first target is an aircraft fighter
model, the second is a delta-wing aircraft, and the third is a cruise mis-
sile replica. The first two targets are approximately the same size with
lengths of 15-16 meters and wing-spans of 8-10 meters, while the final
target is considerably smaller with a length of only 5.6 meters and a
wing-span of 2.5 meters. As with the above targets, this second group
is modeled using simple canonical shapes such as plates, cylinders, and
cones.

The radar cross section prediction method which was used to gen-
erate the synthetic range profiles is the Physical Theory of Diffraction
(PTD) [30]. The PTD predictions include both the Physical Optics
term accounting for surface reflections, and the diffraction term ac-
counting for edge scattering. Coherént fields were predicted for each
geometrical component composing the targets, and these were summed
to determine the overall response. Since PTD treats scattering as a
local phenomenon, all effects such as multiple scattering and creeping
waves are neglected, and consequently, the time delays of scattered
returns in the transient response correspond directly to the positions
of the scatterers in range. Hence, the maximum time extent of the
pulse response will be equal to the two-way propagation delay along
the longest target dimension, and the late-time response from multiple
interactions will not be predicted.



266 7. A Neural Network Target Classifier

/hn 5 -_— m——/
ARGET 1 TARGET 2 |
SHBTRT CYLINDER 9 RECTANGULAR BOX

4
.5m
” ‘
£ 3m
—_ P
TARGET 3

LONG CYLINDER

Figure 7.8 Simple canonical targets composing the first set of test ob-
Jects. Target 1 is a cylinder 1 m long and 1 m in diameter, Target 2 is
a cylinder 3 m long and .5 m in diameter, and Target 3 is a rectangular
box 1 mX1 mx2 m.

In order to develop high range resolution profiles [31] for these
targets, radar cross section predictions were made with stepped, sin-
gle frequency illumination for 360 aspects spaced 1° apart around the
targets. For the simple geometries, predictions were done in the zy-
plane, using a horizontal polarization in which the electric field lies
in the measurement plane. To obtain the range information, the fre-
quency used in the predictions was stepped over 32 discrete values
spaced 40 MHz apart in a band from 1.6 to 2.84 GHz. The samples
in frequency for a given aspect were then windowed with a Hamming
window, and this 32 point frequency response was transformed via
an FFT algorithm. The squared magnitude of the resulting complex
envelope was taken to provide a 32 point range profile of the target
corresponding to samples of the returned power every .117 meters over
a total range interval of 3.75 meters.

For the realistic targets a similar approach was used, but the aspect
cuts were taken with a depression angle of 7° below the wing plane of
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Figure 7.9 Realistic targets composing the second set of test objects.
Target 1 and Target 2 have lengths of 15-16 m and wing spans of 8-10 m.
Target 8 has a length of 5.6 m and a wingspan of 2.5 m.

the targets. In addition, at each aspect, the predictions are repeated
for 64 frequencies, 8 MHz apart, in a band from 1.744 to 2.248 GHz,
and the results are windowed and transformed to obtain a 64 point
range profile.

Profiles generated for several of the targets from the simple and
realistic groups are shown in Figs. 7.10 and 7.11 respectively. The first
profile (top) of Fig. 7.10 is that of the shorter cylinder (Target 1) when
illuminated normal to the front circular endcap (¢ = 0°). The two
peaks arising in this signature correspond to a large specular return
from the front surface, and a diffraction return from the rear edge.
The second profile (bottom) is done for the rectangular box (Target 3)
at an incidence angle 45° from the lengthwise axis through the center
of the box. This signature shows three peaks in the return which can
be seen to arise from the three forward edges of the box. The final
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corner is shadowed at this incidence direction, and the PTD algorithm
predicts no return from this hidden corner. The resolution of both
profiles is poor, however, this deficiency is compensated for by the
simplicity of the targets and their signatures, and has little effect on
the recognition of the targets for most aspects, since there are few
closely spaced features to resolve.

Figure 7.11 shows a sample profile of the fighter target (Target
4) for the nose on aspect. From the dashed outline of this target,
the scattering centers responsible for each peak in the return can be
determined. It is clear that scattering arises from the front and rear
ends of the engine, from the tip of the wing mounted missiles, and from
the corners of the wing and tail surfaces.

In order to provide for both training and testing of the neural net-
work and other classifiers, the 360 profiles generated for each target
were split into two groups. The odd angle profiles were used for train-
ing, and the interspersed even angle profiles for testing. In addition,
to avoid the practical problems which might arise with calibration of
a realistic measurement system, the profiles are all normalized to have
a correlation coefficient of one. All of the networks employed were ini-
tialized with random weights, and trained with the Back Propagation
algorithm. To overcome the effects of the random initial weights, the
training of each network was repeated several times with different ini-

tializations, and the results given below are those averaged over these
individual trials.

For the first group containing the simplistic targets (Targets 1-3)
several network sizes were tested, and the results of two such sizes are
presented here. The simplest network utilized is a single-layer per-
ceptron, consisting of three nodes corresponding to the three targets,
where each node is fully connected to all 32 inputs. The second network
is a larger topology with three layers of nodes, 12 in the first hidden
layer, 6 in the second, and three in the output as before. All inputs
or nodes are fully connected to all nodes in the next most immediate
layer, but no connections are made between non-adjacent layers.

For comparison purposes, three types of conventional classifiers
were also utilized. In the profile matching scheme, each of the sig-
natures in the library (training data) is correlated with the unknown
profile, and the hypothesized class is taken as that for which the largest
correlation coefficient is found. Since the profiles have been normal-
ized, and since the effects of time misalignment in the received profile
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Figure 7.10 Sample high range resolution profiles of Target 1 (top)
illuminated at end-on incidence, and of Target 3 (bottom) illuminated

at an angle of 45° from its lengthwise axis.
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Figure 7.11 High range resolution profile of Target 4 for the case of nose
on incidence.

are not currently being considered, the correlation coefficient is simply
computed as the inner product of the two profile vectors as given by
(2).

P = XIIi‘bfafy Yunknown (2)

Two distance classifiers were employed using the Euclidean and Ma-
halanobis distance metrics given by (3) and (4) respectively.

dzEuclidean = (Y - X")T (Y - X‘) (3)

dMahatancbis = (¥ — X3)T AZ! (Y - X) (4)

The first requires only the mean vector, X;, for each class, which
was computed by averaging over all training profiles for each target.
The second metric calculates a statistical distance weighted by the
covariance matrix, which is again estimated from the training data.
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The results of the two neural network classifier approaches are
given in Tables 7.1 and 7.2. The overall accuracy with the smaller,
three node network was found to be 93.6%, and the larger network
showed some improvement, increasing the accuracy to 97%. Further
increasing the size of the network, however, was found to display no
additional increase in classification accuracy. For the smaller network,
the confusion matrix of Table 7.1 shows that Target 1, the short cylin-
der, was classified correctly at all times, while the error was caused by
sometimes mistaking Targets 2 and 3 for the first target. In contrast,
for the larger network, it is Target 2, the longer cylinder, which is al-
ways classified correctly, and Targets 1 and 3 are sometimes confused
for one another. This later result is the more expected distribution of
error, since Target 2 is longer and more slender than either of the other
targets, and, hence, more distinguishable at all aspects. In contrast, it
is likely that Targets 1 and 3 will be confused part of the time, since
they both have the same widths, and their broadside profiles are very
similar. Thus, the larger network experiences error where it should log-
ically occur, indicating that the error is due to the likeness of the pro-
files, and not to the incapability of the classifier to effectively separate
them. The smaller network, however, not only unexpectedly classifies
Target 1 correctly for all test profiles, but mistakes Targets 2 and 3 for
Target 1 without ever mistaking Target 1 for either of the other two.
This pattern of error shows a favoring of Target 1 by the classifier, an
asymmetry which should not exist if the classification error is truly
due to an indistinguishability between profiles. Instead, the error is
forced by the simplicity of the network which does not allow formation
of sufficiently complex decision boundaries to classify the profiles in as
optimal a fashion as possible.

Similar trends are shown in the results of the conventional classi-
fiers. Profile matching was found to have an overall accuracy of 96.3%,
very close to that of the larger neural network. In addition, the confu-
sion matrix given in Table 7.3 shows that the error distribution is the
same as that of the larger network, with Target 2 classified correctly,
and Targets 1 and 3 sometimes confused. In contrast, the Euclidean
distance classifier behaves much more like the simple network, although
its overall accuracy of 71.8% is significantly lower. The confusion ma-
trix of Table 7.4 shows that the Euclidean distance method classifies
Target 1 with 100% accuracy, confusing Targets 2 and 3 for Target 1,
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Target Classification
Target 1 Target 2 Target 3

Target 1

(short cylinder) 1.000 .000 .000
Target 2

(long cylinder) .104 .896 .000
Target 3

(rectangular box) .089 .000 911

Table 7.1 Confusion Matrix for Simple Targets Classified by the 3-node
Perceptron.

Target Classification
Target 1 Target 2 Target 3

Target 1

(short cylinder) 978 .000 .022
Target 2

(long cylinder) .000 1.000 .000
Target 3

(rectangular box) 067 .000 .933

Table 7.2 Confusion Matrix for Simple Targets Classified by the 21-node
Multi-Layer Perceptron.

and Target 3 for 2. The reason for the successful classification of the
first target stems from the fact that of all the targets it is the most
symmetric in aspect, and, hence, its profiles with varying aspect differ
less from the mean profile than do the other two classes. The test pro-
files for Target 1 all lay clustered close to the mean, and all are, thus,
closer to their own mean than to any for another class. Again, as with
the simple neural network classifier, the accuracy of the classification
is not limited by the the data, but by limitations of the classifier itself.

The Mahalanobis distance classifier provides a considerable im-
provement in overall accuracy over the Euclidean metric, obtaining
a classification rate of 95.8%. The confusion matrix of Table 7.5 re-
veals that the distribution of error is a compromise between that of
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Target Classification
Target 1 Target 2 Target 3

Target 1

(short cylinder) .956 .000 044
Target 2

(long cylinder) .000 1.000 .000
Target 3

(rectangular box) 067 .000 .933

Table 7.8 Confusion Matrix for Simple Targets Classified by Profile
Matching.

Target Classification
Target 1 Target 2 Target 3

Target 1

(short cylinder) 1.000 .000 .000
Target 2

(long cylinder) .222 511 267
Target 3

(rectangular box) .356 .000 644

Table 7.4 Confusion Matrix for Simple Targets Classified with the Eu-
clidean Distance Metric.

the simpler, Euclidean metric and perceptron network classifiers, and
that of the more complex profile matching and multi-layer network
classifiers. Although Target 1 is no ‘'longer classified 100% correctly,
Target 2 is identified with significantly greater accuracy than with the
Euclidean metric, and there is less confusion of Target 3 for Target 1.
By employing covariance information, the Mahalanobis metric is able
to overcome the problem of the Euclidean classifier in which Target 1
is heavily favored. The overall high accuracy of the Mahalanobis met-
ric shows that the assumption of singly-peaked distributions is not too
limiting for this data set, although some improvement is still possible
by relaxing this assumption, as seen in the neural network results.
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Target Classification
Target 1 Target 2 Target 3
Target 1
(short cylinder) 978 .000 .022
-_Target 2
(long cylinder) .022 .956 .022
Target 3
(rectangular box) .061 .000 939

Table 7.5 Confusion Matrix for Simple Targets Classified with the Ma-
halanobis Distance Metric.

It is apparent from these results that it is necessary to match the
complexity of the classifier to the complexity of the distribution of fea-
ture vectors. Both the Euclidean distance classifier and the smaller
perceptron network are not sufficiently complex to take full advan-
tage of the information contained in the training profiles, and their
structure is too limiting. Despite this limitation, however, and the
similarity between the structure of the smaller network and that of a
simple Gaussian Maximum Likelihood classifier, the perceptron clas-
sifier shows a surprisingly high accuracy. This result demonstrates
the advantage of the neural network approach which is not limited
to a Gaussian assumption, but free to place its decision boundaries
more arbitrarily. The neural network training allows placement of the
decision boundaries in positions which they might only occur in ML
schemes if non-gaussian distributions were assumed.

A number of different size networks were also tested with the group
of more realistic targets, and the overall accuracies achieved are shown
in Fig. 7.12. A single layer perceptron, as well as several two and three
layer models are compared. Classification accuracy is seen to initially
increase as the network is made larger, but this effect saturates at a size
of approximately 27 nodes, and the accuracy fluctuates after this point.
A decrease in accuracy for larger networks is possible because too many
nodes may lead to overly specific definitions of decision regions, which
do not generalize properly to classify the testing data.

Table 7.6 shows the confusion matrix for the three-layer, 27 node
network containing 16 nodes in the first hidden layer, 8 in the second,
and 3 in the output layer, and which achieve: an accuracy of 86.8%.
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Figure 7.12 Accuracy of the neural network classification for the realistic
targets as a function of network size. The number of layers to each
network is shown in parentheses.

Most of the error arises in misclassification of Targets 4 and 5, which
are both classified with only 82% accuracy. In contrast, Target 6,
the cruise missile model is much shorter than the other two, and this
characteristic allows it to be discriminated more easily, with 97% ac-
curacy.

Profile matching when applied to the set of realistic targets yields
a 78.4% accuracy overall, which is slightly lower than that exhibited
with the neural network approach. This comparison indicates that the
neural network classifier is better able to generalize from the training
data, where the profile matching approach experiences inaccuracies
due simply to the differences between the profiles used for training and
the interspersed profiles used for testing. Hence, the neural network
approach is likely to suffer less than profile matching when the training
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Target Classification
Target 4 Target 5 Target 6

Target 4

(Fighter Aircraft) .816 .153 .031
Target 5

(Delta-wing Aircraft) .080 .818 .102
Target 6

(Cruise Missile) .004 024 971

Table 7.6 Confusion Matrix for Realistic Targets Classified by the 27-
node Multi-Layer Perceptron.

Target Classification
Target 4 Target 5 Target 6

Target 4

(Fighter Aircraft) .789 144 .067
Target 5

(Delta-wing Aircraft) .144 .656 .200
Target 6

(Cruise Missile) .011 .081 .908

Table 7.7 Confusion Matrix for Realistic Targets Classified by Proflle
Matching.

profile azimuths are moved further apart. The distribution of error for
profile matching, as seen in Table 7.7, is, however, very similar to that
of the neural network, with Target 6 classified with relatively high
accuracy, and a greater error arising between Targets 4 and 5.

The accuracies of both Euclidean and Mahalanobis distance classi-
fiers were found to be lower than profile matching, with rates of 65.2%
and 63.8% respectively. Though the overall accuracies of these two
metrics are similar, Tables 7.8 and 7.9 reveal that the individual target
accuracies are very different. Both classify Target 4 with approximately
the same accuracy, but the Euclidean metric makes large errors with
Target 5 and classifies Target 6 with 100% accuracy, while the Maha-



7.2 Neural Network and Conventional Classifier Results 277

Target Classification
Target 4 Target 5 Target 6

Target 4

(Fighter Aircraft) 656 .089 .256
Target 5

(Delta-wing Aircraft) .378 .300 .322
Target 6

(Cruise Missile) .000 .000 1.000

Table 7.8 Confusion Matrix for Realistic Targets Classified with the
Euclidean Distance Metric.

Target Classification
Target 4 Target 5 Target 6

Target 4

(Fighter Aircraft) .700 .300 .000
Target 5

(Delta-wing Aircraft) 141 .836 .023
Target 6

(Cruise Missile) .096 .526 .379

Table 7.9 Confusion Matrix for Realistic Targets Classified with the
Mahalanobis Distance Metric.

lanobis metric makes large errors on Target 6. The high accuracy of
the Euclidean metric with the cruise missile target is expected, since
like the short cylinder of the first data set, this target is the most sym-
metric for all aspects, and, hence, the most tightly clustered about its
mean. The loss of accuracy for Target 6 when changing to the Maha-
lanobis metric suggests that the distribution for Target 5 has a much
greater spread than that of Target 6, and that much or all of the clus-
ter for Target 6 is contained in a region statistically close to the mean
profile for Target 5.
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7.3 Noise Performance

One practical issue which is not addressed by the above analysis
concerns the performance of each of the algorithms when corrupting
noise is present in the profile to be classified. The above results were
obtained with clean training and testing profiles, and represent the
limiting case of infinite signal-to-noise (S/N) ratio. For many applica-
tions, such as the discrimination of ground targets obscured by sources
presenting large clutter returns, it is necessary that accuracy be main-
tained despite profile distortion from additive noise.

To provide a comparison of the performance of each algorithm
with noisy measurements, the methods used with the realistic targets
above were reapplied after artificially adding noise to the test profiles.
The noise added was of Gaussian amplitude and uniform phase, and
was uncorrelated between range cells. The S/N ratio was defined as
the ratio of the average power in each uncorrupted range cell to the
average added noise power. Testing of the algorithms was performed
at varying S/N ratios, and the results are shown in Fig. 7.13.

At high S/N levels the neural fetwork classifier outperforms the
conventional methods, as shown previously. Profile matching is next
most accurate, outperforming each of the two distance classifiers, which
both have approximately the same accuracy. As more noise is added
to the test profiles, however, the accuracy of the Mahalanobis dis-
tance classifier begins to drop rapidly. This decline arises from the
fact that the classifier is still trained with clean data, and the effect
of the noise on the covariance matrix of the observed feature vector is
not accounted for. This case corresponds to a situation where the noise
level is unknown and where an estimate of the noise is either unavail-
able or un-utilized. As a result, a small amount of added noise may
produce a large statistical deviation from the mean profile, as mea-
sured using the statistics of the clean training set. This occurrence
is particularly noticeable for the cruise missile target, which with its
small length is expected to have little return in the range cells at either
end of the profile. As shown in Table 7.10, a small amount of added
noise (S/N = 30 dB) causes a large statistical distance for class 6, and
results in this target being mistaken for the other two.

A similar decrease in accuracy with increasing noise is experienced
by the neural network classifier. For S/N ratios above 20 dB, the neural
network performs well, but a sharp decrease begins at this noise level,
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Figure 7.18 Accuracy of classification methods vs. signal-to-noise ratio
when applied to the realistic target set, and trained with noise-free data.

and for very low S/N levels (0 dB), the classifier does little better
than random guessing. The reason for this failure is again the use of
clean profiles during the training of the network. The neural network
is trained to recognize uncorrupted feature vectors, and then utilized
for the alternate task of recognizing profiles buried in noise. Since
the network has experienced only uncorrupted profiles, however, it
has not been trained to reject the noise. The errors which result in
the neural network classifier are shown in Table 7.11 for a §/N ratio
of 15 dB. As shown above for the Mahalanobis distance method, the
worst error occurs with the cruise missile target, suggesting that the
network classifier also relies highly on the short length and resulting
invariance of the end portions of the profile with aspect, as important
factors in its classification.

The overall excellent performance of the profile matching scheme
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Target Classification
Target 4 Target 5 Target 6

Target 4

(Fighter Aircraft) .533 467 .000
Target 5

(Delta-wing Aircraft) 215 .782 .003
Target 6

(Cruise Missile) .220 .761 .019

Table 7.10 Confusion Matrix for Realistic Targets Tested at S/N = 30
dB with Mahalanobis Distance Metric.

Target Classification
Target 4 Target 5 Target 6

Target 4

(Fighter Aircraft) .943 .056 .001
Target 5

(Delta-wing Aircraft) 424 .560 .016
Target 6

(Cruise Missile) .322 .288 .390

Table 7.11 Confusion Matrix for Realistic Targets Tested at S/N = 15
dB with the 27-node Multi-Layer Perceptron.

for all noise levels is not unexpected. Profile matching differs only from
a matched filter in that the library profiles are not perfectly matched to
the test profiles because of the aspect difference between them. At low
S/N levels, however, the difference between training and testing pro-
files becomes insignificant in comparison to the added noise, and the
accuracy of any classifier will be primarily limited by the noise and not
the differences between training and testing sets. Hence, under these
conditions, profile matching delivers near optimal accuracy. Finally,
the insensitivity of the Euclidean metric to added noise is a result of
the simplicity of the algorithm, as well as the fact it escapes incor-
rect assumptions which plague the Mahalanobis distance and neural
network classifiers as discussed above.
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The Mahalanobis distance technique can clearly be improved if
an estimate of the noise covariance is included in the covariance ma-
trix with which the statistical distances are calculated, preventing the
classifier from becoming overly sensitive to noise. The result of this im-
proved procedure is shown in Fig. 7.14. The Mahalanobis classifier was
trained with several varying levels of noise added to the training data,
and tested for S/N levels from 0 to 50 dB, as before. The accuracy of
the classifier is seen to peak at varying noise levels depending on the
amount of noise used in the training. Note, however, the accuracy does
not always peak at the S/N level at which the classifier was trained but
often at higher S/N levels. In addition, for testing S/N levels below
20 dB, it is always possible to obtain better performance by using a
classifier trained with more noise than is actually present. This result
is unexpected if the distributions underlying the clean target profiles
are in fact Gaussian. Hence, this result suggests again that the dis-
tributions are more complex, and the mismatched noise level serves
to de-emphasize the use of a statistical distance which is not suited
to the actual distributions present. By assuming more noise, the re-
sulting covariance matrix becomes more that of the noise alone, and
in the limit, becomes a weighted identity matrix characteristic of the
noise alone, and identical for each class. In this limit the Mahalanobis
distance reduces to the Euclidean distance classifier, shown previously
to perform better than the Mahalanobis metric. Hence, even by in-
cluding the effects of the noise in the classifier, the overly constraining
assumptions of the Mahalanobis scheme prevent it from performing as
well as the simpler Euclidean metric.

This same type of improvement in performance is possible with the
neural network classifier if the training of the network is performed with
profiles which have been corrupted by additive noise. The same net-
work used previously was re-trained several times, varying the amount
of noise added to the training profiles for each trial. The results shown
in Fig. 7.15 demonstrate a trend similar to that of the Mahalanobis
distance classifier, in which the peak accuracy is obtained at a /N
level which varies according to the level with which the network was
trained. Unlike the Mahalanobis classifier, however, the peak testing
S/N ratio is always that at which the network was trained, where the
network classifier is matched to the noise in the testing profiles. The
neural network is, thus, capable of determining the level of noise in
the training set, and adapting its classification procedure to expect
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Figure 7.14 Accuracy of the Mahalanobis distance classifier (solid) vs.
signal-to-noise ratio of the testing data when trained with noisy data.
The signal-to-noise ratio of the training data is shown beside each curve.
Also shown for comparison is the Euclidean distance result (dashed).

that level of noise. The neural network can use this information in
an efficient fashion, and since no assumptions are made regarding the
distributions of the target profiles, the network does not benefit from
assuming more noise is present than what actually has been added.
The resulting accuracies obtained at low S/N levels far exceed those of
the network trained without additive noise, and are also better than
those of the profile matching algorithm. This demonstrates the capa-
bility of the neural network in rejecting noise at least as well as the
correlation method, while still maintaining the ability to generalize and
more efficiently overcome the differences between training and testing
profile sets.
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Figure 7.15 Accuracy of the neural network classifier (solid) vs. signal-
to-noise ratio of the testing data when trained with noisy data. The
signal-to-noise ratio of the training data is shown beside each curve.
Also shown for comparison is the profile matching result (dashed).

7.4 Alignment Uncertainty

A second practical issue which complicates the process of iden-
tifying profiles in a realistic application is the problem of aligning a
measured profile with those in the library. Given a measured transient
response, it is necessary to extract from this the 64 cell range profile,
determining the start and end of the profile within the overall response.
With noise present in the measurements, it is unlikely that this can be
accomplished without the introduction of some shifting of the profile.
Although the correlation nature of the profile matching scheme allows
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Misalignment
-3 -2 -1 0 1 2 3
Accuracy .469 .501 641 .868 652 563 511

Table 7.12 Accuracy of 27-node Multi-Layer Perceptron vs. Misalign-
ment for Training without Shifting.

this error to be overcome by simply sliding the profile against the li-
brary exemplars, the neural network and distance classifier approaches
expect the profile to be correctly aligned.

The accuracy of the neural network approach for misaligned pro-
files is given by Table 7.12. Each of the testing profiles for the realistic
targets was presented to the 27 node network used previously in Sec-
tion 7.2, but here the profiles have been shifted by -3 to +3 increments.
The results obtained when it is falsely assumed that the profiles are
correctly aligned show a significant decrease in accuracy even for shifts
of only +1, and this accuracy is further reduced for shifts of +2 or
13. The overall accuracy assuming that any of the seven shift positions
shown are equally likely, is reduced from 86.8% to merely 60.1%.

In contrast, the results of the profile matching scheme show far
less decrease in accuracy when alignment uncertainty is introduced. To
overcome this error, the profile to be classified is slid over a range of -3
to +3 with respect to the position in which it is assumed to be correctly
aligned, and the maximum correlation coefficient for all library profiles
and all shift positions is taken to indicate the correct class. This scheme
is utilized with all test profiles, where an arbitrary shift between -3 and
+3 is introduced before the sliding is performed. Thus, in all cases the
correct alignment position is one of the 7 positions considered, but
the other 6 positions will vary depending on the initially introduced
alignment error. The results shown in Table 7.13 indicate that profile
matching is relatively insensitive to the initial alignment error, and the
overall accuracy of 74.7%, assuming equally probable likelihoods of
each shift, is not significantly lower than the 78.5% accuracy obtained
when the profiles are always aligned correctly.

It is possible that a sliding scheme similar to that used with the
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Misalignment
3 2 1 0 1 2 3
Accuracy 722 741 748 752 767 .756 144

Table 7.18 Accuracy of Profile Matching with Sliding Correlation vs.
Misalignment.

Misalignment
-3 -2 -1 0 1 2 3
Accuracy .770 .805 .821 842 .856 .849 .785

Table 7.14 Accuracy of 27-node Multi-Layer Perceptron vs. Misalign-
ment for Training with Shifting.

profile matching algorithm could provide some improvement to the
neural network classifier. This approach, however, ignores the real
problem effecting the accuracy of the network approach which paral-
lels the problem encountered in the previous section when noise was
introduced in the testing profiles. Because the network is trained with
profiles of only correct alignment, the classification algorithm devel-
oped internally learns to expect only this case. The solution is, there-
fore, to train the network with profiles showing the entire range of
misalignment which is expected to occur in later testing.

The above type of training was implemented using the same 27
node network considered previously, but now shifting each of the train-
ing profiles over the range of -3 to +3 cells. The results shown in
Table 7.14 are significantly better than those shown for the previous
network above. Some taper in accuracy is still seen for the larger
shifts of +3, but the overall accuracy, again assuming all 7 positions
are equally likely, is now 81.8%. Although this is a reduction from the
86.8% experienced when the profiles are correctly aligned, it is still
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better than the profile matching result given above. Where before the
network was trained to classify on the basis of values for fixed range
cells, this result demonstrates the ability of the network to instead
learn and utilize the relative positions of profile features.

7.5 Computational and Storage Requirements

The results presented above demonstrate that the accuracy of the
neural network classifier is comparable to and often better than that
of more conventional methods. In addition, however, the neural net-
work technique has the added advantage of requiring less storage and
computation than conventional techniques such as profile matching or
the Mahalanobis distance method. Table 7.15 compares these costs for
the implementations of the algorithms used previously to classify the
three realistic target models.

Profile matching requires storage of 270 training profiles (taking
advantage of the targets’ symmetry), each of length 64, for a total
requirement of 17,280 values. The Mahalanobis distance method re-
quires storage of the 64 x 64 covariance matrix and mean profile for
each class, resulting in an overall requirement of 6,432. The 27 node
neural network used in the preceeding analysis requires storage of the
interconnection weights and threshold values for each node. This net-
work leads to a requirement of 1203 values, which represents a reduc-
tion by more than 5 times over the distance method, and by more
than 14 times over profile matching. This comparison demonstrates
the relative efficiency of the neural network in allocation of storage to
obtain equivalent classification accuracy. While profile matching stores
the entire set of profiles, and the distance classifiers store a prescribed
set of statistics, the training process for the neural network allows an
adaptive selection of the significant features for each target class, and

is not limited by preconceived prejudices regarding what these features
should be.

The comparison of the computational requirements for the three
algorithms is similar to that for storage. Profile matching requires cor-
relation of the unknown profile with each from the library, and results
in 17,280 multiplies and 17,010 additions. The Mahalanobis distance
measure requires vector addition, vector-matrix multiplication, and a
vector inner product. These operations result in 12,480 multiplies and
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Algorithm Storage Computation

Multiples Adds Non-linearities
Profile Matching 17,280 17,280 17,010 0
Mahalanobis Distance 6,432 12,480 12,477 0
Neural Network 1,203 1,176 1,176 27

Table 7.15 Comparison of Storage and Computational Requirements for
Classifying the Realistic Targets.

12,477 additions for each unknown to be classified. Finally, the neu-
ral network requires multiplication by the connection weights, and the
summing of terms at each node, resulting in 1176 multiplies and 1176
additions. Again this is a reduction of over one order of magnitude
when compared to either profile matching or Mahalanobis distance
methods. The neural network, however, has the added requirement
of performing non-linear operations in each of the 27 nodes. In the
case of threshold non-linearities, this operation is trivial, but for the
sigmoid non-linearity used in the above examples, this calculation is
more involved, requiring, as a minimum, a table look-up to compute
the non-linear function.

7.6 Summary

This chapter has presented a novel technique for the classifica-
tion of targets from high range resolution profiles using Multi-Layer
Perceptron neural networks. The Physical Theory of Diffraction was
employed to artificially generate high range resolution profiles for two
sets of targets, and neural networks were developed to classify targets
within each set. For comparison purposes, the more conventional pro-
file matching, Mahalanobis distance, and Euclidean distance classifiers
were also applied.

Training and testing with noise-free data, it was shown that the
neural network achieved an accuracy exceeding that of conventional
methods. In addition, for networks of sufficient complexity, the error
is experienced where it is expected, between targets which are the most
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visually similar. In contrast, the Euclidean metric tended to classify
the most aspect-independent target well, but its simplicity led to large
errors even for relatively distinguishable targets. The Mahalanobis
metric worked well for the simpler target set, but offered no improve-
ment over the Euclidean distance for the more realistic targets, where
the profile statistics seem to deviate further from the implicitly as-
sumed gaussian nature. Profile matching was the most accurate of the
conventional techniques, but lacked the facility of the neural network
in generalizing from the training data to overcome aspect-imposed dif-
ferences between training and testing profiles.

When the testing profiles were corrupted with noise it was seen
that both neural network and Mahalanobis distance classifiers suffered
a significant error for low S/N ratios. This error was attributed to
the misleading training, which was performed with noise-free training
profiles, causing an over-sensitivity to noise in both algorithms. Profile
matching performed well despite the noise, because of its matched
filtering approach, and the simplicity of the Euclidean metric granted
it a relatively high indifference to noise as well. The accuracies of
the neural network and Mahalanobis distance methods were seen to
improve significantly, however, when training was performed with noise
corrupted profiles. The accuracy of the neural network approach was
seen to peak when the noise level in the training process was matched
to that expected in testing, and with this match, the accuracy achieved
exceeded that of profile matching, even for low S/N levels.

When the testing profiles were shifted one or more range cells
before applying the neural network classifier, the accuracy obtained
dropped significantly. In contrast, the correlation nature of the profile
matching algorithm permitted insensitivity to alignment uncertainty
by sliding the profile when performing the correlation. Again, how-
ever, it was seen that the shortfall of the neural network was due to
misleading training, and after retraining with shifted data, the accu-
racy of the neural network once again exceeded profile matching.

Finally, the storage and computational requirements for profile
matching and Mahalanobis distance classifiers were compared to that
of the neural network. The network was seen to achieve a reduction of
over 10 times when compared to profile matching, and 5-10 times over
the distance method. This efficiency, combined with the above accu-
racy, which equals or exceeds that of conventional algorithms, suggests
that neural network classifiers show promise in overcoming many of
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the practical problems which currently limit the effectiveness and ap-
plicability of target classification systems.
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